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Minimal degree rational open up mappings
and related questions

Sergei Kalmykov, Béla Nagy and Olivier Sète

Dedicated to Vilmos Totik on his 70th birthday

Abstract. We establish the existence and uniqueness of rational conformal maps of minimal
degree n + 1 for opening up n arcs. In earlier results, the degree was exponential in n. We also
discuss two related problems. (a) We establish existence of rational functions of minimal degree with
prescribed critical values, and show that the number of (suitably normalized) rational functions is
given in terms of the Hurwitz numbers. (b) We consider the problem of finding rational functions
of minimal degree with prescribed critical points, where we establish existence of solutions by
considering certain polynomial equations, and where the number of normalized solutions is bounded
from above by a Catalan number. We illustrate our results with two examples.

Alimman asteen aukaisevia rationaalikuvauksia ja niihin liittyviä kysymyksiä

Tiivistelmä. Osoitamme, että on olemassa yksikäsitteinen rationaalinen konformikuvaus, jolla
on alin mahdollinen aste n + 1 ja joka aukaisee annetut n kaarta. Aiemmissa tuloksissa tarvitta-
va aste oli eksponentiaalinen lukumäärän n suhteen. Lisäksi tarkastelemme kahta tähän liittyvää
ongelmaa. (a) Osoitamme, että on olemassa rationaalifunktioita, joiden aste on alin mahdollinen
ja joilla on annetut kriittiset arvot, ja näytämme, että (sopivasti normitettujen) rationaalifunktioi-
den lukumäärä vastaa Hurwitzin lukuja. (b) Tarkastelemme ongelmaa löytää rationaalifunktioita,
joiden aste on alin mahdollinen ja joilla on annetut kriittiset pisteet. Osoitamme ratkaisujen olemas-
saolon tutkimalla tiettyjä polynomiyhtälöitä ja näytämme, että Catalanin luvut antavat ylärajan
normitettujen ratkaisujen lukumäärälle. Havainnollistamme tuloksiamme kahdella esimerkillä.

1. Introduction

We call a rational function F of type (n,m) if it can be written as F = P/Q,
where P and Q are coprime polynomials with deg(P ) = n and deg(Q) = m. The
degree of F is deg(F ) = max{n,m}. We denote the extended complex plane by
C∞ = C ∪ {∞}.

The original purpose of this research was to prove the following theorem.

Theorem 1.1. Let γ1, . . . , γn be disjoint Jordan arcs in the complex plane. Then
there exists a rational function F of type (n+1, n) and a compact setK ⊂ C bounded
by n disjoint Jordan curves such that F is a conformal map from C∞ \ K onto
C∞ \

⋃n
j=1 γj and F (∞) =∞. Moreover, F and K are unique up to pre-composition

of F with a linear transformation. In particular, the normalization F (z) = z+O(1/z)
at infinity determines F and K uniquely.
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Recall that Jordan arcs and Jordan curves are homeomorphic images of the in-
terval [0, 1] and the unit circle, respectively. Throughout this article, we always mean
that a conformal map is also injective. Note that F (∞) =∞ always holds if F is of
type (n + 1, n). The inverse function F−1 : C∞ \

⋃n
j=1 γj → C∞ \K “opens up” the

arcs γj. We call F−1, and for simpler language also F , an open up mapping for the
arcs γ1, . . . , γn.

Such results can be applied, among others, to prove asymptotically sharp Bern-
stein- and Markov-type inequalities on several Jordan arcs. In [19] and [20] it was
shown how it works in the case of one arc.

For a rational function F in Theorem 1.1, the endpoints of the arcs are critical
values (see Proposition 3.2 below). This observation leads to the problem of finding
rational functions of minimal degree with prescribed critical values. As for terminol-
ogy, the critical points are the points in the set {z ∈ C : F ′(z) = 0}, and the critical
values are the elements of {F (z) : z ∈ C with F ′(z) = 0}.

Theorem 1.2. Let η1, η2, . . . , η2n ∈ C be distinct. Then there exists a rational
function F of type (n+1, n) such that the set of critical values of F is {η1, η2, . . . , η2n}.
Moreover, each function can be normalized by F (z) = z + O(1/z) at infinity. If
n = 1, there is exactly one normalized function. If n ≥ 2, the number of normalized
functions is (n+ 1)Hn with the Hurwitz numbers

(1) Hn =

{
(2n)!
n!

(n+ 1)n−3, if n ≥ 2,

1, if n = 1.

In contrast to Theorem 1.1, the normalization F (z) = z + O(1/z) at infinity
does not uniquely determine a rational function with prescribed critical values when
n ≥ 2. We give an example for this in Section 7.

For each critical value ηj of F , there exists a critical point ζj with F (ζj) = ηj and
F ′(ζj) = 0. This remark leads to the related problem of finding a rational function
of minimal degree with prescribed critical points. It turns out that this is a simpler
problem (with half as many equations and unknowns) than the previous one and it
is answered by the following theorem.

Theorem 1.3. Let ζ1, . . . , ζ2n ∈ C be distinct. Then there exists a rational
function F of type (n+ 1, n) such that the set of critical points of F is {ζ1, . . . , ζ2n}.
Moreover, each function F can be normalized by F (z) = z +O(1/z) at infinity, and
the number of normalized functions is bounded by the Catalan number Cn = 1

n+1

(
2n
n

)
.

That the degree is, indeed, minimal in Theorems 1.1–1.3 is shown next.

Proposition 1.4. The rational functions in Theorems 1.1, 1.2 and 1.3 are min-
imal in the sense that if F = P/Q with coprime polynomials P,Q, then neither
deg(P ) < n+ 1 nor deg(Q) < n can occur. Moreover, they have only simple poles.

Proof. Since a rational function in Theorem 1.1 or 1.2 has 2n distinct critical
points, it is enough to show the proposition for rational functions in Theorem 1.3
(i.e., with 2n distinct critical points). Let F be a rational function as in Theorem 1.3.
Assume that F = P/Q with coprime polynomials P , Q, and that

1. deg(F ) ≤ n, or
2. deg(P ) ≤ n+ 1 and deg(Q) ≤ n, and we have strict inequality for P or Q.

Then F ′ = (P ′Q− PQ′)/Q2 and deg(P ′Q− PQ′) < 2n. In Theorem 1.3 if F has 2n
distinct critical points then we obtain F ′ ≡ 0, i.e., F is constant, which is impossible.
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It remains to show that F has simple poles. If F = P/Q with deg(P ) = n + 1
and deg(Q) = n has a pole of order m ≥ 2, then, after cancelling common factors,
the numerator of F ′ = (P ′Q−PQ′)/Q2, has degree at most 2n+ 1−m < 2n but 2n
zeros, which is impossible. �

Remark 1.5. Each function in Theorems 1.1, 1.2 or 1.3 (without normaliza-
tion) yields infinitely many solutions of the respective problem by suitable affine
transformations. Indeed, let a, b ∈ C with a 6= 0.

1. In Theorems 1.1 and 1.2, if F is a solution, then so is F (az + b).
2. In Theorem 1.3, if F is a solution, then aF (z) + b is also a solution.

In particular, if a solution exists, it is not unique. We call two solutions F,G equiva-
lent, if there exist a, b ∈ C with a 6= 0 such that G(z) = F (az + b) (in Theorems 1.1
and 1.2) or G(z) = aF (z) + b (in Theorem 1.3). We can specify any normalization at
infinity to obtain a unique representative of each equivalence class: Given α, β ∈ C
with α 6= 0 and a solution F of Theorem 1.1, there exist unique a, b as above, such
that F (az + b) = αz + β + O(1/z) for z → ∞. A similar statement holds for the
other two theorems.

The paper is organized as follows. We give an overview of known related results
in Section 2. In Section 3, we show the existence and uniqueness in Theorem 1.1 using
the theory of Riemann surfaces. This approach is purely geometric: it is short and
intuitive, but not constructive. The results in Theorems 1.2 and 1.3 are of algebraic
nature, and we reformulate both in terms of polynomial systems of equations. In
Section 4, we prove Theorem 1.2. We give a geometric existence proof using the open
up mapping, while the proof for the number of solutions builds on earlier results by
Hurwitz and Mednykh on the number of Riemann surfaces with simple branch points.
In Section 5, we prove Theorem 1.3 and use algebraic tools to show the existence of
solutions. We conclude with a discussion in Section 6 and two examples in Section 7.

2. Overview of some known, earlier results

There are several results related to the three theorems above that are scattered
through the literature. They appeared in various fields of mathematics and occurred
in almost every decade in the last century. Let us recall some of them, not necessarily
in chronological order.

Starting with Theorem 1.1, Widom’s seminal paper [43] must be mentioned where
he iterated Joukowskii mappings to construct a rational open up mapping, see [43,
pp. 206–207]. In Widom’s construction, the rational function has degree 2n, i.e., it
grows exponentially with the number of arcs. Later, Widom’s iterated construction
appeared in connection with Riemann surfaces, see the papers by Seppälä [39] and
Hidalgo and Seppälä [15]. Seppälä attributes this approach to Myrberg [30], who, in
turn, credits this idea to Poincaré, see [30, p. 4].

The question about the existence of rational functions with prescribed critical
values can be considered in general: is it possible to cover Riemann surfaces with
prescribed ramification sets? For results in this direction and going back to a problem
of Hurwitz, we refer to Mednykh’s paper [28] and the references therein.

These ramification sets or branching points naturally lead to Theorem 1.2. In-
stead of rational functions, polynomials with prescribed critical values were also
investigated in Thom’s paper [41], in which the existence of such polynomials was
established. See also the papers by Mycielski and Paszkowski [29], Kammerer [21],
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Kuhn [24] and Kristiansen [23] for the real case and further references. Let us re-
mark that Beardon, Carne, and Ng in [6] investigated the properties of the mapping
from critical points to critical values, realizing and describing a natural connection
between the two problems in the class of polynomials. This leads to Theorem 1.3.

Theorem 1.3 was proved by Goldberg in [12] using projective spaces, Grassmann
manifolds, and homology classes. She also counted the number of solutions. Since
we are also interested in obtaining the solutions, we show the existence by more
constructive means.

For real rational functions with prescribed real critical points we refer to the
paper of Eremenko and Gabrielov [10] and the recent article [34] where such rational
functions are used in Schramm–Loewner evolution.

An interesting application of the open up mapping is the computation of the
logarithmic capacity of a compact set E consisting of n disjoint arcs. The rational
function maps the exterior of E to a domain with smooth boundary, from which the
logarithmic capacity of E can be computed numerically with a conformal map of
Walsh, as described by Nasser, Liesen and Sète in [31] and [26].

The necessity of obtaining conformal representations by rational functions also
appeared in the study of multiple orthogonal polynomials, see [3, 4, 5, 27]. In general,
such representations are different from open up mappings, but they are the same
in the case of two arcs. The case of two real intervals was considered by López
Lagomasino, Pestana, Rodríguez, and Yakubovich in [27].

Instead of (general) rational functions, similar questions can be considered among
(finite) Blaschke products. See, e.g., [22, 38] for further references. A similar open
problem (determining a Blaschke product or its zeros from critical values) is also of
interest and is raised in [38].

We mention that Theorem 1.1 is more precise than [19, Prop. 5]. Note that there
is a minor flaw in the proof of existence in [19, Prop. 5], while the remaining proof
is correct. In our paper, we prove the existence of F and K with a different method.

3. Existence and uniqueness of the open up mapping

In this section, we prove Theorem 1.1 using the theory of Riemann surfaces.
For background on Riemann surfaces and the Riemann–Roch theorem, we refer to
the books [37] or [11]. If Γ is a Jordan curve, denote the bounded and unbounded
components of C \ Γ by int(Γ) and ext(Γ), respectively.

Proof of the existence in Theorem 1.1. Let γ be a Jordan arc in C. Every point
of γ is accessible from C \ γ; see [33, p. 164]. We will show that every point of γ
that is not an endpoint of γ gives rise to two distinct accessible boundary points of
C∞ \γ, while an endpoint of γ gives rise to one accessible boundary point of C∞ \γ.
Recall that a boundary point z of a domain D is accessible from D if there exists
a Jordan arc ` with one endpoint at z and otherwise contained in D; see, e.g., [33,
p. 162] or [13, Ch. II, §3, p. 35]. Such a Jordan arc ` is also called an end-cut [33,
p. 118]. Following Goluzin [13, pp. 36–37], two accessible boundary points z1 and z2
in ∂D are regarded as distinct, if either z1 6= z2 or if z1 = z2 but given two end-cuts
`1, `2, there exists a neighborhood U of z1 such that `1, `2 cannot be joined in U ∩D.
There exists a Jordan curve γ̃ in C such that γ is an arc of γ̃, i.e., γ ⊆ γ̃; see [33,
Ch. VI, Thm. 14.5] or [36, Cor. 17.23]. Let D = {z ∈ C : |z| < 1} be the unit disk.
By the Schoenflies theorem (see, e.g., [35, Cor. 2.9]), there exists a homeomorphism
f : C → C such that f(γ̃) = ∂D is the unit circle, f(int(γ̃)) = int(∂D) = D and
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f(ext(γ̃)) = ext(∂D). It is not hard to see that every point z ∈ ∂D gives rise to one
accessible boundary point in D and to one in ext(∂D). By the homeomorphism f ,
also every z ∈ γ̃ gives rise to one accessible boundary point in int(γ̃), denoted by
z+, and to one accessible boundary point in ext(γ̃), denoted by z−. In the domain
C∞\γ, a point z ∈ γ that is not an endpoint of γ gives rise to two accessible boundary
points: z+ accessible from int(γ̃) and z− accessible from ext(γ̃). An endpoint z of γ
yields one accessible boundary point (z+ = z− in C∞ \ γ), which follows from [33,
Thm. 14.2, p. 162]. Set γ+ := {z+ : z ∈ γ} and γ− := {z− : z ∈ γ}. As point sets,
γ+ = γ− = γ, but as sets of accessible boundary points, γ+ and γ− are two Jordan
arcs that are disjoint except at their endpoints.

 

Figure 1. The Riemann surface R and the maps F0, π, and F in the proof of the existence in
Theorem 1.1 in the case of two arcs.

Take n + 1 copies of the Riemann sphere, denoted by R0, R1, . . . , Rn. Cut R0

along all the arcs γ1, . . . , γn. For j = 1, . . . , n, cut Rj along γj and join it crosswise
to R0 along the arc γj, i.e., for z ∈ γj we identify z+ ∈ γ+j in R0 with z− ∈ γ−j
in Rj, and z− ∈ γ−j in R0 with z+ ∈ γ+j in Rj. (See, e.g., [18, Ch. 4.3, p. 83] for
the identification.) This results in a Riemann surface which we denote by R; see,
e.g., [32, p. 8] or the Russian translation of Hurwitz and Courant [17, pp. 383–384
and p. 579]. Figure 1 illustrates the construction of R for n = 2. Let us sketch why
R is a Riemann surface. The identification yields a topological surface, on which we
define the following charts: w = z in a neighborhood of a finite point that is not a
branch point (not an endpoint of an arc γ1, . . . , γn), w =

√
z − ηk in a neighborhood

of a branch point ηk (an endpoint of one of the arcs γ1, . . . , γn), and w = 1/z in a
neighborhood of z =∞.

For each j = 1, . . . , n, the above identification of γ+j in R0 with γ−j in Rj yields a
simple arc γ̂+j in R, and the identification of γ−j in R0 with γ+j in Rj yields a simple
arc γ̂−j in R. Since γ̂+j and γ̂−j are disjoint except for their endpoints, γ̂j := γ̂+j ∪ γ̂−j
is a simple closed curve in R.

Note that R is simply connected (i.e., has genus 0) and compact. One of the
corollaries of the Riemann–Roch theorem (see e.g. [11, pp. 130–131]) says that there
is a biholomorphic mapping F0 from R onto the Riemann sphere C∞. (Alternatively,
since R is compact and simply connected, the uniformization theorem implies the
existence of F0.) We choose F0 such that ∞ ∈ R0 is mapped to ∞ (if needed, this
can be achieved by postcomposition with a Möbius transformation).

Let π : R → C∞ be the canonical projection from R onto the Riemann sphere,
i.e., with π(w(k)) = w, where w ∈ C, and w(k) ∈ Rk is above w. Then F :=



434 Sergei Kalmykov, Béla Nagy and Olivier Sète

π ◦ F−10 : C∞ → C∞ is a meromorphic function and hence F is a rational function
(see e.g. [11, p. 11] or [42, Thm. 3.5.8]). Because of the projection, F is an (n+1)-to-1
mapping and thus F has degree n + 1. The poles of F are the images under F0 of
∞ ∈ Rj, j = 0, . . . , n. In particular, F has n+ 1 distinct poles and these are simple.
Since F−10 (∞) =∞ ∈ R0, also F (∞) =∞ and F is of type (n+ 1, n).

Consider the simply connected domains Rj \γj = C∞ \γj, j = 1, . . . , n, in R and
the n-connected domain R0\

⋃n
j=1 γj = C∞\

⋃n
j=1 γj in R. Since F0 is biholomorphic,

Gj := F0(Rj \ γj) ⊆ C∞, j = 1, . . . , n,

are simply connected domains and
G∞ := F0(R0 \

⋃n
j=1 γj) ⊆ C∞

is an n-connected domain, and ∞ ∈ G∞ by the above choice of F0. The domains
G∞, G1, . . . , Gn are disjoint since the sheets R0, R1, . . . , Rn are disjoint and F0 is
biholomorphic. In particular, G1, . . . , Gn are bounded.

By construction, the boundary of Rj \ γj in R is the simple closed curve γ̂j, and
the boundary of R0 \

⋃n
j=1 γj in R consists of the simple closed curves γ̂1, . . . , γ̂n.

Since F0 : R → C∞ is biholomorphic, Γj := F0(γ̂j), j = 1, . . . , n, are disjoint Jordan
curves in C∞. Moreover, Γj is the boundary of Gj and one boundary component of
G∞. Together, we obtain that ∂G∞ =

⋃n
j=1 Γj consists of n Jordan curves, and

K := C∞ \G∞ =
⋃n
j=1(Gj ∪ Γj) =

⋃n
j=1Gj

is a compact set with n components, each of which is the closure of a simply con-
nected Jordan domain. By construction, F = π ◦ F−10 : C∞ \K → C∞ \

⋃n
j=1 γj is

bijective and conformal. Similarly, F : Gj → C∞ \γj is bijective and conformal. This
completes the proof. �

Remark 3.1. If the Jordan arcs γj are Ck+ smooth, then the Jordan curves
making up ∂K are Ck+ smooth too, see [43, p. 206], where Ck+ means k times
continuously differentiable and the k-th derivative is Lipschitz α for some α > 0.
Moreover, analyticity is also preserved, that is, if γj are analytic Jordan arcs, then
∂K consists of analytic Jordan curves, see [19, p. 879]. Both assertions are also clear
from the proof of the existence in Theorem 1.1, since Γj = F0(γ̂j) is the image of a
simple closed curve under a biholomorphic map.

Next, we show that the critical values of an open up mapping as in Theorem 1.1
are precisely the endpoints of the arcs.

Proposition 3.2. Let γ1, . . . , γn be disjoint Jordan arcs in the complex plane.
Denote the endpoints of γj by η2j−1 and η2j, j = 1, 2, . . . , n. If F is a rational open
up mapping of type (n + 1, n) for γ1, . . . , γn, then the set of critical values of F is
{η1, . . . , η2n}. Moreover, F−1({ηj}) consists of n distinct points, one of them has
multiplicity two and is a critical point of F , and the others have multiplicity one.

Proof. Let F be a rational open up mapping of type (n + 1, n) for γ1, . . . , γn.
In particular, F : C∞ \ K → C∞ \

⋃n
j=1 γj is bijective and conformal. Denote the

boundary curves of K by Γ1, . . . ,Γn, labelled such that F (Γj) = γj for j = 1, 2, . . . , n.
Fix k ∈ {1, 2, . . . , 2n} and let ηk be an endpoint of γj (i.e. k = 2j− 1 or k = 2j).

Since F is of type (n + 1, n), there are n + 1 pre-images of ηk under F in C: There
is exactly one in int(Γ`) for each ` 6= j, and there are two on Γj. (The pre-images
cannot be in int(Γj), since F : int(Γj) → C∞ \ γj.) Let ζk ∈ Γj with F (ζk) = ηk.
Since ηk are the endpoints of arcs, we must have F ′(ζk) = 0 (otherwise F is locally
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bijective at ζk and ηk = F (ζk) is an interior point of γj), hence ηk is a critical value
of F and ζk is a double pre-image of ηk under F . The set of critical values of F
is {η1, . . . , η2n}, since F is of type (n + 1, n) and cannot have any further critical
values. �

Next, we show the uniqueness up to a linear transformation in Theorem 1.1, thus
completing the proof.

Proof of the uniqueness in Theorem 1.1. Let F, F̃ be rational functions that
are open up mappings. We construct an analytic map ϕ : C∞ → C∞ with F̃ (z) =
F (ϕ(z)) and show that ϕ(z) = az + b.

Let G∞ := C∞ \K be the region that is mapped by F onto C∞ \
⋃n
j=1 γj. For

j = 1, . . . , n, denote by Γj the boundary curve of K that is mapped by F onto γj, and
let Gj = int(Γj). Then F : Gj → C∞\γj for j = 1, . . . , n and F : G∞ → C∞\

⋃n
j=1 γj

are conformal (and bijective). Introduce the same notation for F̃ , but with tildes.
Then ϕ := F−1 ◦ F̃ : G̃j → Gj is conformal (and bijective) for all j = 1, . . . , n,∞,
and F̃ (z) = F (ϕ(z)) for z ∈ G̃1 ∪ . . . ∪ G̃n ∪ G̃∞.

We extend ϕ to an analytic function on C with a simple pole at ∞. Since
G̃1, . . . , G̃n are Jordan regions, ϕ extends to a homeomorphism G̃j ∪ Γ̃j → Gj ∪Γj by
the Osgood–Carathéodory theorem; see [14, Thm. 5.10e] or [42, Thm. 6.5.1]. This is
also true for G̃∞ by subdividing the relevant parts in Jordan regions, similar to [14,
p. 385].

Let j ∈ {1, . . . , n} and z̃0 ∈ Γ̃j. Then ϕ : G̃j ∪ Γ̃j → Gj ∪ Γj maps z̃0 to a point
z0 ∈ Γj. First, consider z̃0 ∈ Γ̃j that is not a critical point of F̃ , so that F̃ (z̃0) is
not an endpoint of γj (see Proposition 3.2). Then z0 ∈ Γj is not a critical point
of F . (Otherwise F (z0) = F̃ (z̃0) would be an endpoint of γj.) Then there exist
open neighborhoods U of z0, Ũ of z̃0, and V and Ṽ of F (z0), such that F : U → V

and F̃ : Ũ → Ṽ are conformal (and bijective). Without loss of generality, we have
V = Ṽ . Then F−1 ◦ F̃ : Ũ → U is analytic, maps Ũ ∩ G̃k → U ∩ Gk for k ∈ {j,∞}
and Ũ ∩ Γ̃j → U ∩ Γj, and coincides with ϕ in Ũ ∩ G̃j and Ũ ∩ G̃∞. Therefore, ϕ
extends to an analytic function in Ũ .

Next, let z̃0 ∈ Γ̃j be a critical point of F̃ , then z0 ∈ Γj is a critical point of F . By
the above extension, ϕ is analytic in a punctured neighborhood of z̃0 and continuous
at z̃0, hence also analytic at z̃0.

Therefore, ϕ is analytic in C with a simple pole at ∞, hence ϕ(z) = az + b with
a 6= 0. Then F̃ (z) = F (ϕ(z)) = F (az + b). This shows uniqueness up to a linear
transformation. Finally, if F and F̃ both have the form z + O(1/z) at infinity, then
ϕ(z) = z and F = F̃ . �

The open up mapping in Theorem 1.1 depends only on the endpoints of the arcs
and the topology of C \

⋃n
j=1 γj, but does not depend on the specific shape of the

arcs. This is shown in the next theorem, which is formulated for one arc, but can be
applied iteratively to allow deformation of all arcs.

Theorem 3.3. Let γ1, . . . , γn be disjoint Jordan arcs in the complex plane, and
let F : C∞ \K → C∞ \

⋃n
j=1 γj be an open up mapping as in Theorem 1.1. Let γ̃1

be a Jordan arc with same endpoints as γ1 which is homotopic with fixed endpoints
to γ1 in C \ (γ2 ∪ . . . ∪ γn). Then F is also an open up mapping for γ̃1, γ2, . . . , γn,



436 Sergei Kalmykov, Béla Nagy and Olivier Sète

i.e., there exists a compact set K̃ bounded by n disjoint Jordan curves such that
F : C∞ \ K̃ → C∞ \ (γ̃1 ∪ γ2 ∪ . . . ∪ γn) is conformal and bijective.

Proof. Since F : C∞ \K → C∞ \
⋃n
j=1 γj is an open up mapping, ∂K consists of

n disjoint Jordan curves Γ1, . . . ,Γn, labeled such that F (Γj) = γj for j = 1, 2, . . . , n.
By Proposition 3.2, the endpoints η1, η2 of γ1 are critical values of F . Let ζ1, ζ2 ∈ Γ1

be the critical points of F with F (ζj) = ηj for j = 1, 2.
Let f0 : [0, 1] → γ̃1, f1 : [0, 1] → γ1, be continuous and bijective functions with

f0(0) = f1(0) = η1, f0(1) = f1(1) = η2. By assumption of the theorem, f0, f1 are
homotopic with fixed endpoints in D = C \ (γ2 ∪ · · · ∪ γn), i.e., there exists a conti-
nuous function H : [0, 1]× [0, 1]→ D with H(0, t) = f0(t) and H(1, t) = f1(t) for all
t ∈ [0, 1] and H(s, 0) = η1 and H(s, 1) = η2 for all s ∈ [0, 1]. Then H([0, 1]× [0, 1]) ⊆
D is compact.

Let γ be a positively oriented Jordan curve in D such that H([0, 1] × [0, 1]) ⊆
int(γ) and γ2, . . . , γn ⊆ ext(γ). Let Γ(e) be the pre-image in C\K of γ under F . Then
Γ(e) is a positively oriented Jordan curve with Γ1 in its interior (i.e., Γ1 ⊆ int(Γ(e))),
since F : C∞ \ K → C∞ \

⋃n
j=1 γj is conformal and bijective. Since F : int(Γ1) →

C∞ \ γ1 is also conformal and bijective, there exists a Jordan curve Γ(i) ⊆ int(Γ1)
such that F : Γ(i) → γ is bijective. Note that Γ(i) is negatively oriented.

Let A denote the (open) ring-domain bounded by Γ(e) and Γ(i). Then F is
holomorphic on A, and Γ1 ⊆ A. For w ∈ int(γ), the winding of F − w along
Γ(i)∪Γ(e) isW (F −w; Γ(i)∪Γ(e)) = 2, hence F : A→ int(γ) is 2 to 1 by the argument
principle.

We have γ̃1 ⊆ int(γ) by the definition of γ. Hence the pre-image of γ̃1 under F in
A consists of two Jordan arcs connecting ζ1, ζ2. Since F is conformal in A \ {ζ1, ζ2},
the two arcs cannot intersect except at ζ1, ζ2, and hence form a Jordan curve Γ̃1.
We orient Γ̃1 in the negative sense. We then have for w ∈ int(γ) \ γ̃1 that W (F −
w; Γ(e) ∪ Γ̃1) = 1, hence F maps the ring domain bounded by Γ̃1 and Γ(e) bijectively
onto int(γ)\ γ̃1. This implies that F : C∞ \K̃ → C∞ \(γ̃1∪

⋃n
j=2 γj) is conformal and

bijective and hence an open up mapping, where C∞ \ K̃ is the unbounded domain
with boundary Γ̃1 ∪

⋃n
j=2 Γj. �

We saw in Proposition 3.2 that an open up mapping has the endpoints of the arcs
as critical values. Theorem 3.3 clarifies the difference between an open up mapping
and rational functions with critical values at the endpoint of the arcs. While the
information on the critical values is present in both problems, the difference is the
additional “topological” information about the arcs in Theorem 1.1, which is not
present in Theorem 1.2. We give an example for this difference in Section 7.

4. Rational functions with prescribed critical values

In this section, we first prove Theorem 1.2. Afterwards, we also consider an
equivalent polynomial formulation, which can be suitable for the computation of
rational functions with prescribed critical values.

The existence of solutions in Theorem 1.2 readily follows from Theorem 1.1 and
Proposition 3.2. The exact number of solutions is derived with results on ramified
coverings of the Riemann sphere.

Proof of Theorem 1.2. Step 1: Existence. Connect the points η1, . . . , η2n
pairwise by Jordan arcs that do not intersect each other. By Theorem 1.1 there
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exists a rational open up mapping F of type (n + 1, n), which by Proposition 3.2 is
a solution in Theorem 1.2.

Step 2: Number of normalized solutions. Let F , F1 be two rational functions of
type (n + 1, n) with critical values η1, . . . , η2n (we do not impose the normalization
at infinity yet). Following Mednykh [28], we call F, F1 equivalent, if there exists a
homeomorphism ϕ : C∞ → C∞ with F = F1 ◦ ϕ. It follows that ϕ is a Möbius
transformation.

By assumption, the critical values η1, . . . , η2n ∈ C are distinct and hence are
ramification points of order 2 of the rational functions. In this case, the number of
non-equivalent coverings (i.e., of equivalence classes) in the sense of Mednykh is given
by the Hurwitz numbers Hn in (1), see [28] and Hurwitz’ original article [16, p. 22];
see also [25, p. 290] and [8, Eqn. (4.10)].

In the second step, we estimate the number of normalized functions in Theo-
rem 1.2 in each equivalence class. Note first that, by Remark 1.5, each function is
equivalent to one that is normalized at infinity. Next, let F, F1 be two equivalent
rational functions of type (n+ 1, n) with critical values η1, . . . , η2n and normalized at
infinity by z +O(1/z). Let us write

F (z) = z +
n∑
j=1

rj
z − pj

,

where p1, . . . , pn ∈ C are distinct, and rj 6= 0 for j = 1, . . . , n. As shown above,
F = F1 ◦ ϕ with a Möbius transformation ϕ. In particular, p is a pole of F if and
only if ϕ(p) is a pole of F1. In particular, ϕ−1(∞) is a pole of F and we distinguish
two cases.

If ϕ−1(∞) =∞, then ϕ is a linear transformation of the form ϕ(z) = az+ b with
nonzero a ∈ C. The normalization of F and F1 at infinity and F = F1 ◦ ϕ imply
ϕ(z) = z, hence F = F1.

Otherwise, ϕ−1(∞) is a finite pole of F and there exists j0 ∈ {1, . . . , n} such that
ϕ−1(∞) = pj0 ∈ C. Then ϕ has the form

(2) ϕ(z) =
az + b

z − pj0
, ϕ−1(z) =

pj0z + b

z − a
,

with a, b ∈ C and −apj0 − b 6= 0. We compute

F1(z) = F (ϕ−1(z)) =
pj0z + b

z − a
+

n∑
j=1

rj
z − a

(pj0z + b)− pj(z − a)

= pj0 +
apj0 + b

z − a
+

n∑
j=1

rj
z − a

(pj0 − pj)z + apj + b
.(3)

We distinguish the cases j = j0 and j 6= j0 in the sum. If j 6= j0 then

z − a
(pj0 − pj)z + apj + b

=
1

pj0 − pj
· z − a
z − ϕ(pj)

=
1

pj0 − pj
+

ϕ(pj)−a
pj0−pj

z − ϕ(pj)
.

Inserting this in (3) yields

F1(z) =
rj0

apj0 + b
(z − a) + pj0 +

apj0 + b

z − a
+
∑
j 6=j0

rj
pj0 − pj

+
∑
j 6=j0

rj
ϕ(pj)−a
pj0−pj

z − ϕ(pj)
.
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By assumption, F (z) = z +O(1/z) at ∞. Comparing the coefficient of z yields

(4)
rj0

apj0 + b
= 1,

and comparing the constant coefficient yields

(5) a = pj0 +
∑
j 6=j0

rj
pj0 − pj

.

Moreover, by (4), b = rj0 − apj0 . Thus, a and b are uniquely determined by F and
pj0 . This shows that ϕ is fully determined by F and a choice of one of the n + 1
poles of F . Thus, each of the Hn many equivalence classes contains at most n + 1
distinct normalized functions, which establishes the bound (n+ 1)Hn on the number
of normalized rational functions in Theorem 1.2. We proceed to derive the exact
number.

If n = 1, there is one equivalence class since H1 = 1. Thus the bound gives 2,
but there is only one solution in Theorem 1.2, which can be seen as follows; see also
Proposition 6.1 where the solution is derived explicitly. If F (z) = z + r1

z−p1 and if we
choose j0 = 1, then a = p1 by (5) and thus F1(z) = z + r1

z−a = F (z), so that there is
only a single normalized solution in the only equivalence class.

If n ≥ 2, the n + 1 normalized functions in each equivalence class are distinct,
which we show next. Consider as above F = F1 ◦ϕ with a Möbius transformation ϕ
of the form (2) for some j0 ∈ {1, . . . , n}. We show by contradiction that F and F1

are distinct, and therefore assume that F = F1. This leads to

(6) F (z) = (F ◦ ϕ)(z).

In particular, ϕ({p1, . . . , pn, p∞ = ∞}) = {p1, . . . , pn, p∞ = ∞}, that is ϕ permutes
the poles of F . Since the set of poles of F is finite, there exists a positive integer N
such that ϕN , the N -th iteration of ϕ, satisfies ϕN(pj) = pj for j = 1, . . . , n,∞, hence
the Möbius transformation ϕN has n + 1 ≥ 3 fixed points and thus is the identity,
ϕN = id. Note that ϕ 6= id, since ϕ has a finite pole at pj0 ∈ C.

Next, we show that ϕ has two distinct fixed points. Since ϕ 6= id, it has one or
two fixed points. Let us assume that ϕ has only one fixed point A ∈ C∞, we shall
reach a contradiction. Let z = χ(u) be a Möbius transformation with χ(∞) = A.
The Möbius transformation χ−1 ◦ ϕ ◦ χ fixes infinity and has only one fixed point,
hence (χ−1◦ϕ◦χ)(u) = u+β for some β ∈ C. Moreover, the set χ−1({p1, . . . , pn,∞})
is invariant under χ−1 ◦ ϕ ◦ χ, hence β = 0 and ϕ = id, a contradiction. Thus, ϕ has
two distinct fixed points A,B ∈ C∞, A 6= B.

There exists a Möbius transformation z = ψ(w) such that ψ(0) = A and ψ(∞) =
B. Therefore ψ−1(ϕ(ψ(w))) = λw for some λ ∈ C, where λ 6= 1 since ϕ 6= id.
Transforming ϕ to the w-plane, we can write

w = ψ−1
(
ϕN(ψ(w))

)
= (ψ−1 ◦ ϕ ◦ ψ)N(w) = λNw

which implies that λN = 1. Since λ 6= 1, we have N ≥ 2, and we can choose
the smallest number ν ≥ 2 with λν = 1. We transform F to the w-plane and
define G(w) := F (ψ(w)). Then (6) yields G(w) = F (ψ(w)) = F (ϕ(ψ(w))) =
F (ψ(λw)) = G(λw). Note that F and G have the same critical values η1, . . . , η2n.
Let w1, . . . , w2n ∈ C be critical points of G with G(wj) = ηj for j = 1, . . . , 2n. Since
deg(G) = deg(F ) = n+1, we have deg(G′) ≤ 2n+1, i.e., G has at most 2n+1 critical
points. Now, G′(w) = λG′(λw), implies that with wj, also λwj, λ2wj, . . . , λν−1wj are
critical points corresponding to the critical value ηj. If wj 6= 0, these are pairwise
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distinct since ν ≥ 2 is minimal with the property λν = 1. Since critical points corre-
sponding to different critical values are distinct, we obtain that G has strictly more
than 2n + 1 critical points, a contradiction. Therefore, the assumption F = F1 is
wrong, and there are indeed exactly n + 1 distinct normalized rational functions in
each equivalence class. This completes the proof of Theorem 1.2. �

In view of computing the rational functions with prescribed critical values, we
reformulate Theorem 1.2 in terms of polynomials and show the equivalence of the
two formulations in Proposition 4.2.

Theorem 4.1. Let η1, η2 . . . , η2n ∈ C be distinct. Then there exist polynomials

(7) P (z) = zn+1 +
n−1∑
j=0

pjz
j and Q(z) = zn +

n−1∑
j=0

qjz
j,

i.e., with pn+1 = qn = 1 and pn = 0, and points ζ1, ζ2, . . . , ζ2n ∈ C such that

P (ζj)− ηjQ(ζj) = 0, j = 1, 2, . . . , 2n,(8)
P ′(ζj)Q(ζj)− P (ζj)Q

′(ζj) = 0, j = 1, 2, . . . , 2n,(9)

and

(10) Q(ζj) 6= 0, j = 1, 2, . . . , 2n.

If n = 1, the solution (P,Q) is unique. If n ≥ 2, the number of solutions (P,Q) is
(n+ 1)Hn with the Hurwitz number Hn in (1).

There are 4n equations in (8) and (9) for the 4n unknowns pn−1, . . . , p1, p0,
qn−1, . . . , q1, q0 and ζ1, ζ2, . . . , ζ2n in Theorem 4.1, which is twice as many as in The-
orem 5.1.

Equation (8) prescribes the values of F = P/Q at the points ζ1, . . . , ζ2n, provided
that (10) holds, and ζ1, . . . , ζ2n are the critical points of F by (9). If P,Q in (7)
satisfy (8) and (9) but Q(ζj) = 0 for some j, then also P (ζj) = 0 and F = P/Q does
not satisfy Theorem 1.2 since the degree of F is too small; see Proposition 1.4.

We prove Theorem 4.1 by showing that the solutions (P,Q) correspond to the
rational functions F = P/Q in Theorem 1.2. The different normalization of F and
(P,Q) is not essential; see Remark 1.5.

Proposition 4.2. Let η1, . . . , η2n ∈ C be distinct.
1. If (P,Q) satisfy the equations in Theorem 4.1, then F = P/Q is a rational

function of type (n + 1, n) with critical values η1, . . . , η2n, i.e., F satisfies
Theorem 1.2, P and Q are coprime and the points ζ1, . . . , ζ2n are distinct.

2. If F is a function in Theorem 1.2, then for all a, b ∈ C with a 6= 0, also
F (az + b) is a function as in Theorem 1.2 and there exist unique a, b such
that F (az + b) = z +O(1/z) for z →∞. Moreover, there exist a, b such that
F (az + b) = P (z)/Q(z) and (P,Q) satisfy Theorem 4.1.

Proof. Part 1. is obvious. For part 2., let F be of type (n+ 1, n) such that

F (ζj) = ηj, F ′(ζj) = 0, j = 1, 2, . . . , 2n.

Let G(z) = F (az + b), with a, b ∈ C and a 6= 0, then

G((ζj − b)/a) = ηj, G′((ζj − b)/a) = F ′(ζj)a = 0, j = 1, 2, . . . , 2n,

and G also is as in Theorem 1.2.
If F = P/Q, then (P,Q) satisfies (8)–(9) and deg(P ) = n + 1 and deg(Q) = n

(see Proposition 1.4), but the normalization (7) is not necessarily satisfied. However,
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by a suitable affine transformation of the argument, G(z) = F (az + b), we obtain
G = P1/Q1, such that (P1, Q1) satisfies (7). Moreover, Q1(ζj) 6= 0 (otherwise,
P1(ζj) = 0 by (8), and G would not be of type (n + 1, n)). Hence (P1, Q1) is a
solution in Theorem 4.1. The remaining assertions are clear. �

5. Rational functions with prescribed critical points

We first reformulate the task of finding a rational function F = P/Q with pre-
scribed critical points in terms of the polynomials P and Q, and show the equivalence
of the two formulations.

Theorem 5.1. Let ζ1, ζ2, . . . , ζ2n ∈ C be distinct. Then there exist polynomials

(11) P (z) =
n+1∑
j=0

pjz
j and Q(z) =

n∑
j=0

qjz
j,

where p0, p1, . . . , pn+1, q0, q1, . . . , qn ∈ C and pn+1 6= 0 and qn 6= 0, such that

(12) P ′(ζj)Q(ζj)− P (ζj)Q
′(ζj) = 0, j = 1, . . . , 2n.

Moreover, each solution (P,Q) can be normalized by

(13) pn+1 = qn = 1 and pn = 0.

The number of normalized solutions is bounded by the Catalan number Cn = 1
n+1

(
2n
n

)
.

Remark 5.2. Each solution in Theorem 5.1 yields infinitely many solutions,
which can be seen as follows. Let (P,Q) be a solution in Theorem 5.1, i.e., P and Q
are polynomials of degrees deg(P ) = n+ 1 and deg(Q) = n that satisfy (12). Then,
for each c, d ∈ C \ {0} and p ∈ C, also (cP + pQ, dQ) is a solution in Theorem 5.1.
We introduce an equivalence relation on the solutions: (R, S) ∼ (P,Q) if and only
if R = cP + pQ, S = dQ for some c, d ∈ C \ {0} and p ∈ C. In particular, the
equivalence class of (P,Q) contains a unique representative satisfying (13), which is
obtained by c = 1/pn+1, d = 1/qn and p = −pn/(qnpn+1).

First, we show that a rational function F = P/Q in Theorem 1.3 corresponds to
a solution (P,Q) in Theorem 5.1.

Proposition 5.3. Let ζ1, . . . , ζ2n ∈ C be distinct. Then (P,Q) is a solution in
Theorem 5.1 if, and only if, F = P/Q is a rational function as in Theorem 1.3, i.e.,
F is of type (n+ 1, n) with critical points ζ1, . . . , ζ2n.

Proof. If (P,Q) is a solution in Theorem 5.1, then the polynomials P and Q
are coprime, which can be seen as follows. Assume to the contrary that P,Q have a
non-constant common factor C and write P = CR, Q = CS. Then P ′Q − PQ′ =
C2(R′S−RS ′), which has 2n distinct zeros by (12). Since C has at most deg(C) ≥ 1
distinct zeros, R′S−RS ′ has at least 2n−deg(C) many distinct zeros. On the other
hand, deg(R′S−RS ′) = 2n−2 deg(C). This implies R′S−RS ′ ≡ 0, and thus R = cS
with c ∈ C \ {0}, in contradiction to deg(P ) = n+ 1 > deg(Q) = n. Then F = P/Q
is of type (n+ 1, n) and is a solution in Theorem 1.3. The converse is clear. �

Thus, Theorem 1.3 and Theorem 5.1 are equivalent. In particular, the number of
equivalence classes of solutions is the same in both theorems. We show the existence
of solutions for Theorem 5.1 using algebraic tools, in particular Hilbert’s Nullstel-
lensatz. The bound on the number of solutions will be established for Theorem 1.3
using a result of Goldberg.
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Proof of Theorems 1.3 and 5.1. Step 1: Existence. We show that there are
polynomials P and Q as in (11) satisfying

(14) P ′(z)Q(z)− P (z)Q′(z) =
2n∏
j=1

(z − ζj).

Then deg(P ) = n+ 1, deg(Q) = n and (P,Q) is a solution in Theorem 5.1.
We write

(15)
2n∏
j=1

(z − ζj) =
2n∑
`=0

c`z
`

with constants c0, . . . , c2n ∈ C given by ζ1, . . . , ζ2n. Note that c2n = 1. We also write

(16) P ′(z)Q(z)− P (z)Q′(z) =
2n∑
`=0

ρ`z
`,

where the coefficients are

ρ` :=
∑
j+k=`
j≤n,k≤n

(j + 1)pj+1qk −
∑
j+k=`

j≤n+1,k≤n−1

(k + 1)pjqk+1(17)

=
∑

j+k=`+1
0≤j≤n+1,0≤k≤n

(j − k)pjqk.

In particular, ρ2n = pn+1qn. The structure of the coefficients ρ` is important and we
will use the following fact later: For each `, ρ` is a homogeneous polynomial of order
2 in the variables p0, p1, . . . , pn+1, q0, q1, . . . , qn and contains only products pjqk with
j+k− 1 = `. Conversely, each product pjqk (with j 6= k) appears only in ρj+k−1 and
with coefficient j − k.

Then (14) is equivalent to the system of polynomial equations

(18) ρ` = c`, ` = 0, 1, . . . , 2n.

To show that (18) has a solution, we consider the ideal generated by ρ0 − c0, . . .,
ρ2n − c2n:

I := 〈ρ0 − c0, . . . , ρ2n − c2n〉

=

{
2n∑
`=0

A`(ρ` − c`) : A` ∈ C[pn+1, . . . , p1, p0, qn, . . . , q1, q0], ` = 0, . . . , 2n

}
.

By the weak form of Hilbert’s Nullstellensatz, (18) has a solution if and only if

I 6= C[pn+1, . . . , p1, p0, qn, . . . , q1, q0];

see, e.g., [1, Thm. 2.2.3] or [7, Thm. 1, p. 177]. Hence, we are going to show that
there exists a polynomial Y /∈ I, i.e., such that

(19) Y =
2n∑
`=0

A`(ρ` − c`)

does not hold for any A0, . . . , A2n ∈ C[pn+1, . . . , p1, p0, qn, . . . , q1, q0].
Consider the equations in (18) with nonzero right hand side

L1 := {` ∈ {0, 1, . . . , 2n} : c` 6= 0}.
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Note that |L1| > 1. Indeed, c2n = 1 so 2n ∈ L1, and the assumption |L1| = 1
would imply

∏2n
j=1(z − ζj) = z2n, which contradicts that ζ1, . . . , ζ2n are distinct. We

determine the minimal element in these equations with respect to the ordering

pn+1 > pn > pn−1 > . . . > p1 > p0 > q0 > q1 > . . . > qn−1 > qn

of the variables with some order, e.g., the degree lexicographic order (also called
graded lexicographic order, see, e.g. [7, p. 58])

pj1qk1 = min{prqs : coeff(prqs, ρ`) 6= 0 and ` ∈ L1},

where coeff(prqs, ρ`) denotes the coefficient of prqs in ρ`. Let `1 = j1 + k1 − 1 be
the unique index such that pj1qk1 appears in ρ`1 . In particular, `1 ∈ L1. Note that
j1 6= k1, otherwise the coefficient of pj1qk1 would be zero.

For ` ∈ L1, we write

ρ` − c` = ρ` −
c`
c`1
ρ`1 +

c`
c`1

(ρ`1 − c`1), ` ∈ L1.

Then (19) can be written as

(20)

Y =
∑
`/∈L1

A`ρ` +
∑
`∈L1

A`
c`
c`1

(ρ`1 − c`1) +
∑
`∈L1

A`

(
ρ` −

c`
c`1
ρ`1

)
=
∑
`/∈L1

A`ρ` + Â`1(ρ`1 − c`1) +
∑

`∈L1\{`1}

A`

(
ρ` −

c`
c`1
ρ`1

)
,

where Â`1 :=
∑

`∈L1
A`

c`
c`1

. We will construct a polynomial Y for which this equation
has no solutions.

If pj1 appears in some of the terms in ρ`, then it appears only in the term pj1qk(`),
where k(`) := `+ 1− j1. We define

L2 := {` ∈ {0, 1, . . . , 2n} : pj1 appears in ρ`}
= {` ∈ {0, 1, . . . , 2n} : coeff(pj1qk(`), ρ`) 6= 0}.

Substituting 0 for each variable in {p0, p1, . . . , pn+1} \ {pj1}, we obtain (after this
substitution) ρ` = 0 for ` /∈ L2, and ρ` = (j1 − k(`))pj1qk(`) for ` ∈ L2. Denoting by
B` the polynomial obtained from A` through the substitution, (20) becomes

Y =
∑

`∈L2\L1

B` (j1 − k(`))pj1qk(`) +B`1((j1 − k1)pj1qk1 − c`1)

+
∑

`∈L2∩L1\{`1}

B`

(
(j1 − k(`))pj1qk(`) −

c`
c`1

(j1 − k1)pj1qk1
)
.

(21)

If L2 ∩ L1 = {`1}, we set Y = 1. Then (21) becomes

1 =
∑

`∈L2\L1

B` (j1 − k(`))pj1qk(`) +B`1((j1 − k1)pj1qk1 − c`1).

Substituting qk1 = 1 and all other qk = 0, leads to a polynomial C`1 obtained from
B`1 by this substitution and 1 = C`1((j1 − k1)pj1 − c`1), which cannot hold for all
pj1 ∈ C, so we reached a contradiction.

If |L2 ∩L1| > 1, let `2 ∈ (L2 ∩L1) \ {`1}, then pj1qk(`2) has nonzero coefficient in
ρ`2 , and we set Y = qk(`2). Substitute qk = 0 for k /∈ {k(`) : ` ∈ L1 ∩L2}, and denote
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by D` the polynomial obtained from B` by this substitution. Then (21) becomes

qk(`2) = D`1((j1 − k1)pj1qk1 − c`1)

+
∑

`∈L2∩L1\{`1}

D`

(
(j1 − k(`))pj1qk(`) −

c`
c`1

(j1 − k1)pj1qk1
)
.

Finally, we substitute pj1 = 1 and qk1 = c`1/(j1 − k1) and qk(`) = c`
j1−k(`) for ` ∈

L2 ∩ L1 \ {`1, `2}, which, denoting by E`2 the polynomial obtained from D`2 by the
substitution, yields

qk(`2) = E`2((j1 − k(`2))qk(`2) − c`2).
This is impossible since c`2 6= 0 since `2 ∈ L1, and j1 − k(`2) 6= 0 since `2 ∈ L2. This
concludes the proof of existence.

Step 2: Number of normalized solutions. By Remark 5.2, the solutions can
be normalized by (13). By the correspondence established in Proposition 5.3, the
number of (normalized) solutions in Theorems 5.1 and 1.3 are the same, and we
show the bound for the latter. If F is a rational function and ϕ(z) = az+b

cz+d
with

ad−bc 6= 0 a Möbius transformation, then F and ϕ◦F have the same critical points.
Following Goldberg [12], we call two rational functions F, F1 equivalent if F1 = ϕ ◦F
with a Möbius transformation ϕ. Goldberg [12, Thm. 1.3] showed that the number
of equivalence classes (with respect to this equivalence relation) of rational functions
with 2n prescribed critical points is bounded by the Catalan number Cn = 1

n+1

(
2n
n

)
.

Given a rational function of degree n + 1 with the critical points ζ1, . . . , ζ2n, there
is an equivalent rational function of type (n+ 1, n) and, moreover, there is one that
is normalized by F (z) = z + O(1/z) at infinity. We show that this is the only
normalized function in its equivalence class. Indeed, if F1 = ϕ ◦ F with a Möbius
transformation ϕ and F1(z) = z + O(1/z), then ∞ = F1(∞) = ϕ(F (∞)) = ϕ(∞),
hence ϕ has the form ϕ(z) = az + b with a ∈ C \ {0} and b ∈ C. Then, at infinity,
F1(z) = z + O(1/z) = ϕ(F (z)) = az + b + O(1/z), which implies a = 1, b = 0,
i.e., ϕ(z) = z and F1 = F . Thus, there is only one rational function normalized by
z + O(1/z) at infinity in each equivalence class, which establishes the bound on the
number of normalized solutions in Theorem 1.3 and Theorem 5.1. �

Remark 5.4. In [12, Thm. 1.3], it is also shown that the bound in Theorems 1.3
and 5.1 is attained in the generic case, though not always. For n = 2, the exact
number is characterized in [12, Thm. 1.4]: There is exactly one rational function if
the cross ratio of (ζ1, . . . , ζ4) is equal to (1 + i

√
3)/2, and there are exactly C2 = 2

such rational functions otherwise.

6. Solutions for n = 1 and symmetry considerations

If n = 1, the rational functions in Theorems 1.1, 1.2 and 1.3 are uniquely deter-
mined when normalized by F (z) = z + O(1/z) at infinity, and can be determined
explicitly.

Proposition 6.1.
1. Given distinct ζ1, ζ2 ∈ C, then F (z) = z + r

z−p with r = ((ζ1 − ζ2)/2)2

and p = (ζ1 + ζ2)/2 is the unique rational function in Theorem 1.3 with the
normalization F (z) = z + O(1/z) at infinity. Its critical values are η1 =
(3ζ1 − ζ2)/2, η2 = (3ζ2 − ζ1)/2.
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2. Given distinct η1, η2 ∈ C, then F (z) = z + r
z−p with r = ((η1 − η2)/4)2

and p = (η1 + η2)/2 is the unique rational function in Theorem 1.2 with the
normalization F (z) = z + O(1/z). Its critical points are ζ1 = (3η1 + η2)/4,
ζ2 = (η1 + 3η2)/4.

3. Let γ be a Jordan arc with distinct endpoints η1, η2. Then F from 2. is the
unique open up mapping from a Jordan domain G to C∞ \ γ. The boundary
of G consists of the two branches of F−1(γ).

Proof. Let F (z) = z + r
z−p and assume that F (ζj) = ηj and F ′(ζj) = 0 for

j = 1, 2. Then F ′(ζj) = 0 is equivalent to r = (ζj − p)2, for j = 1, 2. This implies
(ζ1 − p)2 = (ζ2 − p)2 and ζ1 − p = −(ζ2 − p) (because ζ1 − p = ζ2 − p is impossible,
since ζ1 6= ζ2 in 1., and ζ1 = ζ2 implies η1 = η2, which is not possible in 2.). We thus
obtain p = (ζ1 + ζ2)/2 and r = ((ζ1 − ζ2)/2)2. To complete 1., the critical values are
η1 = f(ζ1) = (3ζ1−ζ2)/2 and η2 = f(ζ2) = (3ζ2−ζ1)/2. For 2., we compute ζ1, ζ2 from
η1, η2, and obtain successively ζ1 = (3η1 + η2)/4, ζ2 = (η1 + 3η2)/4, r = ((η1− η2)/4)2

and p = (η1 + η2)/2. Finally, if γ is a Jordan arc with endpoints η1, η2, then F
in 2. is the open up mapping, and the domain G is bounded by the two branches of
F−1(γ). �

An open up mapping is also a solution of the prescribed critical values problem;
see Proposition 3.2. Conversely, a solution of the critical value problem is in general
not an open up mapping when n ≥ 2, and we give two examples below. The reason
becomes apparent from Theorem 3.3: The open up mapping in Theorem 1.1 depends
on the endpoints of the arcs (critical values) and the topology of C \

⋃n
j=1 γj. In

contrast, only the information about the critical values is present in Theorem 1.2.
For n = 1, a rational function of type (2, 1) has critical values η1, η2 if and only if it
is an open up mapping for any Jordan arc connecting η1, η2.

We reformulated Theorems 1.2 and 1.3 in terms of polynomials. Since the number
of normalized solutions is finite, one can apply several existing methods and algo-
rithms to solve the polynomial systems symbolically. We just mention [7, Sect. 10.4],
[9] and the references therein. For many of the methods, it is crucial that the number
of solutions is finite. Also, there are several numerical algorithms and solvers avail-
able, see e.g. [2] and [40]. Finally, if the finitely many solutions of the critical value
problem have been obtained, one can go through these solutions and verify which one
is the open up mapping for a given set of arcs. We use this approach in Section 7.

The examples in the following section show that it is advantageous to simplify
the polynomial equations, e.g. by reducing the number of equations and unknowns.
Therefore we investigate some symmetric settings and how one can simplify the
polynomial equations. We collect three useful results on the open up mapping when
E has some symmetry.

Lemma 6.2. Let E = γ1 ∪ . . . ∪ γn be the union of the disjoint Jordan arcs
γ1, . . . , γn, and let F be the open up mapping of type (n+1, n) with F (z) = z+O(1/z)
at infinity.

1. Suppose that z ∈ E if and only if −z ∈ E. Then F is odd, i.e., F (−z) =
−F (z).

2. Suppose that z ∈ E if and only if z ∈ E. Then F is real, i.e., F (z) = F (z).

Proof. Let F : C∞ \ K → C∞ \ E with F (z) = z + O(1/z) be the open up
mapping from Theorem 1.1. Then

G : C∞ \ (−K)→ C∞ \ E, G(z) = −F (−z),
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is also an open up mapping of type (n + 1, n) with G(z) = z + O(1/z) for z → ∞,
hence F = G by Theorem 1.1. The proof of 2. is similar. �

Lemma 6.3. Let F (z) = z +
∑n

j=1
rj

z−pj with r1, . . . , rn ∈ C \ {0} and distinct
poles p1, . . ., pn ∈ C. Then F is odd if and only if the poles appear in pairs ±p with
equal residues. In particular, if F and n are odd, then one pole is at the origin.

Proof. Let F be odd. Since the partial fraction decomposition is unique and

F (z) = −F (−z) = z +
n∑
j=1

rj
z + pj

,

the poles appear in pairs ±p with equal residues. The converse is obvious. �

Corollary 6.4. Let η1, . . . , η2n ∈ C be distinct such that η ∈ {η1, . . . , η2n}
implies −η ∈ {η1, . . . , η2n}. Then there is an odd rational function that solves the
critical value problem in Theorem 1.2.

Proof. Connect the critical values η1, . . . , η2n by arcs γ1, . . . , γn, such that E =⋃n
j=1 γj has the property z ∈ E if and only if −z ∈ E. Note that the arcs themselves

need not be symmetric with respect to the origin, but their union E needs to be
symmetric. The arcs can be constructed as follows. There exists a line through
the origin that divides the plane in two half-planes, each containing n of the points
η1, . . . , η2n (by symmetry). If n ≥ 2, choose two points in one half-plane and connect
them by a Jordan arc γ1 in that half-plane, such that γ1 contains no other critical
value. Then γ2 = −γ1 also connects two critical values in the other half-plane. This
way, we construct disjoint Jordan arcs connecting the critical values. If there is only
one critical point left in each half-plane (which happens if n is odd), we connect these
two by a Jordan arc γn that is symmetric with respect to the origin (and disjoint
from all previous arcs). Then the open up mapping of E is odd by Lemma 6.2 and
a solution of the critical value problem. �

7. Two examples and further comments

We give two examples when n = 2, i.e., in the case of two disjoint Jordan arcs
γ1, γ2 with endpoints η1, η2, η3, η4. The open up mapping in this case has the form

(22) F (z) = z +
r1

z − p1
+

r2
z − p2

with r1, r2 ∈ C \ {0} and distinct p1, p2 ∈ C. Without loss of generality, we assume
here and in the following that the rational functions are normalized by z + O(1/z)
at infinity; see Theorems 1.1 and 1.2 and also Remark 1.5.

We also determine all rational functions of the form (22) with critical values
η1, η2, η3, η4. The problem then is to find r1, r2, p1, p2 and ζ1, ζ2, ζ3, ζ4 ∈ C with

(23) F (ζj) = ηj, F ′(ζj) = 0, j = 1, 2, 3, 4.

By Theorem 1.2, there are 3H2 = 12 rational functions of the form (22) satisfy-
ing (23). By Proposition 3.2, the open up mapping is among these.

7.1. An example with symmetry. As first example, we determine the open
up mapping for

(24) E = [−2,−1] ∪ [1, 2]
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with Jordan arcs γ1 = [1, 2] and γ2 = [−2,−1] as well as all rational functions of the
form (22) with critical values

(25) η1 = 1, η2 = 2, η3 = −1, η4 = −2.

Since E is symmetric with respect to the origin, the open up mapping (22) has the
simpler form

(26) F (z) = z +
r

z − p
+

r

z + p
with r, p ∈ C \ {0}

by Lemma 6.2 and Lemma 6.3.
Accordingly, we simplify also the critical value problem and ask only for odd

solutions F of the form (26) of

(27) F (±ζ1) = ±η1 = ±1, F (±ζ2) = ±η2 = ±2, F ′(±ζ1) = F ′(±ζ2) = 0.

One can obtain four distinct symbolical solutions of (27) (the following numbers are
rounded to 4 digits)

F1(z) = z +
0.1272

z − 0.0658i
+

0.1272

z + 0.0658i
,(28)

F2(z) = z +
0.0630

z − 1.4786
+

0.0630

z + 1.4786
,(29)

F3(z) = z +
0.4605 + 0.1279i

z − (0.3958− 0.3693i)
+

0.4605 + 0.1279i

z + (0.3958− 0.3693i)
,(30)

F4(z) = z +
0.4605− 0.1279i

z − (0.3958 + 0.3693i)
+

0.4605− 0.1279i

z + (0.3958 + 0.3693i)
.(31)

By Lemma 6.2, the open up map of E = [−2,−1] ∪ [1, 2] is odd and real (i.e.,
F (z) = F (z)), and hence must be F2. By computing the pre-images of γ1 and γ2,
we find that F2 is indeed the (unique) open up mapping for γ1 and γ2, see Figure 2,
while the other functions are not open up mappings for γ1 and γ2. This confirms
that a function with critical values at the endpoints of the arcs in Theorem 1.2 is in
general not an open up mapping for the arcs.

Figure 2. The function in (29) is the minimal degree rational open up mapping for [−2,−1] ∪
[1, 2]. Right: Arcs. Left: Pre-images of the arcs, critical points (black circles) and poles (crosses)
of F2.

However, each of the functions F1, F2, F3, F4 is an open up mapping for a suitable
set of disjoint Jordan arcs, where each Jordan arc connects two of the critical values.
Examples of configurations opened up by F1, F3, F4 are displayed in Figure 3. This
leads to the following conjecture.

Conjecture. Let F be a rational function of type (n+1, n) with distinct critical
values η1, . . . , η2n ∈ C. Then there exists a set of disjoint Jordan arcs γ1, . . . , γn, each
arc connecting two points in {η1, . . . , η2n}, such that F is the open up mapping in
Theorem 1.1 for the arcs γ1, . . . , γn.

A deformation (fixed endpoint homotopy) of the arcs as described in Theorem 3.3
yields homotopic configurations that are also opened up by the same function. Note
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that for some functions there are also other (non-homotopic) configurations that
are opened up. This shows that the open up configuration for a given function in
Theorem 1.2 is not unique up to fixed endpoint homotopy.

Next, we consider the prescribed critical value problem in general form, i.e., (22)
and (23). We multiply (23) with the denominators and solve the obtained polyno-
mial equations symbolically (with Singular and also with Magma), The result of this
computation is the uniquely determined Gröbner basis consisting of 41 polynomi-
als. This new set of polynomial equations is then solved. Some of the coefficients
(which are rational numbers) have numerators and denominators in reduced form of
magnitude 1040.

The computation yields 12 distinct rational functions, i.e., all solutions, including
the odd functions F1, . . ., F4 above, and 8 solutions that are not of the form (26). In
particular, the symmetry of the critical values (endpoints of the arcs) does not imply
symmetry of the rational function. The symmetric problem of prescribed critical
values (with values ±1 and ±2, see (22) and (25)) has a nonsymmetric solution (e.g.,
r1 = −0.0005, r2 = 0.0630, p1 = −1.4786, p2 = −1.4998 where the values are rounded
to 4 digits).

In this first example, we computed the open up mapping of [−2,−1] ∪ [1, 2]
by solving the simplified prescribed critical value problem (27), and also computed
all rational functions with prescribed critical values 1, 2,−1,−2. If the aim is to
compute the open up mapping, then (27) is better suited than (23), since it involves
approximately half the number of unknowns and equations and is thus easier and
faster to solve.

Figure 3. Arcs (bottom) and pre-images (top) that are opened up under F1, F3, F4 (left to
right).

7.2. An example without symmetry. In the second example let γ1 = [1, 2]
and γ2 = [i, 2i] = {(1− t)i+ t2i : 0 ≤ t ≤ 1}. Therefore we consider the critical value
problem (23) with

(32) η1 = 1, η2 = 2, η3 = i, η4 = 2i.

We determined the corresponding Gröbner basis with Singular and Magma. The
Gröbner basis consists of 77 polynomials and some of the rational coefficients have
numerators and denominators of size 1075.



448 Sergei Kalmykov, Béla Nagy and Olivier Sète

In total, we obtain 12 distinct rational functions of the form (22) with critical
values 1, 2, i, 2i, i.e., all solutions have been computed; see Theorem 1.2. Finally, we
determine which solution is the open up mapping for [1, 2]∪ [i, 2i] by computing the
pre-images of γ1 = [1, 2] and γ2 = [i, 2i], and obtain that the open up mapping is
(coefficients rounded to four digits)

(33) F (z) = z +
−0.0625− 0.0009i

z − (0.0214 + 1.5203i)
+

0.0625− 0.0009i

z − (1.5203 + 0.0214i)
.

Figure 4 visualizes the open up mapping. The left panel shows the arcs (blue and
red) with a grid (black dots). The right panel shows the pre-image domain C∞ \K
bounded by Jordan curves (blue and red) and the pre-image of the grid under F
(black dots).

Figure 4. Open up mapping for [1, 2] ∪ [i, 2i]. Left: arcs and a grid (black). Right: Domain
C∞ \K bounded by Jordan curves and the pre-image of the grid under the open up mapping.
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