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Conformal Assouad dimension as the critical
exponent for combinatorial modulus

Mathav Murugan

Abstract. The conformal Assouad dimension is the infimum of all possible values of Assouad

dimension after a quasisymmetric change of metric. We show that the conformal Assouad dimen-

sion equals a critical exponent associated to the combinatorial modulus for any compact doubling

metric space. This generalizes a similar result obtained by Carrasco Piaggio for the Ahlfors regular

conformal dimension to a larger family of spaces. We also show that the value of conformal Assouad

dimension is unaffected if we replace quasisymmetry with power quasisymmetry in its definition.

Konforminen Assouadin ulottuvuus on

kombinatorisen modulin kriittinen eksponentti

Tiivistelmä. Konforminen Assouadin ulottuvuus on metriikan kaikkien kvasisymmetristen

muunnosten Assoudin ulottuvuuksien infimum. Osoitamme, että jos kompaktilla metrisellä avaruu-

della on kahdennusominaisuus, sen konforminen Assouadin ulottuvuus on kombinatoriseen moduliin

liittyvä kriittinen eksponentti. Tämä yleistää Carrasco Piaggion Ahlforsin-säännöllistä konformis-

ta ulottuvuutta koskevaa vastaavaa tulosta suurempaan avaruusluokkaan. Osoitamme lisäksi, että

konformisen Assouadin ulottuvuuden arvo ei muutu, vaikka sen määritelmässä esiintyvä kvasisym-

metrisyys korvataan potenssikvasisymmetrisyydellä.

1. Introduction

The Assouad dimension of a metric space (X, d) is defined as

dimA(X, d) = inf

{
β > 0

∣∣∣∣∣
there exists C > 0 such that Nr(B(x,R)) ≤ C

(
R
r

)β
for any x ∈ X, 0 < r < R

}
,

where Nr(A) denotes the minimum number of balls of radii r required to cover A ⊂ X.
Equivalently, Assouad dimension is the infimum of all numbers β > 0 such that there
exists C > 0 so that every ball of radius r has at most Cε−β distinct points whose
mutual distance is at least εr [Hei, Exercise 10.17]. We refer to the recent book by
Fraser [Fra] for a comprehensive background.

We recall the definition of the conformal gauge. This terminology is motivated
from the understanding that quasisymmetric maps are an analogue of conformal
maps in the context of metric spaces.

Definition 1.1. (Conformal gauge) Let (X, d) be a metric space and θ be another
metric on X. We say that d is quasisymmetric to θ, if there exists a homeomorphism
η : [0,∞) → [0,∞) such that

θ(x, a)

θ(x, b)
≤ η

(
d(x, a)

d(x, b)

)
for all triples of points x, a, b ∈ X, x 6= b.
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We say that d is power quasisymmetric to θ if the homeomorphism η above can be
chosen so that η(t) = C(tα ∨ t1/α) for all t > 0, where C, α ∈ [1,∞). The conformal

gauge of a metric space (X, d) is defined as

(1.1) J (X, d) :=

{
θ : X ×X → [0,∞)

∣∣∣∣∣
θ is a metric on X, d is
quasisymmetric to θ

}
,

We define the power quasisymmetric conformal gauge of (X, d) as

(1.2) Jp(X, d) := {θ ∈ J (X, d) | θ is power quasisymmetric to d}.

The conformal Assouad dimension of (X, d) is defined as

(1.3) dimCA(X, d) = inf{dimA(X, θ) : θ ∈ J (X, d)},

where dimA(X, θ) denotes the Assouad dimension of (X, θ).

As our main result relates conformal Assouad dimension with combinatorial mod-
ulus, we recall the notion of combinatorial modulus and a critical exponent associated
to it. The combinatorial p-modulus of a family of curves Γ in a graph G = (V,E) is
defined as

Modp(Γ, G) = inf

{
∑

v∈V

ρ(v)p | ρ : V → [0,∞),
∑

v∈γ

ρ(v) ≥ 1 for all γ ∈ Γ

}
.

Fix parameters a, λ, L > 1. We choose a sequence Xk, k ≥ 0 such that Xk is a
maximal a−k-separated subset of (X, d) and Xk ⊂ Xk+1 for all k ≥ 0. For each k, we
define a graph Gk whose vertex set is Xk and there is an edge between two distinct
vertices x, y ∈ Xk if and only if B(x, λa−k) ∩ B(y, λa−k) 6= ∅. We think of Gk as a
sequence of combinatorial approximations of (X, d) at scale a−k. We define

Mp,k(L) = sup{Modp(Γk,L(x), Gk+n) | x ∈ Xn, n ≥ 0} and Mp(L) = lim inf
k→∞

Mp,k(L),

where Γk,L(x) is the family of paths in Gn+k from B(x, a−n) to B(x, La−n)c (see §4 for
a detailed definition). The critical exponent corresponding to combinatorial modulus
is defined as

CE(X, d) = inf{p > 0 | Mp(L) = 0}.

It is not difficult to show that CE(X, d) is well-defined in the sense that CE(X, d)
does not depend on the precise choices of a, L, λ ∈ (1,∞) and also on the choices
of Xk (see Proposition 4.3). Since it only depends on the metric space (X, d), our
notation CE(X, d) is justified.

Our main result is the following theorem.

Theorem 1.2. Let (X, d) be a compact metric space such that dimA(X, d) < ∞.
Then

dimCA(X, d) = CE(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.

A similar result was obtained by Carrasco [Car, Theorem 1.3] for the Ahlfors
regular conformal dimension and independently in an unpublished work of Keith and
Kleiner. These works rely crucially on ideas of Keith and Laakso who first related
conformal Assouad dimension to combinatorial modulus [KL]. To state Carrasco’s
result, we recall the definition of Ahlfors regular conformal dimension and related
notions. A Borel measure µ on (X, d) is said to be p-Ahlfors regular if there exists
C ≥ 1 such that

C−1rp ≤ µ(B(x, r)) ≤ Crp for all x ∈ X, 0 < r ≤ diam(X, d).
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Note that if such a p-Ahlfors regular µ exists, then the p-Hausdorff measure is also
p-Ahlfors regular. The Ahlfors regular conformal dimension is defined as

(1.4) dimARC(X, d) = inf

{
p > 0

∣∣∣∣∣
θ ∈ J (X, d) and µ is a p-Ahlfors regular
measure on (X, θ)

}
,

In (1.4) and (1.3) we adopt the convention that inf ∅ = ∞. Ahlfors regular conformal
dimension is a well-studied notion in complex dynamics and hyperbolic groups; see for
example [BK05, BM, CM, HP09, PT, Par]. These notions of conformal dimensions
are variants of the one introduced by Pansu [Pan89] and we refer the reader to [MT10]
for more background and applications.

To compare our results with earlier ones, we recall the notion of doubling and
uniformly perfect metric spaces. A metric space is said to be doubling, if there exists
N ∈ N such that every ball of radius r can be covered by at most N balls of radii
r/2. It is easy to see that the dimA(X, d) < ∞ if and only if (X, d) is doubling. A
metric space (X, d) is said to be uniformly perfect if there exists C > 1 such that
whenever B(x, r) 6= X, we have B(x, r) \ B(x, r/C) 6= ∅. Carrasco’s theorem [Car,
Theorem 1.3] states that for any compact, doubling, uniformly perfect metric space,
the Ahlfors regular conformal dimension is given by

dimARC(X, d) = CE(X, d).

The following lemma characterizes the class of metric spaces for which dimCA(X, d)
and dimARC(X, d) are finite.

Lemma 1.3. Let (X, d) be a compact metric space. Then

(a) dimCA(X, d) is finite if and only if (X, d) is doubling.
(b) dimARC(X, d) is finite if and only if (X, d) is doubling and uniformly perfect.

Moreover, if (X, d) is doubling and uniformly perfect, then dimARC(X, d) =
dimCA(X, d) [MT10, Proposition 2.2.6].

By Lemma 1.3, our result in Theorem 1.2 generalizes Carrasco’s theorem [Car,
Theorem 1.3] to doubling metric spaces that are not necessarily uniformly perfect.
We refer to [Kig20, Sha] for expositions to Carrasco’s work.

One motivation for this work is that conformal Assouad dimension is better
behaved than Ahlfors regular conformal dimension. The above lemma shows that
conformal Assouad dimension is a meaningful quasisymmetry invariant for a larger
class of metric spaces. If (X, d) is a compact metric space and Y ⊂ X, then it is easy
to see that

dimCA(Y, d) ≤ dimCA(X, d).

The above inequality is not always true for Ahlfors regular conformal dimension
because a subset of uniformly perfect metric space is not necessarily uniformly perfect.
Nevertheless, if (X, d) is a compact, doubling, uniformly perfect metric space and
Y ⊂ X is also compact, doubling and uniformly perfect, then

(1.5) dimARC(Y, d) ≤ dimARC(X, d).

One way to show (1.5) is to use Lemma 1.3(b) and the analogous inequality for
conformal Assouad dimension. Another more involved approach would be to use
[Car, Theorem 1.3] and careful choices of hyperbolic fillings for X and Y . The direct
approach of restricing an Ahlfors regular metric in J (X, d) to Y does not work
because the restriction of an Ahlfors regular metric on a subset need not be Ahlfors
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regular. To summarize, conformal Assouad dimension is better behaved because
Ahlfors regularity and uniform perfectness do not pass to a subspace.

We briefly discuss the result dimCA(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.
Since Jp(X, d) ⊂ J (X, d), the upper bound on dimCA(X, d) is obvious but the other
inequality is non-trivial as it is possible that Jp(X, d) 6= J (X, d) as we recall below.
Trotsenko and Väisälä characterize metric spaces for which Jp(X, d) = J (X, d).
To state their characterization, we recall the notion of weakly uniformly perfect

spaces. We say that a metric space is weakly uniformly perfect if there exists C > 1
such that if B(x, r) 6= X for some x ∈ X, r > 0, then either B(x, r) = {x} or
B(x, r) \B(x, r/C) 6= ∅. The Trotsenko-Väisälä theorem states that a compact met-
ric space (X, d) satisfies Jp(X, d) = J (X, d) if and only if (X, d) is weakly uniformly
perfect [TV, Theorems 4.11 and 6.20].

1.1. Outline of the work. To show the estimate dimCA(X, d) ≤ CE(X, d),
we construct a graph which is Gromov hyperbolic called the hyperbolic filling (see
§2.3). A theorem of Bonk and Schramm implies that a quasi-isometric change of
metric on the hyperbolic filling induces a power quasisymmetric change of metric on
its boundary. Roughly speaking, a quasi-isometric change of metric is done using the
optimal functions for the combinatorial modulus. This is done in [Car, Theorems 1.1
and 1.2] where the author introduces hypotheses on weight functions on the graph
that defines a bi-Lipschitz change of metric in the hyperbolic filling. However the
hypotheses introduced in [Car, Theorem 1.1] implies that (X, d) is uniformly perfect
as pointed in [Sha, Lemma 6.2]. Since the metric spaces we consider are not nec-
essarily uniformly perfect, we need modify one of the hypothesis so that it is more
suitable for bounding the conformal Assouad dimension (see hypothesis (H4) in The-
orem 3.3). The key new tool is a modification of a lemma of Vol’berg and Konyagin
to construct a p-homogeneous measure on (X, θ), where θ is power quasisymmetric
to d and p > CE(X, d) (see Lemma 3.11 and Proposition 3.16). This along with
Theorem 3.1 implies the bound dimCA(X, d) ≤ CE(X, d). Another key distinction
from [Car] is that the metric space is not necessarily uniformly perfect. Therefore by
the Trotsenko–Väisälä theorem, this approach need not construct all possible metrics
in J (X, d). Nevertheless, this approach provides the sharp upper bound and also
leads to dimCA(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.

For the other bound CE(X, d) ≤ dimCA(X, d), we use a p-homogeneous measure
µ in (X, θ) and θ ∈ J (X, d) for p > dimCA(X, d) and define an function ρ for the
combinatorial modulus that is similar to [Car, (3.7)]. However some modifications
are needed because [Car] uses the uniform perfectness in an essential way to control
ρ. Some of the parameters and constants in [Car] depend on the constant associated
with the uniform perfectness property. Much of the work is about removing such
dependence on uniform perfectness.

2. Hyperbolic filling of a compact metric space

2.1. Gromov hyperbolic spaces and its boundary. Let (Z, d) be a metric
space. We recall some basic notions regarding Gromov hyperbolic spaces and refer
the reader to [BH, CDP, GH90, Gro87, Vä05] for a detailed exposition. Given three
points x, y, w ∈ Z, we define the Gromov product of x and y with respect to the base
point w as

(x|y)w =
1

2
(d(x, w) + d(y, w)− d(x, y)).
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By the triangle inequality, Gromov product is always non-negative. We say that a
metric space (Z, d) is δ-hyperbolic, if for any four points x, y, z, w ∈ Z, we have

(x|z)w ≥ (x|y)w ∧ (y|z)w − δ.

We say that (Z, d) is hyperbolic (or d is a hyperbolic metric), if (Z, d) is hyperbolic
for some δ ∈ [0,∞). If the above condition is satisfied for a fixed base point w ∈ Z,
and arbitrary x, y, z ∈ Z, then (Z, d) is 2δ-hyperbolic [CDP, Proposition 1.2].

We recall the definition of the boundary of a hyperbolic space. Let (Z, d) be a
hyperbolic space and let w ∈ Z. A sequence of points (xi)i∈N ⊂ Z is said to converge

at infinity, if
lim

i,j→∞
(xi|xj)w = ∞.

The above notion of convergence at infinity does not depend on the choice of the
base point w ∈ Z, because by the triangle inequality |(x|y)w − (x|y)w′| ≤ d(w,w′).

Two sequences (xi)i∈N, (yi)i∈N that converge at infinity are said to be equivalent,
if

lim
i→∞

(xi|yi)w = ∞.

This defines an equivalence relation among all sequences that converge at infinity
[CDP, §1, Chapter 2]. As before, is easy to check that the notion of equivalent
sequences does not depend on the choice of the base point w. The boundary ∂Z of
(Z, d) is defined as the set of equivalence classes of sequences converging at infinity
under the above equivalence relation. If there are multiple hyperbolic metrics on
the same set Z, to avoid confusion, we denote the boundary of (Z, d) by ∂(Z, d).
The notion of Gromov product can be defined on the boundary as follows: for all
a, b ∈ ∂Z

(a|b)w = sup
{
lim inf
i→∞

(xi|yi)w : (xi)i∈N ∈ a, (yi)i∈N ∈ b
}
.

By [GH90, Remarque 8, Chapitre 7], if (xi)i∈N ∈ a, (yi)i∈N ∈ b, we have

(a|b)w − 2δ ≤ lim inf
i→∞

(xi|yi)w ≤ (a|b)w.

The boundary ∂Z of the hyperbolic space (Z, d) carries a family of metrics. A metric
ρ : ∂Z × ∂Z → [0,∞) on ∂Z is said to be a visual metric with base point w ∈ Z and
visual parameter α ∈ (1,∞) if there exists k1, k2 > 0 such that

k1α
−(a|b)w ≤ ρ(a, b) ≤ k2α

−(a|b)w

If a visual metric with base point w and visual parameter α exists, then it can be
chosen to be

ρα,w(a, b) := inf
n−1∑

i=1

α−(ai|ai+1)w ,

where the infimum is over all finite sequences (ai)
n
i=1 ⊂ ∂Z, n ≥ 2 such that a1 =

a, an = b. Any other visual metric with the same basepoint and visual parameter is
bi-Lipschitz equivalent to ρα,w.

Visual metrics exist on hyperbolic metric spaces as we recall now. For any δ-
hyperbolic space (Z, d), there exists α0 > 1 (α0 depends only on δ) such that if
α ∈ (1, α0), then there exists a visual metric with parameter α [GH90, Chapitre 7],
[BoSc, Lemma 6.1]. It is well-known that quasi-isometry between almost geodesic
hyperbolic spaces induces a quasisymmetry on their boundaries (the notion of almost
geodesic space is given in Definition 2.1). Since this plays a central role in our
construction of metric, we recall the relevant definitions and results below.
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We say that a map (not necessarily continuous) f : (X1, d1) → (X2, d2) between
two metric spaces is a quasi-isometry if there exists constants A,B > 0 such that

A−1d1(x, y)− A ≤ d2(f(x), f(y)) ≤ Ad1(x, y) + A

for all x, y ∈ X1, and

sup
x2∈X2

d(x2, f(X1)) = sup
x2∈X2

inf
x1∈X1

d(x2, f(x1)) ≤ B.

Definition 2.1. A metric space (Z, d) is k-almost geodesic, if for every x, y ∈ Z
and every t ∈ [0, d(x, y)], there is some z ∈ Z with |d(x, z)− t| ≤ k and |d(y, z)−
(d(x, y) − t)| ≤ k. We say that a metric space is almost geodesic if it is k-almost
geodesic for some k ≥ 0.

Quasi-isometry between hyperbolic spaces induce quasisymmetries on their cor-
responding boundaries. We recall a result due to Bonk and Schramm below.

Proposition 2.2. [BoSc, Theorem 6.5 and Proposition 6.3] Let (Z1, d1) and
(Z2, d2) be two almost geodesic, δ-hyperbolic metric spaces. Let f : (Z1, d1) →
(Z2, d2) be a quasi-isometry.

(a) If (xi)i∈N ⊂ Z1 converges at infinity, then (f(xi))i∈N ⊂ Y converges at infinity.
If (xi)i∈N and (yi)i∈N are equivalent sequences in X converging at infinity, then
(f(xi))i∈N and (f(yi))i∈N are also equivalent.

(b) The map ∂f : ∂Z1 → ∂Z2 given by ∂f ((xi)i∈N) = (f(xi))i∈N is well-defined,
and is a bijection.

(c) Let p1 ∈ Z1 be a base point in Z1, and let f(p1) be a corresponding base point
in Z2. Let ρ1, ρ2 denote visual metrics (with not necessarily the same visual
parameter) on ∂Z1, ∂Z2 with base points p1, f(p1) respectively. Then the
induced boundary map ∂f : (∂Z1, ρ1) → (∂Z2, ρ2) is a power quasisymmetry.

2.2. Geodesic hyperbolic spaces. Let (Z, d) by a geodesic δ-hyperbolic
metric space. Recall that (Z, d) is geodesic if for any x, y ∈ X, there exists a curve
γ : [0, d(x, y)] → Z such that γ(0) = x, γ(d(x, y)) = y and d(γ(s), γ(t)) = |s− t|
for all s, t ∈ [0, d(x, y)]. Such a curve is called a geodesic between x and y. For
x, y ∈ Z, we denote by [x, y] a geodesic between x and y. For x, y, z ∈ Z, we denote
by [x, y, z] = [x, y] ∪ [y, z] ∪ [z, x] a geodesic triangle in Z. Recall that a tripod is
a metric tree with three edges arising from a common central vertex such that each
edge a is isometric to the closed interval [0, l(a)] for some l(a) ≥ 0 called the length
of the edge a. A tripod is determined up to isometry by the length of the three edges.
We allow for the degenerate case where the length of some of the edges could be zero.

Given a geodesic triangle ∆ = [x, y, z], there exists a map f∆ : ∆ → T∆ from ∆ to
a tripod T∆ such that the restriction of f∆ to each side of the triangle is an isometry
[GH90, Proposition 2]. The inscribed triple of a geodesic triangle ∆ is defined to be
the preimages of the ‘central vertex’ of the tripod T∆ under the map f∆ described
above.

Unlike a tripod, a geodesic triangle ∆ need not have a canonical center. However,
it has a reasonable notion of approximate center. For K ≥ 0, a point c ∈ Z is a
K-approximate center of a geodesic triangle [x, y, z] if c is at a distance at most K
from each of the three sides, that is, d(c, [x, y]) ∨ d(c, [y, z]) ∨ d(c, [z, x]) ≤ K. The
following proposition concerns a few properties of approximate center.

Proposition 2.3. Let (Z, d) be a geodesic, δ-hyperbolic metric space.
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(a) Each point of the inscribed triple of a geodesic triangle is a 4δ-approximate
center.

(b) Any two K-approximate centers c and c′ of a geodesic triangle [x, y, z] satisfies
d(c, c′) ≤ 8K.

(c) If c is a K-approximate center of a geodesic triangle [x, y, z], then

|d(x, c)− (y|z)x| ≤ 4K.

(d) If f : (Z1, d1) → (Z2, d2) is a quasi-isometry between two geodesic δ-hyperbolic
metric spaces and if c is a K1-approximate center of [x, y, z], then f(c) is a
K2-approximate center of any geodesic triangle [f(x), f(y), f(z)], where K2

depends only on K1, δ and the constants associated with the quasi-isometry
f . In particular,

∣∣d2(f(x), f(c))− (f(y)|f(z))f(x)
∣∣ ≤ 4K2.

Proof. (a) By [GH90, Proposition 21, Chapitre 2] each point of the inscribed
triple is a 4δ-approximate center.

(b,c) Let c denote a K-approximate center of [x, y, z]. Let p1, p2, p3 be the points
of the inscribed triple on [x, y], [y, z], [z, x] respectively. Similarly, let q1, q2, q3 be
three points on [x, y], [y, z], [z, x] respectively such that d(c, qi) ≤ A for all i = 1, 2, 3.
This implies that d(qi, qj) ≤ 2K for all i, j. By the argument in [GH90, Proof of
Lemme 20, Chapitre 2] we have

(2.1) d(pi, qi) ≤ 3K for all i = 1, 2, 3.

Since d(x, p1) = (y|z)x and d(p1, q1) ≤ 3K, we obtain

|d(x, c)− (y|z)x| = |d(x, c)− d(x, p1)| ≤ d(p1, q1) + d(c, q1) ≤ 3K +K = 4K.

This concludes the proof of (c). Similarly, d(c, pi) ≤ d(pi, qi) + d(c, qi) ≤ 4K for all
i = 1, 2, 3. Therefore d(c, c′) ≤ d(c, p1) + d(c′, p1) ≤ 8K, and hence (b) holds.

(d) This is an immediate consequence of the geodesic stability under quasi-
isometries [GH90, Théorème 11, Chapitre 5] and (c). �

2.3. Construction of hyperbolic filling. In this section, we recall the con-
struction of a hyperbolic filling of a compact metric space. Let (X, d) be a compact
metric space. The construction below is due to A. Bjorn, J. Bjorn and Shanmu-
galingam [BBS]. Earlier versions of this construction are due to Elek, Bourdon and
Pajot [Ele, BP].

Let λ, a ∈ (1,∞) be two parameters which we call the horizontal and vertical
parameter of the hyperbolic filling respectively. We assume that the diameter is
normalized so that diam(X, d) = 1

2
. Let Xn, n ∈ N≥0 be an increasing sequence

of maximal a−n-separated subsets of X. In other words, Xn ⊂ Xm for all n < m,
any two distinct points in Xn have mutual distance at least a−n and any set strictly
larger than Xn has two distinct points whose distance is strictly less than a−n. The
vertex set of the graph is S = ∪n≥0Sn, where Sn = {(x, n) : x ∈ Xn}. Two distinct
vertices (x, n), (y,m) ∈ S are joined by an edge if and only if either n = m and
B(x, λa−n) ∩ B(y, λa−m) 6= ∅ or if |n−m| = 1 and B(x, a−n) ∩ B(y, a−m) 6= ∅.
Let D1 denote the combinatorial (graph) distance on S defined by the above set
of edges. That is D1((x, n), (y,m)) is the minimal number k such that (x, n) =
(x0, n0), (x1, n1), . . . , (xk, nk) = (y,m), where (xi, ni), (xi+1, ni+1) ∈ S is joined by an
edge for all i = 0, 1, . . . , k − 1. It is evident that (S, D1) is 1-almost geodesic metric
space.
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We now construct a graph with fewer vertical edges. For each (x, n) ∈ S, we
choose (y, n − 1) ∈ Sn such that d(x, y) = minz∈Xn−1 d(x, z). In this case, we say
that (y, n − 1) is the parent of (x, n) or equivalently, (x, n) is a child of (y, n − 1).
Such a choice of y ∈ Xn−1 is not unique but we fix this choice for the remainder of
this work. Since Xn−1 is a maximal a−(n−1) separated subset of X, d(x, y) ≤ a−(n−1).
Hence x ∈ B(x, a−n)∩B(y, a−(n−1)) 6= ∅. In other words every parent and their child
is connected by an edge in the graph associated with (S, D1). We define a new graph
whose edges consists of all of the edges between parent and child and those between
(x, n), (y, n) ∈ S where B(x, λa−n) ∩ B(y, λa−n) 6= ∅, x 6= y. The corresponding
graph distance is denoted by D2. The set of children of a vertex v is denoted by

(2.2) C(v) := {w ∈ S : w is a child of v}.

Note that C(v) ⊂ Sn+1 whenever v ∈ Sn.
If (x, n+1) and (y, n+1) share an edge in D2 and if (x0, n) and (y0, n) are their

respective parents, then d(x0, y0) ≤ d(x, y) + d(x, x0) + d(y, y0) < 2a−n + 2λa−n−1.
Under the assumption λ ≥ 2 + 2λa−1, we have D2((x, n + 1), (y, n + 1)) ≤ 1, then
D2((x0, n), (y0, n)) ≤ 1 whenever (x0, n), (y0, n) are the parents of (x, n+1), (y, n+1)
respectively. We say that (x, n) is a descendant of (y, k) if n > k, and there exists
(zj, nj) ∈ S for j = 0, . . . , n − k such that (z0, n0) = (y, k), (zn−k, nn−k) = (x, n),
where (zi+1, ni+1) is a child of (zi, ni) for all i = 0, . . . , n− k − 1. For any n > k ≥ 0
and v ∈ Sk, the set of descendants of v in generation n is denoted by

(2.3) Dn(v) = {w ∈ Sn : w is a descendant of v}.

The following lemma is an analogue of [Car, Lemma 2.2].

Lemma 2.4. Let λ, a > 1 be horizontal and vertical parameters of the hyperbolic
filling respectively.

(a) If (z, n + 1) is a child of (x, n), then d(x, z) < a−n. If (y, k) is a descendant
of (x, n) (for some k > n), then

d(x, y) <
a

a− 1
a−n.

(b) If λ ≥ 2+2λa−1 and D2((x, n+1), (y, n+1)) ≤ 1, then D2((x0, n), (y0, n)) ≤ 1,
where (x0, n), (y0, n) are the parents of (x, n+1), (y, n+1) respectively. Simi-
larly, if λ ≥ 2+4λa−1 and D2((x, n+1), (y, n+1)) ≤ 2, then D2((x0, n), (y0, n)) ≤
1, where (x0, n), (y0, n) are the parents of (x, n + 1), (y, n+ 1).

(c) Let λ ≥ 6 and (x, n + 1), (y, n + 1) ∈ Sn+1 such that d(x, y) ≤ 4a−n. If
(x0, n), (y0, n) ∈ Sn are the parents of (x, n + 1), (y, n+ 1) respectively, then
D2((x0, n), (y0, n)) ≤ 1.

(d) If λ > 1 + a−1, we have D1 ≤ D2 ≤ 2D1.
(e) Let λ > 1 + a−1. Let w ∈ Sn+1 and u, v ∈ Sn be such that D1(u, w) = 1 and

D2(v, w) = 1. Then D2(u, v) ≤ 1.

Proof. (a) Since Xn is maximal a−n-subset of X, every point z ∈ X satisfies
d(z,Xn) < a−n. This shows the first claim. If (y, k) is a descendant of (x, n) by the

first claim and triangle inequality d(x, y) ≤
∑k

i=n a
−i < a

a−1
a−n.

(b) Since d(x0, y0) ≤ d(x, y) + d(x, x0) + d(y, y0) < 2a−n + 2λa−n−1, we have
{x0, y0} ⊂ B(x0, λa

−n) ∩B(y0, λa
−n) 6= ∅ for any λ such that λ ≥ 2 + 2λa−1. Hence

D2((x0, n), (y0, n)) ≤ 1. The other claim follows from a similar argument.
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(c) Since d(x0, y0) ≤ d(x, y) + d(x, x0) + d(y, y0) < 4a−n + a−n + a−n = 6a−n,
we have {x0, y0} ⊂ B(x0, λa

−n) ∩ B(y0, λa
−n) 6= ∅ whenever λ ≥ 6. Therefore

D2((x0, n), (y0, n)) ≤ 1.
(d,e) Since every edge in the graph corresponding to (S, D2) is contained in the

graph corresponding to (S, D2), we have D2 ≥ D1. On the other hand, if there is
an edge in (S, D1)

1 which is not present in (S, D2), then it must be between some
(x, n), (y, n+ 1) such that n ∈ N≥0 and that the parent of (y, n + 1) is (z, n) where
z 6= x. In this case d(x, y) ≤ a−n−1 + a−n (since B(x, a−n) ∩ B(y, a−n−1) 6= ∅).
Therefore if λ > 1 + a−1, there would be an edge between (x, n) and (z, n) in both
graphs (since y ∈ B(x, λa−n) ∩ B(z, λa−n)). This implies that

�(2.4) D1 ≤ D2 ≤ 2D1, whenever λ ≥ 1 + a−1.

We recall the relevant properties the metric spaces (S, D1) and (S, D2). By
the choice of the diam(X, d), there is an unique point x0 ∈ X0. We choose v0 :=
(x0, 0) as the base point of the metric spaces (S, D1) and (S, D2). We denote the
Gromov product with respect to the basepoint v0 in (S, D1) and (S, D2) by (·|·)1, (·|·)2
respectively. The key point in the following result is that the hyperbolicity constant
δ depends only on a and λ unlike the analogous result in [BP, Car] where δ also
depends on the constant associated with the uniform perfectness property (see [Car,
Remark after Proposition 2.1]).

Proposition 2.5. [BBS, Lemma 3.3 and Theorem 3.4] Let (X, d) be a compact
metric space and let a, λ denote the vertical and horizontal parameters respectively
of the hyperbolic filling. Then the hyperbolic filling (S, D1) satisfies the following
properties

(a) For any v = (z, n), w = (y,m) ∈ S, we have

a− 1

4λa

(
d(z, y) + a−n + a−m

)
≤ a−(v|w)1 ≤

a5/2

λ− 1

(
d(z, y) + a−n + a−m

)

In particular, if a, λ ∈ [2,∞) and a ≥ λ, then
∣∣∣∣(v|w)1 +

log(d(x, y) + a−m + a−n)

log a

∣∣∣∣ ≤ 4.

(b) (S, D1) is δ-hyperbolic, where δ = 2
log

(
8λa7/2

(a−1)(λ−1)

)

log a
. In particular, if a, λ ∈

[2,∞) and a ≥ λ implies that δ can be chosen to be 15.

Proof. (a) The first estimate follows from [BBS, Proof of Lemma 3.3]. The second
conclusion is a consequence of the estimate

max

(
log(a5/2/(λ− 1))

log a
,
log
(
4λa
a−1

)

log a

)
≤ 4 whenever a ≥ λ ≥ 2.

(b) The δ-hyperbolicity follows from the proof of [BBS, Theorem 3.4] along with
[CDP, Proposition 1.2]. For the second conclusion, observe that

2
log
(

8λa7/2

(a−1)(λ−1)

)

log a
≤ 2

log(32a5/2)

log a
≤ 15, whenever a ≥ λ ≥ 2. �

By Proposition 2.5(a), a sequence of vertices ((xi, ni))i∈N ∈ S converges at infinity
if and only if limni = ∞ and (xi)i∈N is a convergent sequence in (X, d). Two sequences

1Here we abuse notation and use (S, Di) to denote the graph, for i = 1, 2.
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((xi, ni))i∈N and ((yi, mi))i∈N that converge at infinity are equivalent if and only if
limi→∞ xi = limi→∞ yi and limi→∞ ni = limi→∞mi = ∞. Define the limit at infinity

function l∞ : ∂(S, D1) → X that maps an equivalence class of sequence converging
at infinity to its limit as

(2.5) l∞(((xi, ni))i∈N) = lim
i→∞

xi.

Note that l∞ is well defined and is a bijection. By the first estimate in Proposition
2.5(a), d is a visual metric on ∂(S, D1) with visual parameter a and base point v0 in
the following sense:

(2.6)
a− 1

4λa
d(x, y) ≤ a−(l−1

∞ (x)|l−1
∞ (y))1 ≤

a5/2

λ− 1
d(x, y) for all x, y ∈ X.

We would like to use Proposition 2.3 to estimate Gromov product in the hyper-
bolic filling. Since (S, D1) is not a geodesic space, we embed it into a geodesic space
by replacing each edge with an isometric copy of the unit interval to obtain a metric
space (S̃, D1) where we view S ⊂ S̃ and D1 on S̃ is an extension of D1 on S. For
any x, y ∈ X, let ñ is the largest integer that satisfies {x, y} ⊂ B(z̃, 2a−ñ) for some
(z̃, ñ) ∈ S and define

(2.7) c(x, y) = {(z̃, ñ) ∈ S : {x, y} ⊂ B(z̃, 2a−ñ)}.

We think of c(x, y) as the set of approximate centers of the triangle [v0, l
−1
∞ (x), l−1

∞ (y)],
where l

−1
∞ (x), l−1

∞ (y) ∈ ∂(S, D1) and v0 is the unique element of S0. The following
lemma makes this precise by identifying c(x, y) as approximate centers of certain

geodesic triangles in S̃.

Lemma 2.6. Let the parameters of the hyperbolic filling satisfy

a ≥ λ ≥ 2 and λ ≥ 1 +
a

a− 1
.

Let (z,m), (w, n) ∈ S such that x ∈ B(z, a−m), y ∈ B(w, a−n) and such that a−m +
a−n < a−2d(x, y). Then any (w, k) ∈ c(x, y) is a K-approximate center for any

geodesic triangle [v0, (z,m), (w, n)] in (S̃, D1), where K = 80.

Proof. Since every point in S̃ is at most distance 1
2

away from a point in S,

by replacing points in S̃ with the corresponding closest points in S, we obtain that
(S̃, D1) is (δ + 3)-hyperbolic whenever (S, D1) is δ-hyperbolic.

Let (z̃, k) ∈ c(x, y). Since {x, y} ⊂ B(z̃, 2a−k), we obtain d(x, y) ≤ 4a−k. Choose
w ∈ X such that (w, k + 1) ∈ Sk+1 and d(x, w) < a−(k+1). By the maximality of k,
we have that y /∈ B(w, 2a−(k+1)) and hence d(x, y) ≥ d(w, y)− d(w, x) > a−(k+1). In
particular,

(2.8) a−(k+1) < d(x, y) ≤ 4a−k.

If a ≥ 2, we have a−(k+1) < d(x, y) ≤ 4a−n ≤ a−k+2, which implies

(2.9) − 1 ≤ k +
log d(x, y)

log a
≤ 2, whenever a ≥ 2.

Since a−m < a−2d(x, y), we have m+ log d(x,y)
log a

> 2 which along with (2.9) implies that

m ≥ k. Choose (w, k) such that (z,m) is a descendant of (w, k). By Lemma 2.4(a),
we have d(x, w) ≤ d(x, z) + d(w, z) < a−m + a

a−1
a−k ≤

(
1 + a

a−1

)
a−k. Therefore if

λ ≥ 1 + a
a−1

, we have x ∈ B(w, λa−k) ∩ B(z̃, λa−k) 6= ∅. Hence (w, k) and (z̃, k) are
either equal or horizontal neighbors.



Conformal Assouad dimension as the critical exponent for combinatorial modulus 463

Note that |d(x, y)− d(z, w)| ≤ a−m + a−n < a−2d(x, y), which implies

(1− a−2)d(x, y) ≤ d(z, w) + a−m + a−n ≤ (1 + 2a−2)d(x, y).

Therefore if a ≥ λ ≥ 2, we have
∣∣∣∣
log(d(x, y))

log a
−

log(d(z, w) + a−m + a−n)

log a

∣∣∣∣ ≤ 1.

Combining with (2.9) and Proposition 2.5(a), we obtain that

|((z,m)|(w, n))1 − k| ≤ 7.

This along with Proposition 2.3(a) and the fact that (z̃, k) is a neighbor of (w, k), we
obtain that (z̃, k) is K-approximate center of the geodesic triangle [v0, (z,m), (w, n)],
where K = 1 + 7 + 4(15 + 3) = 80. �

Remark 2.7. The assumption

(2.10) a ≥ λ ≥ 6

implies the estimates assumed on a, λ in Lemma 2.4, Proposition 2.5, and Lemma 2.6
hold. For this reason we assume (2.10) for much of this work. The analogous estimate
[Car, (2.8)] is more complicated because it involves the constant in the definition of
uniform perfectness.

3. Construction of metric and homogeneous measure

In this section, we construct metric in the conformal gauge and a homogeneous
measure using a weight function on the hyperbolic filling S as constructed in §2.3.
A weight on a filling S is a function ρ : S → (0,∞). We recall the definition of
homogeneous measure and its relevance to Assouad dimension in §3.1. We then
introduce and recall some hypothesis on a weight function on the hyperbolic filling
that provides upper bound on dimCA(X, d) in §3.2.

3.1. Vol’berg–Konyagin theorem. Our approach to obtain upper and lower
bounds on the conformal Assouad dimension (dimCA(X, d) ≤ CE(X, d) and dimCA(X,
d) ≥ CE(X, d)) relies on a theorem of Vol’berg and Konyagin that we recall below in
Theorem 3.1. This result clarifies the relationship between Assouad dimension and
doubling measures. A non-zero Borel measure µ on a metric space (X, d) is said to
be doubling if there exists CD > 1 such that

µ(B(x, 2r)) ≤ CDµ(B(x, r)) for all x ∈ X, r > 0,

where B(x, r) = {y ∈ X : d(x, y) < r} denotes the open ball of radius r centered at
x. A non-zero Borel measure is said to be q-homogeneous measure if there exists
C > 1 such that

µ(B(x,R)) ≤ C

(
R

r

)q

µ(B(x, r)), for all x ∈ X, 0 < r ≤ R.

It is evident that a measure is doubling if and only if it is q-homogeneous for some
q ∈ (0,∞). The fundamental relationship between Asssouad dimension and doubling
measures is given by the following theorem of Vol’berg and Konyagin [VK].

Theorem 3.1. [VK, Theorem 1] The Assouad dimension of compact metric
space (X, d) is given by

dimA(X, d) = inf{q > 0: there exists a q-homogeneous measure on (X, d)}.



464 Mathav Murugan

3.2. Weights on the filling and Carrasco-type hypotheses. Let π1 : S →
X, π2 : S → N≥0 denote the projection maps such that v = (π1(v), π2(v)) for any
v ∈ S. We say that an edge between two vertices v and w is horizontal if π2(v) =
π2(w). For a vertex v ∈ S, by Bv we denote the metric ball B(π1(v), a

−π2(v)). Given
a vertex v ∈ S, we define the genealogy g(v) as a sequence of vertices (v0, v1, . . . , vk)
where vk = v and vi is the parent of vi+1 for all i = 0, . . . , k − 1 and v0 is the unique
vertex in S0. Given a function ρ : S → (0,∞), we define π : S → (0,∞) as

(3.1) π(v) =
∏

w∈g(v)

ρ(w).

A path γ in (S, D2) is a sequence of vertices γ = (w1, . . . , wn) where there is an
edge between wi and wi+1 (that is, D2(wi, wi+1) = 1) for each i = 1, . . . , n− 1. The
ρ-length of a path γ is defined by

(3.2) Lρ(γ) =
∑

v∈γ

π(v).

The following two families of paths will play an important role in this work. A path
is said to be horizontal if it only consists of horizontal edges. Given x, y ∈ X and
n ∈ N≥0, we define

(3.3) Γn(x, y) =

{
γ = (v1, . . . , vk)

∣∣∣∣∣
γ is a path in (S, D2), π2(v1) = π2(vk) = n,
and x ∈ Bv1 , y ∈ Bvk , k ∈ N

}
.

For a vertex v ∈ Sk, we define

(3.4) Γk(v) = inf

{
γ = (v1, . . . , vn)

∣∣∣∣∣
γ is a horizontal path with π2(vi) = k + 1
for all i, n ∈ N, π1(v1) ∈ Bv, π1(vn) /∈ 2 ·Bv

}
.

For x, y ∈ X, we define

(3.5) π(c(x, y)) = max{π(w) : w ∈ c(x, y)},

where c(x, y) is as defined in Lemma 2.6. We recall the Carrasco-type conditions
imposed on the weight function ρ : S → (0, 1).

Assumption 3.2. A weight function ρ : S → (0, 1) may satisfy some of the
following hypotheses:

(H1) There exist 0 < η− ≤ η+ < 1 so that η− ≤ ρ(v) ≤ η+ for all v ∈ S.
(H2) There exists a constant K0 ≥ 1 such that for all v, w ∈ S that share a

horizontal edge, we have

π(v) ≤ K0π(w),

where π is as defined in (3.1).
(H3) There exists a constant K1 ≥ 1 such that for any pair of points x, y ∈ X,

there exists n0 ≥ 1 such that if n ≥ n0 and γ is a path in Γn(x, y), then

Lρ(γ) ≥ K−1
1 π(c(x, y)),

where Γn(x, y), Lρ, π(c(x, y)) are as defined in (3.3), (3.2), and (3.5) respec-
tively.

(H4) There exists p > 0 such that for all v ∈ Sm and n > m, we have
∑

w∈Dn(v)

π(w)p ≤ π(v)p,
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where Dn(v) denotes the descendants of v in Sn. Clearly, it suffices to impose
the above condition only for n = m+ 1.

(H̃4) There exists C > 1, p > 0 such that for all v ∈ Sm, and n > m, we have

C−1π(v)p ≤
∑

w∈Dn(v)

π(w)p ≤ Cπ(v)p,

where Dn(v) denotes the descendants of v in Sn.

The main results of this section are Theorems 3.3 and 3.4 which provide an
upper bound on dimCA(X, d) under certain assumptions on the weight function on a
filling. Theorem 3.3 is an analogue of [Car, Theorem 1.1] but the hypothesis (H4) is

different from that of [Car, Theorem 1.1] where the hypothesis (H̃4) was used instead.

As explained in the introduction, [Sha, Lemma 6.2] implies that (H1) along with (H̃4)
can hold only on a uniformly perfect metric space. Since we consider metric spaces

that are not necessarily uniformly perfect, we need to modify (H̃4) to (H4) as above.
This hypothesis plays a key role in the upper bound on Assouad dimension. Another
distinction from [Car] is that the weights can be used to construct essentially all
metrics in J (X, d). Since our construction of metric relies on Proposition 2.2(c), we
can only construct metrics in Jp(X, d) and hence we cannot obtain such a result.
The following theorem is a counterpart of [Car, Theorem 1.1].

Theorem 3.3. Let (X, d) be a compact doubling metric space and let S be a
hyperbolic filling with vertical and horizontal parameters a, λ such that a ≥ λ ≥ 6.
Let ρ : S → (0, 1) be a weight function satisfying the hypothesis (H1), (H2), (H3),
and (H4). Then there exists Θρ ∈ Jp(X, d) such that dimA(X,Θρ) ≤ p.

The following is an analogue of [Car, Theorem 1.2]. The conclusion of Theo-
rem 3.4 is the same as that of Theorem 3.3 but the hypotheses (H1), (H2), (H3),
and (H4) are replaced by simpler hypotheses (S1) and (S2). The hypotheses (S1)
and (S2) below are identical to [Car, Theorem 1.2] but in the conclusion we bound
dimCA instead of dimARC.

Theorem 3.4. Let (X, d) be a compact doubling metric space and let S denote
a hyperbolic filling with vertical and horizontal parameters a, λ respectively such that
a ≥ λ ≥ 6. Let p > 0. There exists η0 ∈ (0, 1) which depends only on p, λ and the
doubling constant of (X, d) (but not on the vertical parameter a) such that if there
exists a function σ : S → [0,∞) that satisfies:

(S1) for all v ∈ Sk and k ≥ 0, if γ ∈ Γk(v), then
∑

w∈γ

σ(v) ≥ 1,

where Γk is as defined in (3.4), and
(S2) for all k ≥ 0 and all v ∈ Sk, we have

∑

w∈C(v)

σ(v)p ≤ η0,

then there exists Θ ∈ J (X, d) such that dimA(X,Θ) ≤ p and Θ ∈ Jp(X, d).
In particular, dimA(X, d) ≤ inf{dimA(X, θ) : θ ∈ Jp(X, d)} ≤ p.

3.3. Construction of metric using weights on the filling. In this sub-
section, given a weight function which satisfies the hypotheses (H1), (H2), (H3), we
construct a metric Θρ ∈ Jp(X, d) (Corollary 3.7). The main idea is to use weight ρ



466 Mathav Murugan

to induce a quasi-isometric change of metric on S (Lemma 3.5(a)) which in turn in-
duces a power quasisymmetric change of metric on its boundary by Proposition 2.2(c).
Since the boundary of S can be identified with (X, d) by Proposition 2.5(c), we there-
fore obtain a metric Θρ ∈ Jp(X, d). We remark that the hypothesis (H4) will not
play any role in this subsection but will play a central role in the next one.

The weight function ρ which satisfies the hypotheses (H1)–(H3) induces a metric
Dρ on S. We set the length of an edge e = (v, w) as ℓρ(e), where

ℓρ(e) =

{
2max{− log η−, (− log η+)

−1, logK0} if e is horizontal,

log 1
ρ(v)

if w is the parent of v,

where η−, η+, K0 are as defined in (H1) and (H2). This defines a metric

(3.6) Dρ(v, w) = inf
γ

∑

e∈γ

ℓρ(e),

where γ varies over all paths in the graph (S, D2) from v to w and e varies over all
edges in γ. By replacing each edge e with an isometric copy of the interval [0, ℓρ(e)],

we define a geodesic metric space (S̃, Dρ) such that S ⊂ S̃ and the restriction of Dρ

on S̃ coincides with that of S.

Lemma 3.5. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) which satisfies hypotheses (H1) and (H2). Let Dρ denote the metric
defined in (3.6).

(a) (S, Dρ) is approximately geodesic. The identity map Id : (S, D1) → (S, Dρ)
is a quasi-isometry.

(b) Any path of the form ((xi, ni))1≤i≤k such that (xi, ni) is the parent of (xi+1,
ni+1) for all i = 1, . . . , k − 1 defines a shortest path in the Dρ metric and
hence

Dρ((x1, n1), (xk, nk)) =

∣∣∣∣log
1

π((x1, n1))
− log

1

π((xk, nk))

∣∣∣∣.

(c) A sequence of vertices converges at infinity in (S, D1) if and only if it converges
at infinity (S, Dρ). Two sequences that converge at infinity are equivalent in
(S, D1) if and only if they are equivalent in (S, Dρ). In particular, the identity
map is a well-defined bijection between ∂(S, D1) and ∂(S, Dρ). Therefore the
limit at infinity map l∞ : ∂(S, D1) → X defined in (2.5) is also well-defined as
l∞ : ∂(S, Dρ) → X. Furthermore, there exists C > 1 such that the Gromov
product satisfies

C−1Cπ(c(x, y)) ≤ e−(l−1
∞ (x)|l−1

∞ (y))ρ ≤ Cπ(c(x, y)) for all x, y ∈ X,

where (·|·)ρ is the Gromov product on (S, Dρ) with base point v0 ∈ S0.
(d) There exists C > 0 such that the following holds: for any pair of distinct

points x, y ∈ X, there exists n0 such that whenever n ≥ n0 and u, v ∈ Sn

such that x ∈ Bu, y ∈ Bv, there exists a path γ = (wi)i=0,...,k in the graph
(S, D2) such that Lρ(γ) ≤ Cπ(c(x, y)).

Proof. (a) It is easy to check that (S, Dρ) is 2max{− log η−, (− log η+)
−1, logK0}-

approximately geodesic, since the horizontal edges are the longest edges. The fact
that the identity map is a quasi-isometry is because there exist constants C1, C2 such
that C1 ≤ ℓρ(e) ≤ C2 for all edges e. This along with Lemma 2.4(d) implies that
C1D1 ≤ C1D2 ≤ Dρ ≤ C2D2 ≤ 2C2D1.



Conformal Assouad dimension as the critical exponent for combinatorial modulus 467

(b)This follows from the same argument as [Car, Proof of Lemma 2.3] which uses
Lemma 2.4(b).

(c) The first three claims follow from Proposition 2.2. Let (vn)n∈N, (wn)n∈N be
two sequences of vertices such that x ∈ Bvn , y ∈ Bwn , vn ∈ Sn, wn ∈ Sn for all n ∈ N.
By Lemma 2.6, every vertex in c(x, y) is a 80-approximate center for the geodesic

triangle [v0, vn, wn] (in (S̃, D1)) for all large enough n. By (a) and Proposition 2.3(d),
every vertex in c(x, y) is a K ′-approximate center of the geodesic triangle [v0, vn, wn]

(in (S̃, Dρ)) for some K ′ > 0. By Proposition 2.3(d), we obtain the desired estimate.
(d) Let x, y ∈ X and u, v ∈ Sn be as in the statement of the lemma. We choose

n0 be the integer such that c(x, y) ⊂ Sn0 . Let ũ, ṽ ∈ Sn0 be the vertices such that
u, v are descendants of ũ, ṽ respectively. Let c̃ ∈ c(x, y). As shown in the proof of
Lemma 2.6, either ũ (resp. ṽ) is equal to c̃ or is a horizontal neighbor of ũ (resp.
ṽ). Therefore by (H2), π(ũ) ∨ π(ṽ) ≤ K0π(c(x, y)). We now construct the desired
path γ from u to v as follows. We join u to ũ and ṽ to v using the geneology. We
can connect ũ to ṽ using c̃ if necessary. By (H1) and (H2), the length Lρ(γ) of γ is
bounded by

Lρ(γ) ≤ π(c(x, y))

(
1 +

2K0

1− η+

)
. �

The following proposition provides a bound on visual parameter on ∂(S, Dρ) and
relies crucially on (H3). This construction of metric is slightly different from that of
[Car] and [Sha, Theorem 5.1].

Proposition 3.6. (Visual parameter control) Let (X, d) and S be as in the
statement of Theorem 3.3. Let ρ : S → (0,∞) which satisfies hypotheses (H1), (H2),
and (H3). Then there exists a visual metric θρ on ∂(S, Dρ) with base point v0 ∈ S0

with visual parameter e, where Dρ is as defined in (3.6). There exists C1 > 1 such
that the metric θρ satisfies

C−1
1 π(c(x, y)) ≤ θρ(l

−1
∞ (x), l−1

∞ (y)) ≤ π(c(x, y)) for all x, y ∈ X.

Furthermore, the map p : (∂(S, Dρ), θρ) → (X, d) is a power quasisymmetry.

Proof. We define the desired metric θρ as

θρ(l
−1
∞ (x), l−1

∞ (y)) = inf

{
k−1∑

i=0

π(c(xi, xi+1)) : k ∈ N, x0 = x, xk = y, xi ∈ X for all i

}
.

Clearly, θρ is non-negative, satisfies the triangle inequality and θρ(l
−1
∞ (x), l−1

∞ (y)) ≤
π(c(x, y)) for all x, y ∈ X. It suffices to show

θρ(l
−1
∞ (x), l−1

∞ (y)) & π(c(x, y))

To this end consider a sequence x0, . . . , xk such that x0 = x, xk = y. Without loss of
generality, we may assume that xi 6= xi+1 for all i = 0, . . . , k − 1. We choose n large
enough so that we can apply Lemma 3.5(d) to each pair xi, xi+1, i = 0, . . . , k − 1.
Choose vi ∈ Sn such that xi ∈ Bvi for all i = 0, . . . , k. By concatenating all points
obtained by applying Lemma 3.5(d) to each pair xi, xi+1, we obtain a path γ ∈
Γn(x, y) such that

Lρ(γ) ≤ C

k−1∑

i=0

π(c(xi, xi+1)),
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where C is the constant from Lemma 3.5(d). Combining the above estimate with
(H3), we obtain

(3.7) (K1C)−1π(c(x, y)) ≤ θρ(l
−1
∞ (x), l−1

∞ (y)) ≤ π(c(x, y)),

where K1 is the constant in (H3).
By Proposition 2.5(c), the map p : (∂(S, D1), θ1) → (X, d) is a bi-Lipschitz

map where θ1 is a visual metric on ∂(S, D1) with base point v0 ∈ S0 and visual
parameter a. Since the identity map Id : (S, Dρ) → (S, D1) is a quasi-isometry
by Lemma 3.5(a), the induced boundary map (as defined in Proposition 2.2(b))
∂ Id : (∂(S, Dρ), θρ) → (∂(S, D1), θ1) is a power quasisymmetry by Proposition 2.2(c).
Composing this power quasisymmetry ∂ Id : (∂(S, Dρ), θρ) → (∂(S, D1), θ1) with
the bi-Lipschitz map p : (∂(S, D1), θ1) → (X, d) yields the desired conclusion that
p : (∂(S, Dρ), θρ) → (X, d) is a power quasisymmetry. �

Consider the metric Θρ : X ×X → [0,∞) defined by

(3.8) Θρ(x, y) := θρ(l
−1
∞ (x), l−1

∞ (y)).

where θρ is the visual metric from Proposition 3.6. The following is an immediate
corollary of Proposition 3.6.

Corollary 3.7. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) which satisfies hypotheses (H1), (H2), and (H3). Then the metric Θρ

defined in (3.8) satisfies Θρ ∈ Jp(X, d).

The following lemma provides a sequence in l
−1
∞ (x) ∈ ∂(S, D2) with desirable

properties and is useful for approximating balls centered at x ∈ X in different metrics.

Lemma 3.8. Let (X, d) be a compact doubling metric space and let (S, D2)
denote the corresponding hyperbolic filling with vertical and horizontal parameters
a, λ respectively such that a ≥ λ ≥ 6. For any x ∈ X, there exists a sequence of
vertices vn ∈ Sn, n ≥ 0 such that vn is the parent of vn+1 and d(x, π1(vn)) ≤

1
1−a−1a

−n

for all n ∈ N≥0.

Proof. For each n, we choose wn ∈ Sn be such that d(wn, x) < a−n (this is possible
since Xn is a maximal a−n-separated subset). Consider the sequence of genealogies
g(wn) for each n ∈ N≥0. By a diagonal argument the sequence of genealogies g(wn)
converge along a subsequence to yield the a sequence vn ∈ Sn such that vn is the
parent of vn+1 for all n ∈ N≥0. If vn ∈ Sn is in the genealogy of wk, k > n, we

have d(x, π1(vn)) < a−k +
∑k

i=n a
−k. Letting k → ∞ along a subsequence yields the

desired bound d(x, π1(vn)) ≤
1

1−a−1a
−n. �

The following lemma provides an approximation of balls in (X,Θρ) using the balls
in (X, d). In the following lemma, we use the notation BΘ(·, ·), Bd(·, ·) to denote the
balls in the metrics Θρ, d respectively.

Lemma 3.9. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) which satisfies hypotheses (H1), (H2), and (H3). Let Θρ ∈ Jp(X, d)
be as defined in (3.8) and let K0 denote the constant in (H2). Let L > 1 such that

(3.9)
1

L
π(c(x, y)) ≤ Θρ(x, y) ≤ π(c(x, y)) for all x, y ∈ X.

For any x ∈ X, let (vn)n∈N≥0
denote a sequence such that vn ∈ Sn for all n ∈ N≥0 as

given in Lemma 3.8. Then

(3.10) Bd(π1(vk), 2a
−k) ⊂ BΘ(x, r), whenever vk satisfies π(vk) < K−1

0 r,
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and

(3.11) BΘ(x, r) ⊂ Bd(π1(vk), 2(λ+ 2)a−k),

whenever k ∈ N is such that π(vk) ≤ K0Lr and π(vk−1) > K0Lr.

Proof. First, we show (3.10). Let k ∈ N≥0 be such that π(vk) < K−1
0 r and

let y ∈ Bd(π1(vk), 2a
−k). Let (z, l) ∈ c(x, y). Since {x, y} ⊂ Bd(π1(vk), 2a

−k), we
have l ≤ k. Note that D2((z, l), vl) ≤ 1, since d(π1(vl), x) ≤ d(π1(vl), π1(vk)) +
d(π1(vk), x) ≤ (1 − a−1)−1a−l + (1 − a−1)−1a−k ≤ 2(1− a−1)−1a−l < λa−l and x ∈
B(z, 2a−1) ⊂ B(z, λa−l). This along with (H2) implies that

π(c(x, y)) ≤ K0π(vl) ≤ K0π(vk) < r.

This estimate along with (3.9) implies (3.10).
Next, we show (3.11). Let k ∈ N be such that π(vk) ≤ K0Lr and π(vk−1) > K0Lr

and let y ∈ BΘ(x, r). By (3.9), π(c(x, y)) ≤ Lr. Let (z, l) ∈ c(x, y). Note that
D2(vl, (z, l)) ≤ 1 which along with (H2) implies that

π(vl) ≤ K0π(c(x, y)) ≤ K0Lr.

The choice of k implies that l ≥ k. Hence by Lemma 3.8

d(π1(vk), y) ≤ d(π1(vk), π1(vl)) + d(π1(vl), z) + d(z, y)

< (1− a−1)−1a−k + 2λa−l + 2a−l (since D2(vl, (z, l)) ≤ 1

and (z, l) ∈ c(x, y))(3.12)

≤
(
2 + (1− a−1)−1 + 2λ

)
a−k < 2(2 + λ)a−k (since k ≥ l).

This completes the proof of (3.11). �.

3.4. Construction of homogeneous measures using weights. Next, we
need to control the Assouad dimension of (X,Θρ), where Θρ ∈ Jp(X, d) is as given
in Corollary 3.7. To this end, we construct a p-homogeneous measure on (X,Θρ)
using hypothesis (H4). This along with Theorem 3.1 implies an upper bound on the
Assouad dimension dimA(X,Θρ) ≤ p. To this end, we construct a doubling measure
on X using the weight function ρ : S → (0,∞). The idea is to construct a measure
on X as a limit of discrete measures on Sk as k → ∞. To this end, we introduce the
following notions.

Definition 3.10. Let k ∈ N, p ∈ (0,∞), C ∈ (1,∞) and f0 : Sk → (0,∞), f1 :
Sk+1 → (0,∞). Let π : S → (0,∞) be a weight.

(a) We say that f0 : Sk → (0,∞) is (C, π)-balanced if f0(u)
π(u)p

≤ C2 f0(v)
π(v)p

for all

vertices u, v ∈ Sk with D2(u, v) = 1.

(b) A function f0 : Sk → (0,∞) is (C, π)-unbalanced on e = {u, v} if either f0(u)
π(u)p

>

C2 f0(v)
π(v)p

or f0(v)
π(v)p

> C2 f0(u)
π(u)p

. Similarly, we say that a function f0 : Sk → (0,∞)

is (C, π)-balanced on e = {u, v} if C−2 f0(v)
π(v)p

≤ f0(u)
π(u)p

≤ C2 f0(v)
π(v)p

.

(c) We say that the pair (f0, f1) is (C, π)-compatible if for all points u ∈ Sk and
v ∈ Sk+1 such that u is the parent of v, we have

(3.13)
f0(u)

π(u)p
≤

f1(v)

π(v)p
≤ C

f0(u)

π(u)p
.

We remark that the notions of balanced and compatibility depend only on the
horizontal and vertical edges of (S, D2) respectively.
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Given a horizontal edge e = {u, v} in Sk, we define the (C, π)-balancing operator

Be
k : (0,∞)Sk → (0,∞)Sk as follows. If f0 is (C, π)-balanced on e, we set Be

k(f0) ≡ f0.

Otherwise, if f0(u)
π(u)p

> C2 f0(v)
π(v)p

we set

(Be
k(f0))(w) =





f0(w) if w /∈ {u, v},

f0(u)− α1 if w = u,

f0(v) + α1 if w = v,

where α1 is given by

α1

(
C2

π(v)p
+

1

π(u)p

)
=

f0(u)

π(u)p
− C2 f0(v)

π(v)p
,

so that
(Be

k(f0))(u)

π(u)p
= C2 (B

e
k(f0))(v)

π(v)p
. The case f0(v)

π(v)p
> C2 f0(u)

π(u)p
is similar to f0(u)

π(u)p
>

C2 f0(v)
π(v)p

. The terminology is due to the fact that Be
k(f0) is (C, π)-balanced on e for

all f ∈ (0,∞)Sk.
We need the following modification of a lemma of Vol’berg and Konyagin [VK,

Lemma, p. 631] which plays a key role in the construction of doubling measures.

Lemma 3.11. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) be function that satisfies hypotheses (H1) and (H4). Let C ≥ η−p

− ,
where the constants η−, p are as given in the hypotheses (H1) and (H4). Let k ∈ N≥0,
and let µk be a probability mass function on Sk such that µk is (C, π)-balanced. Then
there exists a probability mass function µk+1 on Sk+1 such that the following hold.

(1) The pair (µk, µk+1) is (C, π)-compatible.
(2) The function µk+1 is (C, π)-balanced.
(3) The construction of the measure µk+1 from the measure µk can be regarded

as the transfer of masses from the points of Xk to those of Xk+1, with no
mass transferred over a distance greater than (1+2λa−1)a−k. More precisely,
there is a probability measure µk,k+1 on X × X which is a coupling of the
probability measures µ̃k :=

∑
u∈Sk

µk(u)δπ1(u), µ̃k+1 :=
∑

v∈Sk+1
µk+1(v)δπ1(v)

such that

µk,k+1

(
{(x1, x2) ∈ X ×X : d(x1, x2) ≥ (1 + 2λa−1)a−k}

)
= 0,

where δx denotes the Dirac measure at x ∈ X. Here by a coupling we mean
the projection maps from X × X to X on the first and second component
pushes forward the measure µk,k+1 to µ̃k and µ̃k+1 respectively.

The proof of Lemma 3.11 is done in two steps. First is an ‘averaging’ step where
we construct a measure on Sk+1 by distributing the mass µk(u) of every vertex u ∈ Sk

to its children so that the mass received by each child v is proportional to π(v)p. At
end of this step, we obtain a measure which satisfies the compatibility condition but
not necessarily (C, π)-balanced. In the second ‘balancing’ step, we ensure that the
measure is (C, π)-balanced by a repeated local transfer of mass along edges in Sk+1

using the balancing operators Be
k+1. By a local transfer we mean that the mass is

transferred from a vertex to its neighbor. The next two lemmas show useful properties
of the balancing operators. The first one shows that the compatibility condition is
preserved by balancing operators.

Lemma 3.12. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) be function that satisfies hypotheses (H1) and (H4). Let µk be
a probability mass function on Sk that is (C, π)-balanced for some C > 1. Let
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f0 : Sk+1 → (0, 1] be a probability mass function on Sk+1 such that (µk, f0) is (C, π)-
compatible. Let e = {w1, w

′
1} be an edge in Sk+1 such that f0 is (C, π)-unbalanced

on e. Then the pair (µk, B
e
k+1(f0)) is also (C, π)-compatible.

Proof. Without loss of generality, we assume that f0(w1)
π(w1)p

> C2 f0(w′
1)

π(w′
1)

p . Let v1 and

v′1 be parents of w1, w
′
1 respectively and let f1 := Be

k+1(f0). By construction, we have

(3.14) f1(w1) < f0(w1), f1(w
′
1) > f0(w

′
1).

Therefore by the (C, π)-compatibility of (µk, f0) and (3.14), we have

f1(w1)

π(w1)p
≤ C

µk(v1)

π(v1)p
,

f1(w
′
1)

π(w′
1)

p
≥

µk(v
′
1)

π(v′1)
p
.

Therefore it suffices to verify that

(3.15)
f1(w1)

π(w1)p
≥

µk(v1)

π(v1)p
,

f1(w
′
1)

π(w′
1)

p
≤ C

µk(v
′
1)

π(v′1)
p
.

Suppose the first inequality in (3.15) fails to be true, then by construction, (3.14)
and the (C, π)-compatibility of (µk, f0), we have

(3.16)
µk(v1)

π(v1)p
>

f1(w1)

π(w1)p
= C2 f1(w

′
1)

π(w′
1)

p
> C2 f0(w

′
1)

π(w′
1)

p
≥ C2µk(v

′
1)

π(v′1)
p
,

which implies µk(v1)
π(v1)p

> C2 µk(v
′
1)

π(v′1)
p . However, Lemma 2.4(b) implies that D2(v1, v

′
1) ≤

1 and therefore the above estimate contradicts the assumption that µk is (C, π)-
balanced. This proves the first inequality in (3.15). The proof of the second inequality

in (3.15) is similar. Indeed, assume to the contrary that
f1(w′

1)

π(w′
1)

p > C
µk(v

′
1)

π(v′1)
p ; then we

have

(3.17)
µk(v1)

π(v1)p
≥ C−1 f0(w1)

π(w1)p
> C−1 f1(w1)

π(w1)p
= C

f1(w
′
1)

π(w′
1)

p
> C2µk(v

′
1)

π(v′1)
p
,

which again implies µk(v1)
π(v1)p

> C2 µk(v
′
1)

π(v′1)
p , a contradiction to the assumption that µk is

(C, π)-balanced. In particular (µk, B
e
k+1(f0)) is (C, π)-balanced. �

The next property is that a balancing operator cannot create unbalanced edges.
More precisely, we have the following lemma.

Lemma 3.13. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) be function that satisfies hypotheses (H1) and (H4). Let µk be
a probability mass function on Sk that is (C, π)-balanced for some C > 1. Let
f0 : Sk+1 → (0, 1] be a probability mass function on Sk+1 such that (µk, f0) is (C, π)-
compatible. Let e = {w1, w

′
1} be an edge in Sk+1 such that f0 is (C, π)-unbalanced

on e. If an edge e′ = {w,w′} on Sk+1 is such that f0 is (C, π)-balanced on e′, then
Be

k+1(f0) is also (C, π)-balanced on e′.

Proof. Without loss of generality, we assume that f0(w1)
π(w1)p

> C2 f0(w′
1)

π(w′
1)

p . Let

e′ = {w,w′} be such that f0 is (C, π)-balanced on e′. Let f1 := Be
k+1(f0). By our

assumption f0(w1)
π(w1)p

> C2 f0(w
′
1)

π(w′
1)

, we have {w,w′} 6= {w1, w
′
1}. If {w,w′}∩{w1, w

′
1} = ∅,

then there is nothing to prove since f0 and f1 agree on {w,w′}.
The only remaining case to consider is if {w,w′} ∩ {w1, w

′
1} contains exactly one

element. Next, we consider the case {w1, w
′
1}∩ {w,w′} = {w1} where w1 = w. Since
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f0(w)/π(w)
p > C2f0(w

′
1)/π(w

′
1)

p,

(3.18)
f1(w)

π(w)p
=

f1(w1)

π(w1)p
= C2 f1(w

′
1)

π(w1)p
, f1(w) < f0(w), f1(w

′) = f0(w
′).

We need to show that

(3.19)
f1(w

′)

π(w′)p
≤ C2 f1(w)

π(w)p
,

f1(w)

π(w)p
≤ C2 f1(w

′)

π(w′)p
.

Therefore by (3.18), only the first inequality in (3.19) can fail for f1. Suppose that
this happens, that is

(3.20)
f1(w

′)

π(w′)p
> C2 f1(w)

π(w)p
.

Let v′, v′1 ∈ Sk be parents of w′, w′
1 respectively. By Lemma 3.12, (µk, f1) is (C, π)-

compatible. Then by the (C, π)-compatibility of (µk, f1), (3.20), and (3.18), we obtain

(3.21)
µk(v

′)

π(v′)p
≥ C−1 f1(w

′)

π(w′)p
(3.20)
> C

f1(w)

π(w)p
(3.18)
= C3 f1(w

′
1)

π(w′
1)

p
≥ C3µk(v

′
1)

π(v′1)
p
> C2µk(v

′
1)

π(v′1)
p
,

which contradicts the assumption that µk is (C, π)-balanced (since D2(v
′, v′1) ≤ 1 by

Lemma 2.4(b) and λ ≥ 2+4λa−1). The remaining case {w1, w
′
1}∩{w,w′} = {w′

1} is
analyzed similarly and therefore the assertion that Be

k+1(f0) is also (C, π)-balanced
on e′ is proved. �

The following iterative construction uses Lemmas 3.12 and 3.13 to obtain a bal-
anced and compatible function from a compatible function.

Lemma 3.14. Let (X, d) and S be as in the statement of Theorem 3.3. Let
ρ : S → (0,∞) be function that satisfies hypotheses (H1) and (H4). Let µk be
a probability mass function on Sk that is (C, π)-balanced for some C > 1. Let
f0 : Sk+1 → (0, 1] be a probability mass function on Sk+1 such that (µk, f0) is (C, π)-
compatible. Let pi = {vi, v

′
i}, i = 1, . . . , T , be an enumeration of all edges in Sk+1.

We inductively define

(3.22) fi := Bpi
k+1(fi−1) ∈ (0, 1]Sk+1 for all i = 1, . . . , T .

Then, fi, i = 0, . . . , T satisfy the following properties.

(a) Each fi is a probability mass function such that (µk, fi) is (C, π)-compatible
for all i = 0, 1, . . . , T .

(b) The probability mass function fT is (C, π)-balanced.
(c) There are no pairs of edges pl = {w1, w2}, pn = {w2, w3}, l, n ∈ Z∩ [1, T ], l <

n, such that mass is transferred from w1 to w2 in the transition from fl−1 to
fl and then mass is transferred from w2 to w3 in the transition from fn−1 to
fn.

Proof. (a) Since the balancing operators preserve the sum, each fi is a probability
mass function. By Lemma 3.12, (µk, fi) is (C, π)-compatible.

(b) This is an immediate consequence of Lemma 3.13, since fT is (C, π)-balanced
on every edge in Sk+1.

(c) Assume the opposite; that is, there are a mass transfer from w1 to w2 (in the
transition from fl−1 to fl) followed by a mass transfer from w2 to w3 (in the transition
from fn−1 to fn with n > l), so that

(3.23)
fl(w1)

π(w1)p
= C2 fl(w2)

π(w2)p
,

fn−1(w2)

π(w2)p
> C2fn−1(w3)

π(w3)p
.
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By choosing l as the largest number less than n such that mass is transferred into w2

in the transition from fl−1 to fl before the mass transfer from w2 to w3 takes place
in the transition from fn−1 to fn, we may assume that

(3.24) fl(w2) = fn−1(w2).

If v1, v3 denote the parents of w1, w3 respectively, then by Lemma 2.4(b)

D2(v1, v3) ≤ 1.

Consequently by assumption that µk is (C, π)-balanced, we have µk(v1)/π(v1)
p ≤

C2µk(v3)/π(v3)
p. However (3.23), (C, π)-compatibility of (µk, fl), (µk, fn−1) along

with (3.24) imply the opposite inequality µk(v1)/π(v1)
p > C2µk(v3)/π(v3)

p. We have
arrived at the desired contradiction and therefore the property (c) is verified. �

Next, we prove Lemma 3.11 by using the inductive construction in Lemma 3.14.

Proof of Lemma 3.11. Let k ∈ N≥0, and let µk be a (C, π)-balanced probability
mass function on Sk. As explained earlier, the transfer of mass is accomplished in two
steps. In the first ‘averaging’ step, we distribute the mass µk(v) to all its children such
that the mass distributed to each child w is proportional to π(w)p (or equivalently
ρ(w)p); that is

f0(w) =
π(w)p∑

w′∈C(v) π(w
′)p

µk(v),

for all v ∈ Sk and w ∈ C(v), where C(v) is as defined in (2.2).
By (H4), (H1) and the fact that every vertex has at least one child, we obtain

ηp−π(v)
p ≤

∑

w′∈C(v)

π(w′)p ≤ π(v)p.

Therefore, we have

(3.25)
µk(v)

π(v)p
≤

f0(w)

π(w)p
≤ η−p

−

µk(v)

π(v)p
≤ C

f0(w)

π(w)p

for all points v ∈ Sk and w ∈ C(v). Note that every point v ∈ Sk has at least one
child, because we always have (π1(v), π2(v)+1) ∈ C(v) for any v ∈ S. This implies f0
is probability mass function on Sk+1 such that (µk, f0) is (C, π)-compatible as shown
in (3.25).

Let fT denote the probability mass function constructed from µk and f0 as given
by Lemma 3.14. We claim that µk+1 := fT is the probability mass function on Sk+1

with the desired properties. Next, we show that µk+1 satisfies the conditions.

(1) This is an immediate consequence of Lemma 3.14(a).
(2) This follows from Lemma 3.14(b).
(3) It remains to verify condition (3). Since d(π1(v), π1(w)) < a−k for all w ∈

C(v), v ∈ Sk, there was a mass transfer over a distance of at most a−k while
passing from µk to f0. Therefore it suffices to verify that while passing from
f0 to fT = µk+1 there is a transfer over a distance of at most 2λa−k−1. Since
d(π1(w), π1(w

′)) < 2λa−k−1 for all points w,w′ ∈ Sk+1 such that D2(w,w
′) =

1, the desired conclusion follows from Lemma 3.14(c). �

We construct a doubling measure on (X, d) in Lemma 3.15 using Lemma 3.11.

Lemma 3.15. (Construction of doubling measure) Let (X, d) be a compact dou-
bling metric space and let S denote a hyperbolic filling with vertical and horizontal
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parameters a, λ respectively with a ≥ λ ≥ 6. Let ρ : S → (0,∞) denote a weight func-
tion that satisfies the hypotheses (H1), (H2), and (H4). Let µ0 denote the (unique)
probability measure on S0 = {v0}. Let µk denote the probability measure on Sk for
all k ∈ N constructed inductively using Lemma 3.11. Let

µ̃k =
∑

v∈Sk

µk(v)δπ1(v) for all k ∈ N≥0,

denote a sequence of probability measures on X associated with the above construc-
tion. Then any sub-sequential weak limit µ of (µ̃k)k∈N is a doubling measure on
(X, d).

Proof. Observe that such a sub-sequential limit µ exists by Prokhorov’s theorem
along with the compactness of (X, d).

Since diam(X, d) = 1
2
, it suffices to consider r < 1. For x ∈ X choose a sequence

{vn} as given in Lemma 3.8. We obtain two sided bounds on µ(B(x, r)) using µn(vn)
for a suitably chosen value of n. To describe this let n ∈ N≥0 denote the largest
integer such that a−n ≥ r. We claim that

(3.26) µ(B(x, r)) ≍ µn(vn)

where the constants of comparison are independent of x ∈ X, r ∈ (0, 1). Let us first

show the upper bound. If mass from µn(v), v ∈ Sn contributes to µ(B(x, r)), then
by Lemma 3.11(3) we have

d(π1(v), x) ≤ r +
∞∑

k=n

(1 + 2λa−1)a−k =
(
1 + (1 + 2λa−1)(1− a−1)−1

)
a−n

Since λ > ((1− a−1)−1)(1 + 2λa−1), we have that x ∈ B(v, λa−n) ∩ B(vn, λa
−n) and

hence D2(v, vn) ≤ 1. Therefore

µ(B(x, r)) ≤
∑

v∈Sn:D2(v,vn)≤1

µn(v).

If D2(v, vn) ≤ 1 and v ∈ Sn, then by Lemma 3.11(1) and (H2), we obtain µn(vn) ≍
µ(v) for any pair of such vertices. Furthermore since (X, d) satisfies the metric
doubling property, the number of neighbors of each vertex is uniformly bounded
above [BBS, Proposition 4.5]. Combining the above estimates yields the upper bound
in (3.26).

For the lower bound, we consider µn+2(vn+2). By Lemma 3.11(3) and d(π1(vn+2),
x) < (1+2λa−1)a−(n+2), we note that the mass from vn+2 stays within B(x, s) where

s = (1 + 2λa−1)
(
1 + (1− a−1)−1

)
a−(n+2) < r

(since a−n−1 < r and a−1(1+2λa−1)(1−a−1)−1 < 1). This implies that µ(B(x, r)) ≥
µn+2(vn+2). This along with Lemma 3.11(2) and (H1), we obtain µn+2(vn+2) ≍
µn(vn). Combining these estimates yields the lower bound for µ(B(x, r)) in (3.26).

Next, we show that (3.26) implies the desired doubling property. For the re-
mainder of the proof we assume r ∈ (0, 1/2). The case r ≥ 1/2 is similar and
easier. Let N ∈ N≥0 denote th largest integer such that a−N ≥ 2r. This implies
a−(N+2) < 2a−1r < r. This implies that n = N or n = N +1. Therefore by the same
argument as above (using Lemma 3.11(2) and (H1)), we have µn(vn) ≍ µN(vN ). This
along with (3.26) shows that µ is a doubling measure on (X, d). �

Let Θρ denote the metric defined in (3.8). In the following proposition, we obtain
upper bound on the Assouad dimension of (X,Θρ). We establish this by showing
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that the measure µ in Lemma 3.15 is p-homogeneous in (X,Θρ). This along with
Theorem 3.1 shows that dimA(X,Θρ) ≤ p.

Proposition 3.16. Let (X, d) be a compact doubling metric space and let S
denote a hyperbolic filling with vertical and horizontal parameters a, λ respectively
such that a ≥ λ ≥ 6. Let ρ : S → (0,∞) denote a weight function that satisfies the
hypotheses (H1), (H2), (H3), and (H4). Let Θρ denote the metric defined in (3.8)
using Proposition 3.6. Then the measure µ defined in Lemma 3.15 is p-homogeneous
in (X,Θρ), where p is the constant in (H4). In particular, dimA(X,Θρ) ≤ p.

Proof. For ease of notation, we abbreviate Θρ by Θ. By (3.7), there exists L > 1
such that (3.9) holds. Let η−, η+, K0 denote the constants in (H1) and (H2).

Next, we show that µ is p-homogeneous in (X,Θ); that is, there exists C > 1
such that

(3.27)
µ(BΘ(x, r))

µ(BΘ(x, s))
≤ C

(r
s

)p
for all x ∈ X, 0 < s < r.

Let 0 < s < r and x ∈ X. Choose a sequence (vn)n∈N≥0
such that vn ∈ Sn for all

n ∈ N≥0 as given in Lemma 3.8. Let k ∈ N≥0 be the smallest non-negative integer
such that π(vk) < K−1

0 s. By Lemma 3.9, Lemma 3.15 and (3.26), we have

(3.28) µ(BΘ(x, s)) & µk(vk).

If k = 0, then it we have 1 ≥ µ(BΘ(x, r)) ≥ µ(BΘ(x, s)) & 1 which implies (3.27). So
it suffices to consider the case k ≥ 1. The choice of k along with (H1) implies that

(3.29) η−K
−1
0 s ≤ η−π(vk−1) ≤ π(vk) < K−1

0 s.

Next, we bound µ(BΘ(x, r)) from above. We consider two cases depending on
whether or not r < (K0L)

−1π(v0). If r < (K0L)
−1π(v0), there exists l ∈ N such that

π(vl) ≤ K0Lr and π(vl−1) > K0Lr. Hence by (H1), we have

(3.30) η−K0Lr < η−π(vl−1) ≤ π(vl) ≤ K0Lr.

By Lemma 3.9, Lemma 3.15, and (3.26), we have

(3.31) µ(BΘ(x, r)) ≤ µ
(
Bd(π1(vl), 2(λ+ 2)a−l)

)
. µ

(
Bd(π1(vl), a

−l)
)
. µl(vl).

Since r > s, we have l ≤ k. Therefore by Lemma 3.11(2), we have

(3.32)
µl(vl)

π(vl)p
≤

µk(vk)

π(vk)p
, for any l ≤ k.

By (3.28), (3.31), (3.29), (3.30) and (3.32), we have

µ(BΘ(x, r))

µ(BΘ(x, s))
.

µl(vl)

µk(vk)
.

π(vl)
p

π(vk)p
≍

rp

sp
.

This implies (3.27) in the case r < (K0L)
−1π(v0).

On the other hand, if r ≥ (K0L)
−1π(v0) we use the trivial bound µ(BΘ(x, r)) ≤

1 = µ0(v0). By (3.28), (3.29), (3.32) and the bound 1 ≍ π(v0) . r , we have

µ(BΘ(x, r))

µ(BΘ(x, s))
.

µ0(v0)

µk(vk)
.

π(v0)
p

π(vk)p
.

rp

sp
.

This completes the proof of (3.27). By Theorem 3.1, we obtain the desired bound
on Assouad dimension. �

Proof of Theorem 3.3. This follows immediately from Corollary 3.7 and Propo-
sition 3.16. �
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3.5. Upper bound on Assouad dimension using weights. In this subsec-
tion, we prove Theorem 3.4. The proof of the Theorem 3.4 is very similar to that of
[Car, Theorem 1.2] except for the use of Theorem 3.3 instead of [Car, Theorem 1.1].
For the convenience of the reader, we provide further details since the hypothesis (H4)

is different from (H̃4) of [Car]. To the reader who is familiar with Carrasco’s work,
we point out that the estimate in [Car, (2.52)] implies our version of (H4) for small
enough η0. The proof of other three hypothesis is similar. Readers who are familiar
with the proof of [Car, Theorem 1.2] may want to skip the proof of Theorem 3.4.

Let ρ : S → [0,∞) be a function. We define ρ∗ : S → [0,∞) as

(3.33) ρ∗(v) = min{ρ(w) : w ∈ S : π2(w) = π2(v), D2(v, w) ≤ 1} for all v ∈ S.

Similarly, we define π∗ : S → [0,∞) as

(3.34) π∗(v) = min{π(w) : w ∈ S : π2(w) = π2(v), D2(v, w) ≤ 1} for all v ∈ S.

If γ = (v1, . . . , vN) is a horizontal path, we define

(3.35) Lh(γ, ρ) =
N−1∑

j=1

ρ∗(vj) ∧ ρ∗(vj+1).

We introduce the following hypothesis on ρ : S → [0,∞) which serves as a simpler
sufficient condition for (H3):

(H3’) for all k ≥ 1, for all v ∈ Sk and for all γ ∈ Γk+1(v), it holds Lh(γ, ρ) ≥ 1,

where Lh(γ, ρ) is as defined in (3.35). The hypothesis (H3’) is simpler to verify than
(H3) because it only involves curves with horizontal edges. The following is a version
of [Car, Proposition 2.9] and provides a useful sufficient condition for (H3).

Proposition 3.17. Let (X, d) be a compact doubling metric space. Let (S, D2)
denote the hyperbolic filling with horizontal and vertial parameters λ, a respectively
that satisfy a ≥ λ ≥ 6. Assume that there exists p > 0 and a function ρ : S → (0,∞)
which satisfy the hypotheses (H1), (H2), and (H3’). Then the function ρ also satisfies
(H3).

The proof of Proposition 3.17 requires several lemmas. We say that a path
γ = (v1, . . . , vN) is of level k (resp. level at most k) if π2(vi) = k (resp. π2(vi) ≤ k)
for all i = 1, . . . , N .

Lemma 3.18. [Car, Lemma 2.10] Let (X, d) and (S, D2) be as given in Propo-
sition 3.17. Let k ≥ 0 and v ∈ Sk. Assume that ρ satisfies (H3’). Consider a
horizontal path γ = (v1, . . . , vn) of level k + 1 such that π1(vi) ∈ B(π1(v), 3a

−k) for
all i = 1, . . . , N , π1(v1) ∈ B(π1(v), a

−k) and π1(vN ) /∈ B(π1(v), 2a
−k). Let w denote

the parent of z1. Then

N−1∑

i=1

π∗(vi) ∧ π∗(vi+1) ≥ max{π∗(v), π∗(w)}.

Proof. First, we show that for all j = 1, . . . , N ,

(3.36) π∗(vj) ≥ max{π∗(v), π∗(w)}min{ρ(wj) : wj ∈ Sk+1, D2(wj, vj) ≤ 1}.
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Let w̃j ∈ Sk+1 be such that π∗(vj) = π(w̃j) and D2(w̃j, vj) ≤ 1. Let uj ∈ Sk be the
parent of wj. Then by Lemma 2.4(a),

d(π1(v), π1(uj)) ≤ d(π1(v), π1(vj)) + d(π1(vj), π1(w̃j)) + d(π1(w̃j), π1(uj))

< 3a−k + 2λa−k−1 + a−k = (4 + 2λa−1)a−k < λa−k,

d(π1(w), π1(v)) ≤ d(π1(w), π1(v1)) + d(π1(v1), π1(v)) < a−k + a−k < λa−k

The above estimates imply that D2(v, uj) ≤ 1 and D2(w, uj) ≤ 1. Therefore π(uj) ≥
max{π∗(v), π∗(w)} and hence

π∗(vj) = π(w̃j) = π(uj)ρ(w̃j)

≥ max{π∗(v), π∗(w)}min{ρ(wj) : wj ∈ Sk+1, D2(wj, vj) ≤ 1}.

This completes the proof of (3.36). Therefore, we have

N−1∑

i=1

π∗(vi) ∧ π∗(vi+1)
(3.36)

≥ max{π∗(v), π∗(w)}
N−1∑

i=1

ρ∗(vi) ∧ ρ∗(vi+1)

= max{π∗(v), π∗(w)}Lh(γ, ρ) ≥ max{π∗(v), π∗(w)},

where we use (3.36) in the first line and (H3’) and the second line above. �

We introduce a different notion of length on paths. For any edge e = {u, v} we
define

(3.37) ℓ̂1(e) =

{
π∗(u) ∧ π∗(v) if e = {u, v} is a horizontal edge,

K0η
−1
− π∗(v) if e = {u, v} and u is a parent of v,

and for a path γ = (v1, . . . , vN), we define

(3.38) ℓ̂1(γ) =

N−1∑

i=1

ℓ̂1(ei), where ei = {vi, vi+1}.

If w ∈ Sk+1, u, v ∈ Sk such that D2(u, v) = D2(u, w) = 1, then by (H1) and (H2), we
have

(3.39) ℓ̂1({u, v}) ≤ π∗(u) ≤ π(u) ≤ η−1
− π(w) ≤ K0η

−1
− π∗(w) ≤ ℓ̂1({u, w}).

Lemma 3.19. [Car, Lemma 2.11] Let (X, d) and (S, D2) be as given in Proposi-
tion 3.17. Assume that ρ : S → [0,∞) satisfies the hypotheses (H1), (H2), (H3’). Let
u, v ∈ Sk+1 be such that d(π1(u), π1(v)) > 4a−k. Let γ = (v1, . . . , vN) be a path of
level at most k+1 from v1 = u to vN = v. Then there exists a path γ′ = (u1, . . . , uM)
of level at most k such that:

1. u1, uM are parents of v1 and vN respectively, and

2. ℓ̂1(γ
′) ≤ ℓ̂1(γ).

Proof. Let γ = (v1, . . . , vN ) be a path of level at most k + 1 as given in the
statement of the lemma. We decompose γ into sub-paths of level at most k or level
equal to k + 1. Let s1 = 1. Define inductively positive integers si, ti as

ti = min{j > si : π2(vj) ≤ k or j = N},

si+1 = min{j ≥ ti : π2(vj+1) = k + 1}.

We stop when ti = N for some i = L. Note that π2(vs1) = π2(vtL) = k + 1, and

π2(vsi) = π2(vtj ) = k for i 6= 1 and j 6= L. Since we are trying to bound ℓ̂1(γ) from



478 Mathav Murugan

below, we may assume that path γ has no self-intersections; that is vi 6= vj for all
i 6= j. In particular, vsi 6= vti for all i.

For each i = 1, . . . , L, let γi denote the sub-path (vsi, . . . , vti−1). We will replace

each path γi with γ′
i such that ℓ̂1(γ

′
i) ≤ ℓ̂1(γi).

First, we consider 2 ≤ i ≤ L− 1 and postpone the cases i = 1, L to the end. Let
2 ≤ i ≤ L− 1. We consider two cases.

Case 1. π1(vj) ∈ B(π1(vsi), 2a
−k) for all j = si+1, . . . , ti−1. In this case, vsi, vti ∈

Sk and are the parents of vsi+1, vti−1 respectively. By Lemma 2.4(c), D2(vsi, vti) = 1
and hence we replace γi with γ′

i = (vsi, vti). From (3.39), we obtain

ℓ̂1(γ
′
i) ≤ ℓ̂1({vsi, vsi+1}) ≤ ℓ̂1(γi).

Case 2. There exists j1 ∈ {si+1, ti−1} such that π1(vj1) /∈ B(π1(vs1 , 2a
−k)). We

assume j1 is the first index with this property. We denote j0 = si + 1, w0 = vsi ∈ Sk.
Suppose jl, wl are defined, and if jl < ti − 1, we define

jl+1 = min{jl < j < ti − 1: π1(vj) /∈ B(π1(wl), 2a
−k) or j = ti − 1},

and let wl+1 ∈ Sk be the parent of vjl+1 ∈ Sk+1. Let Li be such that jLi
= ti − 1.

If l ∈ {0, . . . , Li−2}, we have π1(vjl+1
) /∈ B(π1(wl), 2a

−k). Since a > 2λ, we have
d(π1(wl), π1(vjl+1)) ≤ d(π1(wl), π1(vjl)) + d(π1(vjl), π1(vjl+1)) < 2a−k + 2λa−k−1 <
3a−k. Therefore by Lemma 3.18, Lemma 2.4(c), and (3.39), we have

(3.40) ℓ̂1((wl, wl+1)) ≤ π∗(wl) ≤ ℓ̂1
(
(vjl, . . . , vjl+1−1)

)
for all l = 0, . . . , Li − 2.

The above estimate (3.40) is also true for j = Li − 1 by combining the above argu-
ment and with that of case 1 by considering depending on whether or not π1(vj1) /∈
B(π1(vs1 , 2a

−k)). Hence γ′
i = (w0, . . . , wLi−1, wLi

), where w0 = vsi , wLi
= vti . By

(3.40) along with the above remark, we obtain

ℓ̂1(γ
′
i) ≤ ℓ̂1(γi), for i ∈ {2, . . . , L− 1}.

The case i = 1 is also similar to above. Let u1 be the parent of v1. Similar to argument
above, we consider two cases depending on whether or not π1(vj) ∈ B(π1(u1), 2a

−k)
for all j = 1, . . . , ti − 1 as explained in [Car, proof of Lemma 2.11]. This yields a
path γ′

1 from u1 to vt1 . The case i = L is exactly same as i = 1 after reversing the
order in which the vertices of γL appear. By concatenating the paths γ′

1, . . . , γ
′
L, we

obtain the path (u1, . . . , uM) with desired properties. �

Lemma 3.20. [Car, Lemma 2.12] Let (X, d) and (S, D2) be as given in Proposi-
tion 3.17. Assume that ρ : S → [0,∞) satisfies the hypotheses (H1), (H2), and (H3’).
There exists a constant K2 ≥ 1 such that the following property: for all x, y ∈ X,
there exists k0 depending on x, y such that for all k ≥ k0, if u, v ∈ Sk such that
x ∈ Bu, y ∈ Bv, then any path γ joining u and v satisfies

ℓ̂1(γ) ≥ K−1
2 π(c(x, y)).

Proof. Let u, v ∈ Sk be such that x ∈ Bu, y ∈ Bv. Let m be such that π2(w) = m
for some (or equivalently, for all) w ∈ c(x, y). By (2.8), we have d(x, y) > a−m−1.
For k ≥ m+ 2, we have (using a ≥ 12)

d(π1(u), π1(v)) ≥ d(x, y)− d(x, π1(u))− d(y, π1(v))

> a−m−1 − 2a−m−2 ≥ 10a−m−2.
(3.41)

The idea is to use Lemma 3.18 to find a path of level at most m+ 2 whose ℓ̂1 length

is larger than ℓ̂1(γ). We consider two cases.
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Case 1. The path γ is of level at most k, where k ≥ m + 2. By (3.41), we can
apply Lemma 3.18. Set γk = γ. Let ul, vl ∈ Sl be such that u, v are descendants of
ul, vl respectively. By Lemma 2.4(a), for all l ≥ m+ 2, we have

d(π1(ul), π1(vl)) ≥ d(π1(u), π1(v))− d(π1(u), π1(ul))− d(π1(v), π1(vl))

≥ 10a−m−2 − 2
a

a− 1
a−l > 6a−m+2.

Using the above estimate, and applying Lemma 3.18 repeatedly we obtain path γm+2

of level at most m + 2 from um+2 to vm+2 such that ℓ̂1(γ) ≥ ℓ̂1(γm+2). This along
with (3.39), (H1), (H2), implies

ℓ̂1(γ) ≥ K−2
0 π(um+2) ≥ K−2

0 η2−π(um) ≥ K−3
0 η2−π(c(x, y)).

In the last estimate, we used D2(um, w) ≤ 1 for any w ∈ c(x, y) (since x ∈ B(π1(um),
λa−m) ∩ B(π1(w), λa

−m) 6= ∅).
Case 2. γ is not a path of level at most k. Let n > k be the smallest integer such

that γ is a path of level at most n. Let k0 ≥ m+ 2 be large enough so that

K−3
0 η2−η

m
− ≥ 4K0η

−1
−

∞∑

i=k0

ηi+.

Let ũn, ṽn ∈ Sn be such that x ∈ Bũn , y ∈ Bṽn and let ũk, ṽk ∈ Sk be the ancestors
of ũn, ṽn respectively. By Lemma 2.4(a), D2(ũn, un) ≤ 1 and D2(ṽn, vn) ≤ 1. Let γu
denote the path from ũn to u formed by concatenating the genealogy from ũn to ũk

and adding an edge from ũk to uk if necessary. Similarly, let γv denote the path from
v to ṽn formed in a similar fashion. By concatenating γu, γ, γv we obtain a path γ̃
from ṽn to ũn whose level is at most n. Using the first case, we obtain

ℓ1(γ̃) ≥ K−3
0 η2−π(c(x, y)) ≥ K−3

0 η2−η
m
− ≥ 4K0η

−1
−

∞∑

i=k0

ηi+ ≥ 2ℓ1(γu) + 2ℓ1(γv).

This implies

ℓ1(γ) ≥
1

2
K−3

0 η2−π(c(x, y))

for any k ≥ k0. �

Proof of Proposition 3.17. By (H1), (H2), there exists c > 0 such that

Lρ(γ) ≥ cℓ̂1(γ) for all paths γ in (S, D2).

This estimate along with Lemma 3.20 implies (H3). �

The statement of the lemma below is slightly different from that of [Car, Lem-
ma 2.13] and the proof is omitted as it is similar to [Car].

Lemma 3.21. [Car, Lemma 2.13] Let (X, d) and (S, D2) be as given in Theo-
rem 3.4. Suppose we have a function π0 : Sk → (0,∞) such that

(3.42)
1

K
≤

π0(v)

π0(w)
≤ K for all v, w ∈ Sk such that D2(v, w) ≤ 1,

where K ≥ 1 is a constant. Suppose also that there is function π1 : Sk+1 → (0,∞)
such that for any u ∈ Sk and for any v ∈ Sk+1 such that u is the parent of v, we have

(3.43) 1 ≤
π0(u)

π1(v)
≤ K.
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Let π̂1 : Sk+1 → [0,∞) be defined as

(3.44) π̂1(w) = π1(w) ∨

(
1

K
max{π1(v) : v ∈ Sk+1, D2(v, w) ≤ 1}

)
.

Then for all w1, w2 ∈ Sk+1 such that D2(w1, w2) ≤ 1, we have

(3.45)
1

K
≤

π̂1(w1)

π̂1(w2)
≤ K.

Lemma 3.22. [Car, Lemma 2.14] Let G = (V,E) be a graph whose vertices
has a degree bounded by K and let p > 0. Let Γ be a family of paths of G. Let
τ : V → [0,∞) that satisfies

N−1∑

i=1

τ(vi) ≥ 1 for all paths γ = (v1, . . . , vN) ∈ Γ.

Let dG : V × V → [0,∞) denote the combinatorial graph distance metric on V . Let
τ̂ : V → [0,∞) be defined as

τ̂ (v) = 2max{τ(w) : w ∈ V, dG(w, v) ≤ 2}.

Then
N−1∑

i=1

τ̂ ∗(vi) ∧ τ̂ ∗(vi+1) ≥ 1 for all paths γ = (v1, . . . , vN) ∈ Γ,

where τ̂ ∗(v) = min{τ̂(w) : dG(w, v) ≤ 1}, and such that
∑

v∈V

τ̂(v)p ≤ 2p(K2 + 1)
∑

v∈V

τ(v)p.

The statement of Lemma 3.22 is slightly different from that of [Car, Lemma 2.14]
where the term K2 + 1 was replaced by K2. This is because the estimate #{w ∈
V : dG(w, v) ≤ 2} ≤ K2 for all v ∈ V in [Car] must be replaced by #{w ∈
V : dG(w, v) ≤ 2} ≤ K2 + 1. The proof is otherwise identical and is omitted.

Proof of Theorem 3.4. Let η0 ∈ (0, 1) whose value will be determined later.
Since (X, d) is doubling there exists M1 ∈ N, depending only on a, λ and the doubling
constant such that the number of neighbors of each vertex in (S, D1) is bounded by
M1, and in particular the number of children of each vertex uniformly bounded above
[BBS, Proposition 4.5]. Set

η− =
(
η0M

−1
1

)1/p
∈ (0, 1).

Let σ : S → [0,∞) satisfy (S1) and (S2). We define τ : S → [0,∞) as τ := (σp +
ηp−)

1/p ≥ η−, which also satisfies (S1). The function τ satisfies

(3.46)
∑

v∈C(u)

τ(v)p ≤
∑

v∈C(u)

(σ(v)p + ηp−) ≤ 2η0 for all u ∈ S.

By [Hei, Exercise 10.17], there exists M2, depending only on λ and doubling constant
of (X, d), such that

(3.47) #{w ∈ S : D2(v, w) = 1, π2(w) = π2(v)} ≤ M2 for all v ∈ S.

That is, the number of horizontal edges at any vertex is uniformly bounded in M2.
By Lemma 3.22, the function

τ̂ (v) := 2max{τ(w) : w ∈ Sπ2(v), D2(v, w) ≤ 2}
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satisfies condition (H3’) and
∑

v∈C(u)

τ̂ (v)p ≤ 2p(M2
2 + 1)

∑

w∈Sπ2(u)+1,

D2(w,v)≤2

τ(w)p (by Lemma 3.22)

≤ 2p(M2
2 + 1)

∑

ũ∈Sπ2(u)
,

D2(w,v)≤1

∑

w∈C(ũ)

τ(w)p (by Lemma 2.4(b))

≤ 2p+1(M2
2 + 1)

∑

ũ∈Sπ2(u)
,

D2(w,v)≤1

η0 (by (S2))

≤ 2p+1(M2
2 + 1)(M2 + 1)η0 (by (3.47)).(3.48)

We construct a function ρ : S → [0,∞) that satisfies

(1) ρ(v) ≥ τ̂(v) for all v ∈ S.
(2) ρ satisfies (H2) with K0 = η−1

− .
(3) ρ(v) ≤ max{τ̂ (w) : D2(w, v) ≤ 1, π2(w) = π2(v)} for all v ∈ S.

The idea behind the proof is to inductively construct ρ on Sk for k = 0, 1, . . .. Since
the conditions (2) and (3) depend only on horizontal edges this inductive construction
works well. We pick ρ(v0) = τ̂ (v0) where v0 ∈ S0. Clearly, this satisfies (1), (2), (3)

on S0 because S0 is a singleton set. Suppose we have constructed ρ on
⋃i

j=0 Sj , we

construct ρ on Si+1 as follows. Define π0 : Si → (0,∞), π1 : Si+1 → (0,∞) as

π0(u) =
∏

w∈g(u)

ρ(w), π1(v) = τ̂ (v)
∏

w∈g(v),w 6=v

ρ(w) = τ̂ (v)π0(ṽ)

for all u ∈ Si, v ∈ Si+1, where ṽ ∈ Si is the parent of v ∈ Si+1. Using the estimate
τ̂ ≥ η− along with induction hypothesis, π0, πi satisfy the hypotheses of Lemma 3.21
with K = η−1

− . Consider the function π̂1 : Si+1 → (0,∞) defined by (3.44) as

π̂1(w) = π1(w) ∨

(
1

K
max{π1(v) : v ∈ Si+1, D2(v, w) ≤ 1}

)
,

and set ρ : Si+1 → (0,∞) as

ρ(w) =
π̂1(w)

π0(w̃)
for all w ∈ Si+1, where w̃ is the parent of w.

Since π̂1 ≥ π1 the condition (1) is satisfied. By Lemma 3.21, the condition (2) above

is also satisfied on
⋃i+1

j=0 Sj . It only remains to check (3) on Si+1. For v ∈ Si+1, we

have two possibilities for π̂1(v); either π̂1(v) = π1(v) or π̂1(v) = K−1π1(w) for some
w ∈ Si+1 such that D2(v, w) = 1. The first possibility implies that ρ(v) = τ̂ (v) and
hence (3) is satisfied for v. The other possibility is that π̂1(v) = K−1π1(w) ≥ π1(v).
In this case, let ṽ, w̃ ∈ Si denote the parents of v, w respectively. By Lemma 2.4(b),
D2(ṽ, w̃) ≤ 1. Therefore by condition (2) in the induction hypothesis, we have

ρ(v) =
τ̂ (w)π0(w̃)

Kπ0(ṽ)
≤ τ̂(w),

which concludes the proof of condition (3) above. By induction, there exists a func-
tion ρ : S → (0,∞) which satisfies (1), (2), (3) above.

Next, we want to show that ρ satisfies the upper bound ρ ≤ η+ in (H1) for
some η+ ∈ (0, 1) and the hypothesis (H4) whenever η0 is small enough. To this end,
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consider∑

v∈C(u)

ρ(v)p ≤
∑

v∈C(u)

∑

w∈S:D2(v,w)≤1,
π2(v)=π2(w)

τ̂(w)p (by condition (3))

≤ (M2 + 1)
∑

ũ∈S:D2(u,ũ)≤1,
π2(ũ)=π2(u)

∑

v∈C(ũ)

τ̂(v)p (by (3.47) and Lemma 2.4(c))

≤ 2p+1(M2
2 + 1)(M2 + 1)3η0 (by (3.47) and (3.48)).

By the above estimate, the choice η0 ∈ (0, 1) such that 2p+1(M2
2 +1)(M2+1)3η0 = 2−p

implies the upper bound ρ ≤ η+ in (H1) for η+ = 1
2
∈ (0, 1) and also (H4). Since τ̂

satisfies (H3’) and ρ ≥ τ̂ , ρ also satisfies (H3’). This along with conditions (1), (2)
above and Proposition 3.17 implies that ρ satisfies (H1), (H2), (H3), and (H4). The
desired conclusion follows from Theorem 3.3. �

4. Critical exponent associated to the combinatorial modulus

Let G = (V,E) be a graph and let Γ be a family of paths in G. Consider a
function ρ : V → [0,∞) and for γ ∈ Γ, we define its ρ-length as

ℓρ(γ) :=
∑

v∈γ

ρ(v),

and its p-mass by

Mp(ρ) =
∑

v∈V

ρ(v)p.

The p-combinatorial modulus2 of Γ is defined as

Modp(Γ, G) = inf
ρ∈Adm(Γ)

Mp(ρ),

where Adm(Γ) := {ρ : V → [0,∞) | ℓρ(γ) ≥ 1 for all γ ∈ Γ} denote the set of Γ-
admissible functions. If Γ = ∅, we set Modp(Γ, G) = 0 by convention.

We recall the definition of critical exponent of the combinatorial modulus asso-
ciated to a compact metric space (X, d). The idea behind the following definition
is to approximate the compact metric space by a sequence of graphs Gk. Then the
behavior of the modulus of (discrete) family of curves on Gk which ‘cross an annulus’
as k → ∞ determines a critical exponent.

Definition 4.1. Let a, λ, L ∈ (1,∞) and p > 0 and let (X, d) be a compact
metric space. Let Xk denote a maximal a−k separated subset of X for all k ≥
0 and let Sk = {(x, k) : x ∈ Xk}. In this section, we need not assume that Xk

is increasing in k. Let π1 : Sk → X, π2 : Sk → N≥0 be the projection maps to
the first and second components. For each k ≥ 1, we define a graph Gk whose
vertex set is Sk and there is an edge between distinct vertices v and w if and only if
B(π1(v), λa

−π2(v)) ∩B(π1(v), λa
−π2(v)) 6= ∅. For v ∈ S, we define

(4.1) Γk,L(v) = inf

{
γ = (v1, . . . , vn)

∣∣∣∣∣
γ is a path in Gπ2(v)+k with π1(v1) ∈ Bv,

π1(vn) /∈ B(π1(v), La
−π2(v))

}
.

2One could alternatively define the function ρ on edges instead of vertices but for bounded degree
graphs this would lead to an equivalent quantity. This follows from an argument of He and Schramm
proof in [HS, Proof of Theorem 8.1]. Our results could be stated in terms of this alternate definition
as well.
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Define

Mp,k(L) = sup
v∈S

Modp(Γk,L(v), Gπ2(v)+k),

Mp(L) = lim inf
k→∞

Mp,k(L).(4.2)

The critical exponent of the combinatorial modulus of (X, d) is defined as

(4.3) CE(X, d) = inf{p ∈ (0,∞) : Mp(L) = 0}.

If ρ ∈ Adm(Γ), then 1 ∧ ρ ∈ Adm(Γ). This shows that Modp(Γ, G) is non-
increasing in G for any family of paths Γ and any graph G. This shows that the set
of p such that Mp(L) = 0 is an interval.

Strictly speaking CE(X, d) should be denoted as CE(X, d, a, λ, L, {Xk : k ≥ 0})
since it might depend on all these choices of a, λ, L and {Xk : k ≥ 0}. It is known that
this exponent does not depend on the choice of L > 1 [Car, Lemma 3.3]. We will show
that it also does not depend on the choices of the a, λ ∈ (1,∞) and {Xk : k ≥ 0}. To
this end, we recall the following lemma. Given a set Y , we use the notation 2Y and
#Y to denote the power set of Y and the cardinality of Y respectively.

Lemma 4.2. [Kig22, Lemma C.4] Let G = (V,E), G̃ = (Ṽ , Ẽ) be two graphs

and let H : V → 2Ṽ be a function so that #H(v) < ∞ for all v ∈ V . Let Γ, Γ̃ be two

families of paths in G, G̃ respectively such that for each γ ∈ Γ, there exists γ̃ ∈ Γ̃ so
that γ̃ is contained in

⋃
v∈γ H(v). Then

(4.4) Modp(Γ, G) ≤

(
sup
v∈V

#H(v)

)p

sup
ṽ∈Ṽ

#{v ∈ V | ṽ ∈ H(v)}Modp(Γ̃, G̃).

The following proposition shows that the critical exponent for the combinatorial
modulus is well defined.

Proposition 4.3. (Critical exponent is well defined) Let a, ã, λ, λ̃, L, L̃ ∈ (1,∞).

Let Xk (resp. X̃k) denote a sequence of maximal a−k-separated (resp. ã−k-separated)

subsets of X. Let Q, Q̃ denote the corresponding critical exponents be as defined in
(4.3) for these two sets of parameters. Then

Q = Q̃.

Proof. Let Mp,k(L) and M̃p,k(L̃) be as defined in (4.2). Let Gk, G̃k, k ≥ 0 be the

corresponding graphs with vertex sets Sk, S̃k respectively. By symmetry, it suffices
to show that Q ≤ Q̃. Or equivalently, it suffices to show that Q ≤ p for any p > Q̃.
To show this, we need an upper bound on Modp(Γk,L(v), Gπ2(v)+k) for v ∈ Gn, n ∈ N.
Let m ∈ Z be the unique integer such that

(4.5) 2L̃ã−m ≤
(L− 1)

2
a−1 < 2L̃ã−m+1.

For any n ∈ N, let ñ ∈ N be the unique positive integer such that

(4.6) 2L̃ã−ñ+(1−m)+ ≤
(L− 1)

2
a−n < 2L̃ã−ñ+1+(1−m)+ .

For any k̃ ∈ N, let k ∈ Z be the unique integer such that

(4.7) a−k ≤
(L− 1)(λ̃− 1)

4L̃λã1+(1−m)+
ã−k̃ < a−k+1.
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It is evident that there exists k0 ∈ N such that k̃ ≥ k0 implies that k ≥ 1 (that is

k ∈ N). For the remainder of the proof we assume k̃ ≥ k0. By (4.6) and (4.7), we
have

(4.8) λa−n−k < (λ̃− 1)ã−ñ−k̃,
ã−ñ−k̃

a−n−k
≤

ãaλ

λ̃− 1
.

For all l, l̃ ∈ N, we define a family of maps Hl,l̃ : Sl → S̃l̃ such that Hl,l̃(v) = {w} where

w ∈ S̃l̃ is such that d(π1(v), π1(w)) < ã−l̃ or equivalently, π1(v) ∈ B(π1(w), ã
−l̃).

Since
⋃

u∈S̃
l̃
B(π1(u), ã

−l) = X such a w ∈ S̃l̃ exists. By [Hei, Exercise 10.17], there

exists β > dimA(X, d) and C1 > 1 such that

sup
w∈S̃

l̃

#{v ∈ Sl : w ∈ H(v)} ≤ C1

(
1 ∨

ã−l̃

a−l

)β

.

In particular, for any k, k̃, n, ñ ∈ N that satisfy (4.7) and (4.8), we have

(4.9) sup
w∈S̃

ñ+k̃

#{v ∈ Sn+k : w ∈ H(v)} ≤ C1

(
1 ∨

ãaλ

λ̃− 1

)β

.

Let γ = (v1, . . . , vN) ∈ Γn,k(v), v ∈ Sn denote an arbitrary path. Note that,
vi ∈ Sn+k for all i = 1, . . . , N . Consider the sequence (w1, . . . , wN) such that
{wi} = Hn+k,ñ+k̃(vi) for all i = 1, . . . , N . By the first estimate in (4.8), we have

B(π1(vi), λa
−n−k) ⊂ B(π1(wi), λ̃ã

−ñ−k̃) for all i. This in turn implies for any i =

1, . . . , N − 1, either wi = wi+1 or wi and wi+1 are neighboring vertices in G̃ñ+k̃.

This implies that for any γ ∈ Γk,L(v) there exists a path γ̃ in G̃ñ+k̃ from w1 to wN .
Therefore by the triangle inequality,

(4.10) d(π1(w1), π1(wN)) ≥ (L− 1)a−n − 2ã−ñ−k̃
(4.6)

≥ (4L̃− 2ã−k̃)ã−ñ ≥ 3L̃ã−ñ

for all k̃ ∈ N large enough such that 2ã−k̃ ≤ L. Since π1(v1) ∈ B(π1(v), a
−n) ∩

B(π1(w1), ã
−ñ−k̃), we have d(π1(v), π1(w1)) < a−n + ã−ñ−k̃. There exists ṽ ∈ S̃ñ such

that π1(w1) ∈ B(π1(ṽ), ã
−ñ). Therefore by (4.10), the path γ̃ ∈ Γ̃k̃,L̃(ṽ) for any k̃

large enough such that 2ã−k̃ ≤ L, where

d(π1(ṽ), π1(v)) ≤ d(π1(v), π1(w1)) + d(π1(ṽ), π1(w1))

< a−n + ã−ñ−k̃ + ã−ñ ≤ a−n + 2ã−ñ

≤ ã−ñ

(
2 +

4L̃ã1+(1−m)+

L− 1

)
(by (4.6)).

Setting κ =
(
2 + 4L̃ã1+(1−m)+

L−1

)
, we conclude that for all large enough k̃ ∈ N, n ∈ N,

v ∈ Sn, γ ∈ Γk,L(v), there exists γ̃ ∈ Γ̃k̃,L̃ such that ṽ ∈ S̃ñ with d(π1(ṽ), π1(v)) <

κã−ñ and γ̃ is contained in
⋃

u∈γ Hn+k,ñ+k̃(u), where ñ, k are as given by (4.6) and

(4.7) respectively. By [Hei, Exercise 10.17], there exists C2 > 1 such that

(4.11) sup
v∈Sn

#{ṽ ∈ S̃ñ : d(π1(ṽ), π1(v)) < κã−ñ} ≤ C2κ
β.
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Now combining the above with Lemma 4.2, (4.9) and (4.11), we obtain

Mod(Γk,L(v)) ≤ C1

(
1 ∨

ãaλ

λ̃− 1

)β

Mod




⋃

ṽ∈S̃ñ,
d(π1(ṽ),π1(v))<κã−ñ

Γ̃k̃,L̃(ṽ)




≤ C1

(
1 ∨

ãaλ

λ̃− 1

)β ∑

ṽ∈S̃ñ,
d(π1(ṽ),π1(v))<κã−ñ

Mod
(
Γ̃k̃,L̃(ṽ)

)

≤ C1

(
1 ∨

ãaλ

λ̃− 1

)β

C2κ
βM̃p,k̃(L̃)

for all n ∈ N, v ∈ Sn and for all k̃ ∈ N large enough. This implies that

Mp,k(L) ≤ C1

(
1 ∨

ãaλ

λ̃− 1

)β

C2κ
βM̃p,k̃(L̃)

for all k̃ ∈ N large enough and for all k ∈ N defined by (4.7). This immediately

implies the desired inequality Q ≤ p for any p > Q̃. �

The following ‘reverse volume doubling estimate’ is known if the metric space
is uniformly perfect [Hei, Exercise 13.1]. Since our metric space is not necessarily
uniformly perfect, the following lemma provides a substitute for uniform perfectness
at sufficiently many scales.

Lemma 4.4. Let µ be a doubling measure on a metric space (X, d) such that
µ(B(x, 2r)) ≤ CDµ(B(x, r)) for all x ∈ X, r > 0. Let x0, . . . , xN be a set of
points such that d(xi, xi+1) < r/4 for all i = 0, . . . , N − 1 where d(x0, xN) >
R > r. Then there exists c, α > 0 depending only on CD such that µ(B(x0, R)) ≥
c(R/r)αµ(B(x0, r)).

Proof. If s ∈ [r, R/2], then by triangle inequality there exists xj such that

5

4
s ≤ d(x0, xj) ≤

7

4
s.

By the doubling property, for such xj , we have

µ(B(xj , s/4)) ≥ C−3
D µ(B(xj , 4s)) ≥ C−3

D µ(B(x0, s)).

Therefore

µ(B(x0, 2s)) ≥ µ(B(x0, s)) + µ(B(xj , s/4)) ≥ (1 + C−3
D )µ(B(x0, s))

for all such s ∈ [r, R/2]. Let k be the largest integer such that 2kr ≤ R. By iterating
the above estimate

µ(B(x0, R)) ≥ µ(B(x0, 2
k−1r)) ≥ (1 + C−3

D )k−1µ(B(x0, r)) ≥ c

(
R

r

)
µ(B(x0, r))

where α = log(1 + C−3
D )/ log 2 and c = (1 + C−3

D )−1. �

4.1. Proof of Theorem 1.2. In this section, we complete the proof of Theo-
rem 1.2. That is, we show that for any compact, doubling, metric space (X, d), we
have

dimCA(X, d) = CE(X, d) = inf{dimA(X, θ) : θ ∈ Jp(X, d)}.
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The following lemma is useful to obtain upper bounds on the critical exponent
CE(X, d).

Lemma 4.5. Let (X, d) be a compact metric space and a ≥ λ ≥ 6. Let θ ∈
J (X, d) and µ be a q-homogeneous measure on (X, θ). Let S denote a hyperbolic
filling with parameters a, λ. For all v ∈ S, k ∈ N, we define ρv : Sπ2(v)+k → [0,∞) as

(4.12) ρv(w) =





(
µ(Bw)
µ(Bv)

)1/q
if Bw ∩ Bd(π1(v), (L+ 1)a−π2(v)) 6= ∅,

w ∈ γ for some γ ∈ Γk,L(v),

0 otherwise.

Then there exists c > 0, k0 ∈ N depending only on d, θ, µ, a, L so that

(4.13)
∑

w∈γ

ρv(w) ≥ c for all γ ∈ Γk,L(v), v ∈ S

for all k ≥ k0.

Proof. Let γ ∈ Γk,L(v). To show (4.13), by choosing a sub-path if necessary, we
may assume that γ = (v1, . . . , vN) and π1(v1) ∈ Bv, π1(vj) /∈ B(π1(v), a

−π2(v)) = Bv

for all j = 2, . . . , N − 1, π1(vi) ∈ B(π1(v), La
−π2(v)) for all i = 1, . . . , N − 1 and

vN /∈ π1(vi) ∈ Bd(π1(v), La
−π2(v)). Since

(4.14) d(π1(vi), π1(vi+1)) < 2λa−k−π2(v) ≤ a−k−π2(v)+1 ≤ a−π2(v)

for all i = 1, . . . , N − 1, we have vN ∈ B(v, (L+ 1)a−π2(v)). In particular,

(4.15) zi ∈ Bd(π1(vi), 2λa
−π2(vi)) \Bd(π1(vi), a

−π2(vi)) 6= ∅ for all i = 1, . . . , N ,

where zi = π1(vi+1) for i = 1, . . . , N − 1 and π1(vi−1) for i = N . Let η : [0,∞) →
[0,∞) be a distortion function such that the identity map Id : (X, d) → (X, θ) is an
η-quasisymmetry. This along with the choice of zi above this implies that

Bθ(π1(vi), c1θ(π1(vi), zi)) ⊂ Bd(π1(vi), a
−π2(vi)) = Bvi

⊂ Bθ(π1(vi), η(1)θ(π1(vi), zi))
(4.16)

for all i = 1, . . . , N , where c1 = [η (2λ)]−1. Since d(π1(v), π1(vi)) < (L+ 1)a−π2(v) for
all i = 1, . . . , N , we have Bv = Bd(π1(v), a

−π2(v)) ⊂ Bd(π1(vi), (L+2)a−π2(v)). Choos-
ing wi ∈ {π1(v), π1(vN)} such that 2(L+1)a−π2(v) > d(π1(vi),wi) ≥ d(π1(v),π1(vN ))/2
≥ La−π2(v)/2, we have

(4.17) Bv ⊂ Bd(π1(vi), (L+ 2)a−π2(v)) ⊂ Bθ(π1(vi), C2θ(π1(vi), wi))

for all i = 1, . . . , N , where C2 = η(2(L+ 2)L−1). Furthermore

Bθ(π1(vi), θ(π1(vi), wi)) ⊂ Bd(π1(vi), η(1)d(π1(vi), wi))

⊂ Bd(π1(v), C3a
−π2(v)),

(4.18)

where C3 = (L+ 1)(2η(1) + 1).
Since µ is q-homogeneous on (X, θ) and θ ∈ J (X, d), µ is a doubling measure on

(X, d). Therefore

(4.19) µ(Bv) & µ
(
Bd(π1(v), C3a

−π2(v))
)
≥ µ(Bθ(π1(vi), θ(π1(vi), wi))).

Since d(π1(vi), π1(vi+1))/d(π1(vi), wi) ≤ 4L−1λa−k

(4.20) θ(π1(vi), π1(vi+1)) ≤ θ(π1(vi), wi)η
(
4L−1λa−k

)
for all i = 1, . . . , N − 1.
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Pick k0 ∈ N large enough so that

(4.21) c1η
(
4L−1λa−k

)
≤ 1.

Let k ≥ k0. Since µ is a q-homogeneous measure on (X, θ) and Id : (X, d) → (X, θ)
is an η-quasisymmetry, we have

N∑

i=1

ρv(vi) =

N∑

i=1

(
µ(Bvi)

µ(Bv)

)1/q

&

N−1∑

i=1

(
µ(Bθ(π1(vi), c1θ(π1(vi), π1(vi+1)))

µ (Bθ(π1(vi), θ(π1(vi), wi)))

)1/q

(by (4.16) and (4.17))

&

N−1∑

i=1

θ(π1(vi), π1(vi+1))

θ(π1(vi), wi)
(by (4.21) and q-homogeneity of µ in (X, θ))

&

N−1∑

i=1

θ(π1(vi), π1(vi+1))

θ(π1(v), π(vN))
(since d(π1(vi), wi) . d(π1(v), π1(vN )))

&
θ(π1(v1), π(vN))

θ(π1(v), π(vN))
& 1

(by triangle inequality and d(π1(v1), π(vN)) & d(π1(v), π(vN))).

This completes the proof of (4.13), where c > 0 depends only on η, q-homogeneity
constants of µ and λ, a, L. �

Proof of Theorem 1.2. By Proposition 4.3, it suffices to consider the critical
exponent a ≥ λ ≥ 6, where the maximal a−n separated subsets are increasing (similar
to the definition of hyperbolic filling).

The inequality dimCA(X, d) ≤ CE(X, d) follows from the same argument as the
proof of dimARC(X, d) ≤ CE(X, d) in [Car, Theorem 1.3] where the use of [Car,
Theorem 1.2] is replaced with Theorem 3.4. This yields the inequality

(4.22) dimCA(X, d) ≤ inf{dimA(X, θ) : θ ∈ Jp(X, d)} ≤ CE(X, d).

So it suffices to show CE(X, d) ≤ dimCA(X, d). Let p > dimCA(X, d). We
consider a hyperbolic filling S of (X, d) with parameters a ≥ λ ≥ 6. Then by Theo-
rem 3.1, for any q ∈ (dimCA(X, d), p), there exists θ ∈ J (X, d) and a q-homogeneous
measure µ on (X, θ).

Next, we show the following estimate: there exists C > 0, k0 ∈ N such that

(4.23) Modp (Γk,L(v)) ≤ Ca−kα(p−q) for any v ∈ S, k ∈ N with k ≥ k0.

Let ρv : Sπ2(v)+k → [0,∞) be as given in Lemma 4.5. By Lemma 4.5, it suffices to
estimate

∑
w ρv(w)

p.
To this end, we first obtain an upper bound on ρv(w). For any v ∈ S, let

w ∈ Sπ2(v)+k such that w ∈ γ for some (v1, . . . , vN) = γ ∈ Γk,L(v). Note that

d(π1(w), π1(v1)) ∨ d(π1(w), π1(vN)) ≥
1
2
d(π1(v1), π1(vN)) ≥ (L − 1)a−π2(v)/2. There-

fore there exists a sequence w = x0, . . . , xM so that d(x0, xM) ≥ (L − 1)a−π2(v).
Choose k1 ∈ N such that (L− 1)a−k1 < 1

4
. By the volume doubling property of µ on

(X, d), we have µ(Bv) & µ(B(π1(v), 2La
−π2(v))) & µ(B(π1(w), (L− 1)a−π2(v)/2)). For
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all k ≥ k1, by Lemma 4.4, we have

µ(Bw)

µ(Bv)
.

µ(Bw)

µ(B(π1(w), (L− 1)a−π2(v)/2))

≤ Ca−αk for all v ∈ S, w ∈ γ, γ ∈ Γk,L(v),

(4.24)

where C, α only depends on λ, a, L, and the doubling constant of µ in (X, d). Since
µ is a doubling measure, we have

∑

w∈Sπ2(v)+k

ρv(w)
q ≤

∑

w∈Sπ2(v)+k,

π1(w)∈B(π1(v),(L+1)a−π2(v))

µ(Bw)

µ (Bd(π1(v), (L+ 2)a−π2(v)))

.
∑

w∈Sπ2(v)+k,

π1(w)∈B(π1(v),(L+1)a−π2(v))

µ(Bd(π1(w), a
−π2(w)/2))

µ (Bd(π1(v), (L+ 2)a−π2(v)))

(since µ is doubling)

. 1 (since Bd(π1(w), a
−π2(w)/2)) pairwise disjoint).(4.25)

By Lemma 4.5, there exists c > 0, k0 ∈ N such that c−1ρv ∈ Adm(Γk,L(v)) for al
k ≥ k0. Hence by (4.24) and (4.25), we have

Modp(Γk,L(v)) .
∑

w

ρv(w)
p ≤

(
sup
w

ρv(w)

)p−q∑

w

ρv(w)
q . a−kα(p−q) for all k ≥ k0.

This concludes the proof of (4.23) and hence we obtain Mp,k(L) . a−kα(p−q) for all
k ≥ k0. This shows Mp(L) = 0 and hence CE(X, d) ≤ p for all p > dimCA(X, d).
This along with (4.22) concludes the proof. �

One might wonder if the assumption dimA(X, d) < ∞ (or equivalently, (X, d) is
a doubling metric space) in Theorem 1.2 is necessary. To this end, we present the
following example.

Example 4.6. Let X denote the set of all sequences (xi)i∈N such that xi ∈
{1, 2, . . . , i}; that is, X =

∏∞
i=1{1, . . . , i}. We define a metric on X by setting

d((xi)i∈N, (yi)i∈N) =

{
0 if xi = yi for all i ∈ N,

2−j if j = min{k : xk 6= yk} < ∞.

It is easy to see that (X, d) is a compact, ultrametric space. Since every open ball of
radius 2−k has k + 1 distinct points with mutual distance of at least 2−k−1 for each
k ∈ N, we have

(4.26) dimA(X, d) = ∞.

On the other hand, consider a, λ, L > 1, Xk,Sk as given in Definition 4.1. For any
v ∈ Sn and any γ = (v1, . . . , vN) ∈ Γk,L(v), since (X, d) is an ultrametric space, we
have

(L− 1)a−n ≤ d(π1(v1), π1(vN )) ≤ max
1≤i≤N−1

d(π1(vi), π1(vi+1)) < 2λa−n−k.

Therefore for all k large enough so that a−k ≤ L−1
2λ

, we have Γk,L(v) = ∅ and hence
Mp,k(L) = 0 for all p > 0 and k large. This implies CE(X, d) = 0. Therefore by
(4.26), we have

dimCA(X, d) = ∞ 6= 0 = CE(X, d).
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Therefore the assumption that (X, d) is a doubling metric space is necessary in The-
orem 1.2.

We conclude with some questions about the closely related notion of conformal
(Hausdorff) dimension. Recall that the conformal (Hausdorff) dimension dimCH(X, d)
is defined as

dimCH(X, d) = inf{dimH(X, θ) : θ ∈ J (X, d)},

where dimH(X, θ) denotes the Hausdorff dimension of (X, θ). Does the equality

dimCH(X, d) = inf{dimH(X, θ) : θ ∈ Jp(X, d)}

always hold? Theorem 1.2 shows a similar result for the Ahlfors regular conformal
dimension. It is also interesting to know for which metric spaces does dimCH(X, d) =
dimCA(X, d) hold? It is easy to see that dimCH(X, d) ≤ dimCA(X, d). One might
expect that for ‘self-similar sets’ like the standard Sierpinski carpet dimCH(X, d) =
dimCA(X, d) holds. This seems to be a difficult problem since ‘self-similarity’ is not
a quasisymmetry invariant. It is not known whether the equality dimCH(X, d) =
dimCA(X, d) holds even for the standard Sierpinski carpet.
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