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Conformal Assouad dimension as the critical
exponent for combinatorial modulus

MATHAV MURUGAN

Abstract. The conformal Assouad dimension is the infimum of all possible values of Assouad
dimension after a quasisymmetric change of metric. We show that the conformal Assouad dimen-
sion equals a critical exponent associated to the combinatorial modulus for any compact doubling
metric space. This generalizes a similar result obtained by Carrasco Piaggio for the Ahlfors regular
conformal dimension to a larger family of spaces. We also show that the value of conformal Assouad

dimension is unaffected if we replace quasisymmetry with power quasisymmetry in its definition.

Konforminen Assouadin ulottuvuus on
kombinatorisen modulin kriittinen eksponentti

Tiivistelmd. Konforminen Assouadin ulottuvuus on metriikan kaikkien kvasisymmetristen
muunnosten Assoudin ulottuvuuksien infimum. Osoitamme, etté jos kompaktilla metriselld avaruu-
della on kahdennusominaisuus, sen konforminen Assouadin ulottuvuus on kombinatoriseen moduliin
liittyva kriittinen eksponentti. Tdmé yleistdd Carrasco Piaggion Ahlforsin-sddnnollistd konformis-
ta ulottuvuutta koskevaa vastaavaa tulosta suurempaan avaruusluokkaan. Osoitamme liséksi, etta
konformisen Assouadin ulottuvuuden arvo ei muutu, vaikka sen méaéritelméssé esiintyva kvasisym-

metrisyys korvataan potenssikvasisymmetrisyydella.

1. Introduction

The Assouad dimension of a metric space (X, d) is defined as

(X,d) =infd >0 there exists C' > 0 such that N, (B(z, R)) < C (%)B

dimA
forany r € X,0<r <R

where N,.(A) denotes the minimum number of balls of radii r required to cover A C X.
Equivalently, Assouad dimension is the infimum of all numbers 5 > 0 such that there
exists C' > 0 so that every ball of radius r has at most Ce™? distinct points whose
mutual distance is at least er [Hei, Exercise 10.17]. We refer to the recent book by
Fraser [Fra] for a comprehensive background.

We recall the definition of the conformal gauge. This terminology is motivated
from the understanding that quasisymmetric maps are an analogue of conformal
maps in the context of metric spaces.

Definition 1.1. (Conformal gauge) Let (X, d) be a metric space and 6 be another
metric on X. We say that d is quasisymmetric to 6, if there exists a homeomorphism
n: [0,00) — [0, 00) such that

0(z,a) d(x,a)
0(z.0) =" (d(az, )
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) for all triples of points z,a,b € X, x # b.



454 Mathav Murugan

We say that d is power quasisymmetric to 6 if the homeomorphism 7 above can be
chosen so that n(t) = C(t* vV t'/%) for all t > 0, where C,a € [1,00). The conformal
gauge of a metric space (X, d) is defined as

(1.1) J(X,d) = {9: X x X —[0,00) quasisymmetric to 0

f is a metric on X, d is}

We define the power quasisymmetric conformal gauge of (X, d) as

(1.2) J(X,d) =10 € J(X,d) | 8 is power quasisymmetric to d}.
The conformal Assouad dimension of (X,d) is defined as
(1.3) dimea (X, d) = inf{dimu (X, 0): 0 € J(X,d)},

where dimy (X, #) denotes the Assouad dimension of (X, 6).

As our main result relates conformal Assouad dimension with combinatorial mod-
ulus, we recall the notion of combinatorial modulus and a critical exponent associated
to it. The combinatorial p-modulus of a family of curves I' in a graph G = (V, E) is
defined as

Mod,(I", G) = inf{Zp(v)p | p: V —[0,00), Zp(v) > 1 for all y € F}.
veV VEY

Fix parameters a, \,L > 1. We choose a sequence X,k > 0 such that X, is a

maximal a~*-separated subset of (X, d) and X C X}, for all £ > 0. For each k, we

define a graph G} whose vertex set is X and there is an edge between two distinct

vertices z,y € X}, if and only if B(z, \a™*) N B(y, \a™%) # (). We think of G} as a

sequence of combinatorial approximations of (X, d) at scale a=*. We define

M, (L) = sup{Mod,(I'y .(x), Gy4n) | * € Xp,n > 0} and M,(L) = lilgn inf M, x(L),
—00

where I'y 1 (x) is the family of paths in G4 from B(z,a™") to B(z, La™") (see §4 for
a detailed definition). The critical exponent corresponding to combinatorial modulus
is defined as
CE(X,d) =inf{p > 0| M,(L) = 0}.
It is not difficult to show that CE(X,d) is well-defined in the sense that CE(X, d)
does not depend on the precise choices of a, L, \ € (1,00) and also on the choices
of X}, (see Proposition 4.3). Since it only depends on the metric space (X, d), our
notation CE(X,d) is justified.
Our main result is the following theorem.

Theorem 1.2. Let (X, d) be a compact metric space such that dimy (X, d) < oc.
Then

dimea (X, d) = CE(X,d) = inf{dims (X, 0): 6 € J,(X,d)}.

A similar result was obtained by Carrasco [Car, Theorem 1.3| for the Ahlfors
regular conformal dimension and independently in an unpublished work of Keith and
Kleiner. These works rely crucially on ideas of Keith and Laakso who first related
conformal Assouad dimension to combinatorial modulus [KL|. To state Carrasco’s
result, we recall the definition of Ahlfors regular conformal dimension and related
notions. A Borel measure p on (X, d) is said to be p-Ahlfors reqular if there exists
C' > 1 such that

C~ 4P < pu(B(z,r)) < COr? forallz € X,0 < r < diam(X, d).
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Note that if such a p-Ahlfors regular p exists, then the p-Hausdorff measure is also
p-Ahlfors regular. The Ahlfors regular conformal dimension is defined as

(14)  dimare(X,d) = mf{p >0 measure on (X, 6)

0 € J(X,d) and p is a p-Ahlfors regular}

In (1.4) and (1.3) we adopt the convention that inf ) = co. Ahlfors regular conformal
dimension is a well-studied notion in complex dynamics and hyperbolic groups; see for
example [BK05, BM, CM, HP09, PT, Par|. These notions of conformal dimensions
are variants of the one introduced by Pansu [Pan89| and we refer the reader to [MT10]
for more background and applications.

To compare our results with earlier ones, we recall the notion of doubling and
uniformly perfect metric spaces. A metric space is said to be doubling, if there exists
N € N such that every ball of radius r can be covered by at most N balls of radii
r/2. It is easy to see that the dima(X,d) < oo if and only if (X, d) is doubling. A
metric space (X, d) is said to be uniformly perfect if there exists C' > 1 such that
whenever B(z,r) # X, we have B(z,r) \ B(z,r/C) # (). Carrasco’s theorem [Car,
Theorem 1.3| states that for any compact, doubling, uniformly perfect metric space,
the Ahlfors regular conformal dimension is given by

dimARc(X, d) = CE(X, d)

The following lemma characterizes the class of metric spaces for which dimga (X, d)
and dimagrc(X, d) are finite.

Lemma 1.3. Let (X,d) be a compact metric space. Then

(a) dimca (X, d) is finite if and only if (X, d) is doubling.

(b) dimagrc(X,d) is finite if and only if (X, d) is doubling and uniformly perfect.
Moreover, if (X,d) is doubling and uniformly perfect, then dimagrc(X,d) =
dimca (X, d) [MT10, Proposition 2.2.6].

By Lemma 1.3, our result in Theorem 1.2 generalizes Carrasco’s theorem [Car,
Theorem 1.3] to doubling metric spaces that are not necessarily uniformly perfect.
We refer to [Kig20, Sha| for expositions to Carrasco’s work.

One motivation for this work is that conformal Assouad dimension is better
behaved than Ahlfors regular conformal dimension. The above lemma shows that
conformal Assouad dimension is a meaningful quasisymmetry invariant for a larger
class of metric spaces. If (X, d) is a compact metric space and Y C X, then it is easy
to see that

dimCA(Y, d) S dimCA(X, d)

The above inequality is not always true for Ahlfors regular conformal dimension
because a subset of uniformly perfect metric space is not necessarily uniformly perfect.
Nevertheless, if (X, d) is a compact, doubling, uniformly perfect metric space and
Y C X is also compact, doubling and uniformly perfect, then

(15) dimARc(Y, d) < dimARc<X, d)

One way to show (1.5) is to use Lemma 1.3(b) and the analogous inequality for
conformal Assouad dimension. Another more involved approach would be to use
[Car, Theorem 1.3] and careful choices of hyperbolic fillings for X and Y. The direct
approach of restricing an Ahlfors regular metric in J(X,d) to Y does not work
because the restriction of an Ahlfors regular metric on a subset need not be Ahlfors
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regular. To summarize, conformal Assouad dimension is better behaved because
Ahlfors regularity and uniform perfectness do not pass to a subspace.

We briefly discuss the result dimca(X,d) = inf{dims(X,0): 0 € J,(X,d)}.
Since J,(X,d) C J(X,d), the upper bound on dimca (X, d) is obvious but the other
inequality is non-trivial as it is possible that J,(X,d) # J (X, d) as we recall below.
Trotsenko and Véisild characterize metric spaces for which J,(X,d) = J(X,d).
To state their characterization, we recall the notion of weakly uniformly perfect
spaces. We say that a metric space is weakly uniformly perfect if there exists C' > 1
such that if B(z,r) # X for some z € X,r > 0, then either B(z,r) = {z} or
B(z,r)\ B(z,r/C) # (). The Trotsenko-Viisila theorem states that a compact met-
ric space (X, d) satisfies J,(X,d) = J (X, d) if and only if (X, d) is weakly uniformly
perfect [TV, Theorems 4.11 and 6.20].

1.1. Outline of the work. To show the estimate dimca (X, d) < CE(X,d),
we construct a graph which is Gromov hyperbolic called the hyperbolic filling (see
§2.3). A theorem of Bonk and Schramm implies that a quasi-isometric change of
metric on the hyperbolic filling induces a power quasisymmetric change of metric on
its boundary. Roughly speaking, a quasi-isometric change of metric is done using the
optimal functions for the combinatorial modulus. This is done in [Car, Theorems 1.1
and 1.2| where the author introduces hypotheses on weight functions on the graph
that defines a bi-Lipschitz change of metric in the hyperbolic filling. However the
hypotheses introduced in [Car, Theorem 1.1| implies that (X, d) is uniformly perfect
as pointed in [Sha, Lemma 6.2]. Since the metric spaces we consider are not nec-
essarily uniformly perfect, we need modify one of the hypothesis so that it is more
suitable for bounding the conformal Assouad dimension (see hypothesis (H4) in The-
orem 3.3). The key new tool is a modification of a lemma of Vol’berg and Konyagin
to construct a p-homogeneous measure on (X, 6), where 6 is power quasisymmetric
to d and p > CE(X,d) (see Lemma 3.11 and Proposition 3.16). This along with
Theorem 3.1 implies the bound dimga (X, d) < CE(X,d). Another key distinction
from [Car| is that the metric space is not necessarily uniformly perfect. Therefore by
the Trotsenko—Viisala theorem, this approach need not construct all possible metrics
in J(X,d). Nevertheless, this approach provides the sharp upper bound and also
leads to dimca (X, d) = inf{dims (X, 0): 6 € J,(X,d)}.

For the other bound CE(X, d) < dimca (X, d), we use a p-homogeneous measure
pin (X,0) and 0 € J(X,d) for p > dimca(X,d) and define an function p for the
combinatorial modulus that is similar to [Car, (3.7)]. However some modifications
are needed because [Car| uses the uniform perfectness in an essential way to control
p. Some of the parameters and constants in [Car| depend on the constant associated
with the uniform perfectness property. Much of the work is about removing such
dependence on uniform perfectness.

2. Hyperbolic filling of a compact metric space

2.1. Gromov hyperbolic spaces and its boundary. Let (Z,d) be a metric
space. We recall some basic notions regarding Gromov hyperbolic spaces and refer
the reader to [BH, CDP, GH90, Gro87, VA05| for a detailed exposition. Given three
points x,y, w € Z, we define the Gromov product of x and y with respect to the base
point w as

(aly)u = 5 (d(ax,w) + d(y,w) — d(z. ).
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By the triangle inequality, Gromov product is always non-negative. We say that a
metric space (Z,d) is d-hyperbolic, if for any four points z,y, z, w € Z, we have
(@]2)w = (@|y)w A (Yl2)w — 6.

We say that (Z,d) is hyperbolic (or d is a hyperbolic metric), if (Z,d) is hyperbolic
for some § € [0, 00). If the above condition is satisfied for a fixed base point w € Z,
and arbitrary x,y, z € Z, then (Z,d) is 20-hyperbolic [CDP, Proposition 1.2].

We recall the definition of the boundary of a hyperbolic space. Let (Z,d) be a
hyperbolic space and let w € Z. A sequence of points (z;);en C Z is said to converge
at infinity, if

lim (2]25) = 0.
i,j—00

The above notion of convergence at infinity does not depend on the choice of the
base point w € Z, because by the triangle inequality |(z|y)., — (2|y)w| < d(w, w").

Two sequences (z;)ien, (¥;)ien that converge at infinity are said to be equivalent,
if

Jim (2 y) = oo,

This defines an equivalence relation among all sequences that converge at infinity
[CDP, §1, Chapter 2|. As before, is easy to check that the notion of equivalent
sequences does not depend on the choice of the base point w. The boundary 07 of
(Z,d) is defined as the set of equivalence classes of sequences converging at infinity
under the above equivalence relation. If there are multiple hyperbolic metrics on
the same set Z, to avoid confusion, we denote the boundary of (Z,d) by 0(Z,d).
The notion of Gromov product can be defined on the boundary as follows: for all

a,be oz
(ab)w = sup {liirgggf(myi)w: (2i)ien € a, (Yi)ien € b} :
By [GH90, Remarque 8, Chapitre 7|, if (2;)ien € @, (¥;)ien € b, we have
(alb)y — 20 < lil_n_lmiélf(:cﬂyi)w < (alb)y.

The boundary 07 of the hyperbolic space (Z, d) carries a family of metrics. A metric
p: 0Z x 0Z — [0,00) on 0Z is said to be a visual metric with base point w € Z and
visual parameter o € (1,00) if there exists k1, ko > 0 such that

k:la_(“|b)w < pla,b) < kza—(a\b)w

If a visual metric with base point w and visual parameter « exists, then it can be
chosen to be

n—1
pa,w(a, b) = inf Z a*(“i‘aiﬂ)w’
i=1

where the infimum is over all finite sequences (a;)!; C 0Z,n > 2 such that a; =
a,a, = b. Any other visual metric with the same basepoint and visual parameter is
bi-Lipschitz equivalent to pq -

Visual metrics exist on hyperbolic metric spaces as we recall now. For any ¢-
hyperbolic space (Z,d), there exists oy > 1 (ap depends only on §) such that if
a € (1,9), then there exists a visual metric with parameter o [GH90, Chapitre 7],
[BoSc, Lemma 6.1]. It is well-known that quasi-isometry between almost geodesic
hyperbolic spaces induces a quasisymmetry on their boundaries (the notion of almost
geodesic space is given in Definition 2.1). Since this plays a central role in our
construction of metric, we recall the relevant definitions and results below.
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We say that a map (not necessarily continuous) f: (Xy,d;) — (Xs,ds) between
two metric spaces is a quasi-isometry if there exists constants A, B > 0 such that

ANy (2,y) — A< do(f(2), f(y) < Adi(z,y) + A
for all x,y € X4, and

sup d(xs, f(X1)) = sup inf d(zs, f(x1)) < B.
T2€ X2 z2€X5 T1€X1
Definition 2.1. A metric space (Z,d) is k-almost geodesic, if for every x,y € Z
and every t € [0,d(z,y)], there is some z € Z with |d(z,2) —t| < k and |d(y, z)—
(d(z,y) —t)| < k. We say that a metric space is almost geodesic if it is k-almost
geodesic for some k > 0.

Quasi-isometry between hyperbolic spaces induce quasisymmetries on their cor-
responding boundaries. We recall a result due to Bonk and Schramm below.

Proposition 2.2. [BoSc, Theorem 6.5 and Proposition 6.3| Let (Z;,d;) and
(Zy,ds) be two almost geodesic, d-hyperbolic metric spaces. Let f: (Zy,dy) —
(Zy,ds) be a quasi-isometry.

(a) If (z;);en C Z1 converges at infinity, then (f(x;))ien C Y converges at infinity.
If (z;);en and (y;)ien are equivalent sequences in X converging at infinity, then
(f(x:))ien and (f(y;))ien are also equivalent.

(b) The map Of: 071 — 0Zy given by Of ((x;)ien) = (f(2;))ien Is well-defined,
and is a bijection.

(c) Let py € Zy be a base point in Zy, and let f(p;) be a corresponding base point
in Zy. Let py, py denote visual metrics (with not necessarily the same visual
parameter) on 07,07, with base points pi, f(p1) respectively. Then the
induced boundary map 0f: (021, p1) — (0Zs, p2) is a power quasisymmetry.

2.2. Geodesic hyperbolic spaces. Let (Z,d) by a geodesic d-hyperbolic
metric space. Recall that (Z,d) is geodesic if for any z,y € X, there exists a curve
v: [0,d(z,y)] — Z such that v(0) = z,v(d(z,y)) = y and d(y(s),7(t)) = |s —
for all s,t € [0,d(x,y)]. Such a curve is called a geodesic between z and y. For
x,y € Z, we denote by [z,y] a geodesic between = and y. For z,y,z € Z, we denote
by [x,y,2] = [z,y] U [y, 2] U [z, 2] a geodesic triangle in Z. Recall that a tripod is
a metric tree with three edges arising from a common central vertexr such that each
edge a is isometric to the closed interval [0, [(a)] for some I(a) > 0 called the length
of the edge a. A tripod is determined up to isometry by the length of the three edges.
We allow for the degenerate case where the length of some of the edges could be zero.

Given a geodesic triangle A = [z, y, 2], there exists a map fa : A — T from A to
a tripod Ta such that the restriction of fa to each side of the triangle is an isometry
[GH90, Proposition 2|. The inscribed triple of a geodesic triangle A is defined to be
the preimages of the ‘central vertex’ of the tripod Th under the map fa described
above.

Unlike a tripod, a geodesic triangle A need not have a canonical center. However,
it has a reasonable notion of approximate center. For K > 0, a point ¢ € Z is a
K -approximate center of a geodesic triangle [x,y, 2] if ¢ is at a distance at most K
from each of the three sides, that is, d(c, [z,y]) V d(c, [y, z]) V d(c, [z, z]) < K. The
following proposition concerns a few properties of approximate center.

Proposition 2.3. Let (Z,d) be a geodesic, §-hyperbolic metric space.
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(a) Each point of the inscribed triple of a geodesic triangle is a 40-approximate
center.

(b) Any two K-approximate centers ¢ and ¢’ of a geodesic triangle [x,y, z] satisfies
d(c,d) < 8K.

(c) If ¢ is a K-approximate center of a geodesic triangle [x,y, z], then

|d(z, ¢) = (y[2)e] < 4K,

(d) If f: (Z1,dy) — (Zs,ds) is a quasi-isometry between two geodesic §-hyperbolic
metric spaces and if ¢ is a Kj-approximate center of [x,y, z], then f(c) is a
Ky-approximate center of any geodesic triangle [f(x), f(y), f(z)], where K,
depends only on K1, and the constants associated with the quasi-isometry
f. In particular,

|da(f (@), F(e) = (FIf(2) gy | < 4K

Proof. (a) By |GH90, Proposition 21, Chapitre 2| each point of the inscribed
triple is a 4d-approximate center.

(b,c) Let ¢ denote a K-approximate center of [z, y, z]. Let p1, p2, p3 be the points
of the inscribed triple on [x,y], [y, 2], [z, 2] respectively. Similarly, let g1, 2, q3 be
three points on [z, y], [y, 2], [z, z] respectively such that d(c,q;) < A foralli =1,2,3.
This implies that d(g;,q;) < 2K for all 4,j. By the argument in [GH90, Proof of
Lemme 20, Chapitre 2| we have

(2.1) d(pi,q;) < 3K foralli=1,2,3.
Since d(x,p1) = (y|z), and d(p1,q1) < 3K, we obtain
14, ¢) — (y]2)a] = ld(z,¢) — d(z, )| < dpr, @) +d(e, @) < 3K + K = 4K.

This concludes the proof of (c¢). Similarly, d(c,p;) < d(p;,q;) + d(c,q;) < 4K for all
i =1,2,3. Therefore d(c,c) < d(c,p1) +d(c,p1) < 8K, and hence (b) holds.

(d) This is an immediate consequence of the geodesic stability under quasi-
isometries [GH90, Théoréme 11, Chapitre 5] and (c). O

2.3. Construction of hyperbolic filling. In this section, we recall the con-
struction of a hyperbolic filling of a compact metric space. Let (X, d) be a compact
metric space. The construction below is due to A. Bjorn, J. Bjorn and Shanmu-
galingam [BBS|. Earlier versions of this construction are due to Elek, Bourdon and
Pajot [Ele, BP].

Let A\,a € (1,00) be two parameters which we call the horizontal and vertical
parameter of the hyperbolic filling respectively. We assume that the diameter is
normalized so that diam(X,d) = 1. Let X,,n € Nxq be an increasing sequence
of maximal a™"-separated subsets of X. In other words, X, C X,, for all n < m,
any two distinct points in X,, have mutual distance at least a™™ and any set strictly
larger than X,, has two distinct points whose distance is strictly less than ™. The
vertex set of the graph is & = U,>0S,, where S, = {(z,n): z € X, }. Two distinct
vertices (z,n),(y,m) € S are joined by an edge if and only if either n = m and
B(z,Aa™™) N B(y,A\a™™) # 0 or if [n—m| = 1 and B(z,a™™) N B(y,a™™) # (.
Let D; denote the combinatorial (graph) distance on S defined by the above set
of edges. That is D;((x,n),(y,m)) is the minimal number k such that (z,n) =
(zo,n0), (x1,11), ..., (T, nk) = (y,m), where (x;,n;), (z;41,n:41) € S is joined by an
edge for all i = 0,1,...,k — 1. It is evident that (S, D;) is 1-almost geodesic metric
space.
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We now construct a graph with fewer vertical edges. For each (z,n) € S, we
choose (y,n — 1) € S, such that d(z,y) = min,cx, , d(z,z). In this case, we say
that (y,n — 1) is the parent of (x,n) or equivalently, (z,n) is a child of (y,n — 1).
Such a choice of y € X,,_; is not unique but we fix this choice for the remainder of
this work. Since X,,_; is a maximal a~™~1) separated subset of X, d(x,y) < a~ ™Y,
Hence z € B(x,a ") N B(y,a" ™) # (). In other words every parent and their child
is connected by an edge in the graph associated with (S, D;). We define a new graph
whose edges consists of all of the edges between parent and child and those between
(x,n), (y,n) € S where B(x, \a ™) N By, Aa™") # 0, x # y. The corresponding
graph distance is denoted by Ds. The set of children of a vertex v is denoted by

(2.2) C(v) :={w € S: wis a child of v}.

Note that C(v) C 8,41 whenever v € S,,.

If (z,n+1) and (y,n+ 1) share an edge in Dy and if (zo,n) and (yo, n) are their
respective parents, then d(zo,v0) < d(z,y) + d(z,x0) + d(y,y0) < 2a™" + 2 a "L
Under the assumption A > 2 + 2Xa™!, we have Dy((z,n + 1), (y,n + 1)) < 1, then
Ds((xg,n), (yo,n)) < 1 whenever (zg,n), (yo, n) are the parents of (x,n+1), (y,n+1)
respectively. We say that (z,n) is a descendant of (y, k) if n > k, and there exists
(zj,mnj) € S for j = 0,...,n — k such that (20,70) = (v, k), (zn—t, tn—k) = (z,n),
where (z;41,n;11) is a child of (z;,n;) foralli =0,...,n—k—1. Foranyn >k >0
and v € S, the set of descendants of v in generation n is denoted by

(2.3) D, (v) ={w € S,: w is a descendant of v}.

The following lemma is an analogue of [Car, Lemma 2.2].

Lemma 2.4. Let A\,a > 1 be horizontal and vertical parameters of the hyperbolic
filling respectively.

(a) If (z,n + 1) is a child of (z,n), then d(x,z) < a™". If (y,k) is a descendant

of (x,n) (for some k > n), then
a n
d(z,y) < %

(b) If A > 2+2Xa~! and Dy((z,n+1), (y,n+1)) < 1, then Dy((zo,n), (yo,n)) < 1,
where (xg,n), (Yo, n) are the parents of (x,n+1), (y,n+ 1) respectively. Simi-
larly, if \ > 2+4Xa~! and Dy((z,n+1), (y,n+1)) < 2, then Dy((zg,n), (yo,n)) <
1, where (zg,n), (yo,n) are the parents of (z,n+ 1), (y,n+ 1).

(c) Let A > 6 and (x,n + 1),(y,n + 1) € S,41 such that d(z,y) < 4a™". If
(xo,n), (yo,n) € S, are the parents of (x,n + 1), (y,n + 1) respectively, then
DQ((x0>n)> (yOa TL)) <L

(d) If A > 1+ a~t, we have D; < Dy < 2D;.

(e) Let A\ >1+at. Let w € S,y1 and u,v € S,, be such that Dy(u,w) = 1 and
Dsy(v,w) = 1. Then Dy(u,v) < 1.

Proof. (a) Since X, is maximal a "-subset of X, every point z € X satisfies
d(z,X,) < a=™. This shows the first claim. If (y, k) is a descendant of (x,n) by the
first claim and triangle inequality d(z,y) < Ef:n al < Lam

(b) Since d(zo,y0) < d(z,y) + d(z,z0) + d(y,y0) < 2a™™ + 2Xa"""!, we have
{z0, Y0} C B(xg, A\a™™) N B(yo, A\a™") # ) for any A such that A > 2+ 2X\a~'. Hence
Dsy((zg,m), (y0,n)) < 1. The other claim follows from a similar argument.
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(c) Since d(xg,y0) < d(x,y) + d(x,z0) + d(y, ) < 4a™™ +a " +a™ ™ = 6a™",
we have {zg,y0} C B(zo,Aa™") N By, \a™™) # () whenever A > 6. Therefore
DQ((x0>n)> (y0>n)) <1l

(d,e) Since every edge in the graph corresponding to (S, D) is contained in the
graph corresponding to (S, Ds), we have Dy > D;. On the other hand, if there is
an edge in (S, D;)' which is not present in (S, Ds), then it must be between some
(x,n), (y,n+ 1) such that n € N5o and that the parent of (y,n + 1) is (z,n) where
z # x. In this case d(x,y) < a ™'+ a™™ (since B(z,a ™) N B(y,a 1) # 0).
Therefore if A\ > 1+ a~!, there would be an edge between (x,n) and (z,n) in both
graphs (since y € B(x,A\a™") N B(z,Aa™")). This implies that

(2.4) D, < Dy <2D;, whenever A\ >1+a"! O

We recall the relevant properties the metric spaces (S, D;) and (S, Ds). By
the choice of the diam(X,d), there is an unique point zo € X,. We choose vy 1=
(x0,0) as the base point of the metric spaces (S, D) and (S, D;). We denote the
Gromov product with respect to the basepoint vy in (S, Dy) and (S, Ds) by (+|)1, (+]-)2
respectively. The key point in the following result is that the hyperbolicity constant
0 depends only on a and A unlike the analogous result in [BP, Car| where ¢ also
depends on the constant associated with the uniform perfectness property (see |[Car,
Remark after Proposition 2.1]).

Proposition 2.5. [BBS, Lemma 3.3 and Theorem 3.4] Let (X, d) be a compact
metric space and let a, A denote the vertical and horizontal parameters respectively
of the hyperbolic filling. Then the hyperbolic filling (S, D;) satisfies the following
properties

(a) For any v = (z,n),w = (y,m) € S, we have

5/2
a4 al (d(z,y) +a " +a™™) < a~ v < )\a_/ 1
In particular, if a, A\ € [2,00) and a > A, then
(o]w)y + log(d(z, y)l+ a"+a™")
oga
7/2

(b) (S, D1) is 6-hyperbolic, where 6 = 2————=. In particular, if a,\ €
[2,00) and a > X implies that § can be chosen to be 15.

Proof. (a) The first estimate follows from [BBS, Proof of Lemma 3.3]. The second
conclusion is a consequence of the estimate

X <1°g<a5/2/<A —1)) log (355

loga " loga

(d(z,y) +a " +a™™)

<A4.

)> <4 whenever a > \ > 2.

(b) The é-hyperbolicity follows from the proof of [BBS, Theorem 3.4| along with
|[CDP, Proposition 1.2]. For the second conclusion, observe that

log(M> log(32a°/2
) (a—1)(—1) <20g( a’’?)

< <15, whenever a > A\ > 2. ]
loga log a

By Proposition 2.5(a), a sequence of vertices ((x;,n;))ieny € S converges at infinity
if and only if lim n; = co and (x;);cn is a convergent sequence in (X, d). Two sequences

'Here we abuse notation and use (S, D;) to denote the graph, for i = 1, 2.
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((zs,m:))ien and ((y;, m;))ien that converge at infinity are equivalent if and only if
lim; o z; = lim; o y; and lim;_,o n; = lim;_ ., m; = oo. Define the limit at infinity
function [ : O(S, D;) — X that maps an equivalence class of sequence converging
at infinity to its limit as

— 00
Note that [, is well defined and is a bijection. By the first estimate in Proposition
2.5(a), d is a visual metric on 9(S, D;) with visual parameter a and base point v, in
the following sense:
5/2

a4;a1 d(z,y) < a” (@I < )\a_

We would like to use Proposition 2.3 to estimate Gromov product in the hyper-
bolic filling. Since (S, Dy) is not a geodesic space, we embed it into a geodesic space
by replacing each edge with an isometric copy of the unit interval to obtain a metric
space (S, D;) where we view & € S and D; on S is an extension of D; on S. For

any x,y € X, let n is the largest integer that satisfies {x,y} C B(z,2a™") for some
(z,n) € S and define

(2.7) c(x,y) ={(Zn) €S: {z,y} C B(Z,2a7™)}.

We think of ¢(z, y) as the set of approximate centers of the triangle [vg, [ (), IZ! ()],
where [ 1(x),I-}(y) € O(S, D;) and vy is the unique element of S;. The following
lemma makes this precise by identifying c(z,y) as approximate centers of certain

(2.6) 1d(3:, y) forall z,y € X.

geodesic triangles in S.

Lemma 2.6. Let the parameters of the hyperbolic filling satisfy

a>AN>2 and AN>1+ a .
a—1

Let (z,m), (w,n) € S such that x € B(z,a™™),y € B(w,a ™) and such that a~™ +
a™ < a %d(z,y). Then any (w,k) € c(x,y) is a K-approximate center for any
geodesic triangle [vo, (z,m), (w,n)] in (S, D1), where K = 80.

Proof. Since every point in S is at most distance % away from a point in S,

by replacing points in S with the corresponding closest points in S, we obtain that
(S, D) is (6 + 3)-hyperbolic whenever (S, D;) is é-hyperbolic.

Let (Z,k) € c(z,y). Since {z,y} C B(Z,2a~%), we obtain d(z,y) < 4a~*. Choose
w € X such that (w,k+ 1) € Sp41 and d(z,w) < a~*+1). By the maximality of k,
we have that y ¢ B(w,2a~**Y) and hence d(z,y) > d(w,y) — d(w,z) > a~*+V_ In
particular,

(2.8) a~ " < d(z,y) < 4a7F.

If a > 2, we have a=**V) < d(z,y) < 40" < a~**2, which implies
log d

(2.9) —1<k+ M <2, whenever a > 2.

loga

Since a™™ < a?d(x,y), we have m + % > 2 which along with (2.9) implies that
m > k. Choose (w, k) such that (z,m) is a descendant of (w, k). By Lemma 2.4(a),
we have d(z,w) < d(z,2) +d(w,z) < a™™ 4+ 22a* < (1+ 2% ) a . Therefore if
A > 14 =%, we have 2 € B(w, A\a™*) N B(Z,\a™*) # 0. Hence (w, k) and (2, k) are

either equal or horizontal neighbors.
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Note that |d(z,y) — d(z,w)| < a™™ +a™™ < a2d(z,y), which implies
(1—a3d(z,y) <d(z,w)+a ™ +a ™ < (1+2a2)d(z,y).
Therefore if a > A\ > 2, we have
log(d(z,y)) log(d(z,w)+a™™ +a™")
loga log a
Combining with (2.9) and Proposition 2.5(a), we obtain that
(5 m)l(w, m)s — k| < 7.

This along with Proposition 2.3(a) and the fact that (Z, k) is a neighbor of (w, k), we
obtain that (Z, k) is K-approximate center of the geodesic triangle [vg, (2, m), (w,n)],
where K =147+ 4(15+ 3) = 80. O

< 1.

Remark 2.7. The assumption
(2.10) a>\N>6

implies the estimates assumed on a, A in Lemma 2.4, Proposition 2.5, and Lemma 2.6
hold. For this reason we assume (2.10) for much of this work. The analogous estimate
[Car, (2.8)] is more complicated because it involves the constant in the definition of
uniform perfectness.

3. Construction of metric and homogeneous measure

In this section, we construct metric in the conformal gauge and a homogeneous
measure using a weight function on the hyperbolic filling S as constructed in §2.3.
A weight on a filling S is a function p: & — (0,00). We recall the definition of
homogeneous measure and its relevance to Assouad dimension in §3.1. We then
introduce and recall some hypothesis on a weight function on the hyperbolic filling
that provides upper bound on dimga (X, d) in §3.2.

3.1. Vol’berg—Konyagin theorem. Our approach to obtain upper and lower
bounds on the conformal Assouad dimension (dimca (X, d) < CE(X, d) and dimca (X,
d) > CE(X,d)) relies on a theorem of Vol’berg and Konyagin that we recall below in
Theorem 3.1. This result clarifies the relationship between Assouad dimension and
doubling measures. A non-zero Borel measure 1 on a metric space (X, d) is said to
be doubling if there exists Cp > 1 such that

u(B(x,2r)) < Cpu(B(z,r)) forallz e X, r >0,

where B(z,r) = {y € X: d(x,y) < r} denotes the open ball of radius r centered at
x. A non-zero Borel measure is said to be g-homogeneous measure if there exists
C > 1 such that

q
u(B(x,R)) <C <§) w(B(x,r)), foralze X, 0<r<R.

It is evident that a measure is doubling if and only if it is ¢-homogeneous for some
q € (0,00). The fundamental relationship between Asssouad dimension and doubling
measures is given by the following theorem of Vol’berg and Konyagin [VK].

Theorem 3.1. [VK, Theorem 1] The Assouad dimension of compact metric
space (X, d) is given by

dima (X, d) = inf{q > 0: there exists a ¢-homogeneous measure on (X, d)}.
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3.2. Weights on the filling and Carrasco-type hypotheses. Let m: § —
X, m: 8§ = N denote the projection maps such that v = (m(v), m2(v)) for any
v € §. We say that an edge between two vertices v and w is horizontal if my(v) =
my(w). For a vertex v € S, by B, we denote the metric ball B(m(v),a~™®). Given
a vertex v € S, we define the genealogy g(v) as a sequence of vertices (v, vy, ..., Vk)
where v, = v and v; is the parent of v;,; forall+=0,...,k —1 and vy is the unique
vertex in Sy. Given a function p: § — (0,00), we define 7: & — (0, 00) as

(3.1) ww)= I stw)
)

weg(v
A path v in (S, D) is a sequence of vertices v = (wy,...,w,) where there is an
edge between w; and w;y1 (that is, Do(w;, w;y1) = 1) for each t = 1,...,n — 1. The

p-length of a path ~ is defined by
(3.2) L) = w(v),
vey

The following two families of paths will play an important role in this work. A path
is said to be horizontal if it only consists of horizontal edges. Given z,y € X and
n € N>g, we define

(3.3) Iy(z,y) = {fy = (v1,...,0)

v is a path in (S, Ds), ma(vy) = ma(vg) = n,
and x € B,,,y € B,,, ke N '

For a vertex v € S, we define

(3.4) T(v) = inf{v = (v1,...,0p)

7 is a horizontal path with mo(v;) = k + 1
foralli, n e N, m(v1) € By, m(v,) € 2-B, [

For z,y € X, we define

(3.5) m(e(z,y)) = max{m(w): w € ¢(x,y)},
where ¢(z,y) is as defined in Lemma 2.6. We recall the Carrasco-type conditions
imposed on the weight function p: S — (0, 1).
Assumption 3.2. A weight function p: § — (0,1) may satisfy some of the

following hypotheses:

(H1) There exist 0 < n- <ny < 1so that n_ < p(v) <ny forallv e S.

(H2) There exists a constant Ky > 1 such that for all v,w € S that share a

horizontal edge, we have
m(v) < Kom(w),

where 7 is as defined in (3.1).
(H3) There exists a constant K7 > 1 such that for any pair of points z,y € X,
there exists ng > 1 such that if n > ng and v is a path in ', (z, y), then

Ly(y) = Ky 'w(e(x,y)),

where I'y(2,y), L,, m(c(x,y)) are as defined in (3.3), (3.2), and (3.5) respec-
tively.
(H4) There exists p > 0 such that for all v € S,,, and n > m, we have

S w(w) < wwy,

weDyp (v)
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where D,,(v) denotes the descendants of v in S,,. Clearly, it suffices to impose
the above condition only for n = m + 1.

(ﬁvél) There exists C' > 1,p > 0 such that for all v € S,,,, and n > m, we have
Cla(oy < Y w(w) < Cr(v),

wEDy (v)
where D,,(v) denotes the descendants of v in S,,.

The main results of this section are Theorems 3.3 and 3.4 which provide an
upper bound on dimga (X, d) under certain assumptions on the weight function on a
filling. Theorem 3.3 is an analogue of |Car, Theorem 1.1] but the hypothesis (H4) is
different from that of [Car, Theorem 1.1] where the hypothesis (H4) was used instead.
As explained in the introduction, [Sha, Lemma 6.2] implies that (H1) along with (H4)
can hold only on a uniformly perfect metric space. Since we consider metric spaces
that are not necessarily uniformly perfect, we need to modify (H4) to (H4) as above.
This hypothesis plays a key role in the upper bound on Assouad dimension. Another
distinction from [Car| is that the weights can be used to construct essentially all
metrics in J (X, d). Since our construction of metric relies on Proposition 2.2(c), we
can only construct metrics in J,(X,d) and hence we cannot obtain such a result.
The following theorem is a counterpart of [Car, Theorem 1.1].

Theorem 3.3. Let (X,d) be a compact doubling metric space and let S be a
hyperbolic filling with vertical and horizontal parameters a, A such that a > X > 6.
Let p: & — (0,1) be a weight function satisfying the hypothesis (H1), (H2), (H3),
and (H4). Then there exists ©, € J,(X,d) such that dimu(X,0,) < p.

The following is an analogue of [Car, Theorem 1.2]. The conclusion of Theo-
rem 3.4 is the same as that of Theorem 3.3 but the hypotheses (H1), (H2), (H3),
and (H4) are replaced by simpler hypotheses (S1) and (S2). The hypotheses (S1)
and (S2) below are identical to [Car, Theorem 1.2] but in the conclusion we bound
dimcp instead of dimagc.

Theorem 3.4. Let (X, d) be a compact doubling metric space and let S denote
a hyperbolic filling with vertical and horizontal parameters a, \ respectively such that
a>\X>6. Let p > 0. There exists 9 € (0,1) which depends only on p, A and the
doubling constant of (X, d) (but not on the vertical parameter a) such that if there
exists a function o: S — [0, 00) that satisfies:

(S1) for allv € S and k > 0, if v € ['y(v), then
Za(v) > 1,
wey

where Ty is as defined in (3.4), and
(S2) for all k > 0 and all v € S, we have

Z O-<’U)p S Mo,
weC(v)
then there exists © € J(X,d) such that dimy (X,0) < p and © € J,(X,d).
In particular, dima (X, d) < inf{dimy (X, 0): 6 € J,(X,d)} < p.

3.3. Construction of metric using weights on the filling. In this sub-
section, given a weight function which satisfies the hypotheses (H1), (H2), (H3), we
construct a metric ©, € J,(X,d) (Corollary 3.7). The main idea is to use weight p
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to induce a quasi-isometric change of metric on § (Lemma 3.5(a)) which in turn in-
duces a power quasisymmetric change of metric on its boundary by Proposition 2.2(c).
Since the boundary of S can be identified with (X, d) by Proposition 2.5(c), we there-
fore obtain a metric ©, € J,(X,d). We remark that the hypothesis (H4) will not
play any role in this subsection but will play a central role in the next one.

The weight function p which satisfies the hypotheses (H1)—(H3) induces a metric
D, on S. We set the length of an edge e = (v, w) as ,(e), where

log p(lv) if w is the parent of v,

where n_, 1y, Ky are as defined in (H1) and (H2). This defines a metric
(3.6) Dy(v,w) =inf 3 _£y(c),

ecy

0(e) {2 max{—logn_, (—logn, )~ log Ky} if e is horizontal,
p\€) =

where v varies over all paths in the graph (S, Dy) from v to w and e varies over all
edges in 7. By replacing each edge e with an isometric copy of the interval [0,¢,(e)],

we define a geodesic metric space (g ,D,) such that S C S and the restriction of D,
on S coincides with that of S.

Lemma 3.5. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) which satisfies hypotheses (H1) and (H2). Let D, denote the metric
defined in (3.6).
(a) (S,D,) is approximately geodesic. The identity map Id: (S, D) — (S, D,)
is a quasi-isometry.
(b) Any path of the form ((x;,n;))1<i<x such that (z;,n;) is the parent of (x;;1,
niq1) for all i = 1,...,k — 1 defines a shortest path in the D, metric and
hence

1 1
D,((x1,n1), (xx,ng)) = |log P Y log |

(c) A sequence of vertices converges at infinity in (S, Dy) if and only if it converges
at infinity (S, D,). Two sequences that converge at infinity are equivalent in
(S, Dy) if and only if they are equivalent in (S, D,). In particular, the identity
map is a well-defined bijection between 0(S, D) and O(S, D,). Therefore the
limit at infinity map [, : O(S, D;) — X defined in (2.5) is also well-defined as
lw: 0(S,D,) — X. Furthermore, there exists C' > 1 such that the Gromov
product satisfies

C'Cr(c(z,y)) < e~ (= @I, < Cr(c(z,y)) forallz,y € X,

where (-|-), is the Gromov product on (S, D,) with base point vy € Sy.

(d) There exists C' > 0 such that the following holds: for any pair of distinct
points x,y € X, there exists ng such that whenever n > ny and u,v € S,
such that x € B,,y € B,, there exists a path v = (w;);=o,..x in the graph
(S, Dy) such that L,(v) < Cm(c(x,y)).

Proof. (a) It is easy to check that (S, D,) is 2 max{—logn_, (—logn.) ™!, log Ko }-
approximately geodesic, since the horizontal edges are the longest edges. The fact
that the identity map is a quasi-isometry is because there exist constants C;, Cs such
that Cy < £,(e) < C, for all edges e. This along with Lemma 2.4(d) implies that
CiD, < Ci\Dy < D, < CyDy <2C,D;.

.....
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(b)This follows from the same argument as [Car, Proof of Lemma 2.3| which uses
Lemma 2.4(b).

(c) The first three claims follow from Proposition 2.2. Let (v,)nen, (Wn)nen be
two sequences of vertices such that x € B, ,y € By,,, v, € Sp,w, € S, for all n € N.
By Lemma 2.6, every vertex in c(z,y) is a 80-approximate center for the geodesic
triangle [vg, v, wy] (in (S, Dy)) for all large enough n. By (a) and Proposition 2.3(d),
every vertex in ¢(z,y) is a K’-approximate center of the geodesic triangle [vg, vy, wy,]
(in (S, D,)) for some K’ > 0. By Proposition 2.3(d), we obtain the desired estimate.

(d) Let x,y € X and u,v € S, be as in the statement of the lemma. We choose
no be the integer such that c¢(z,y) C S,,. Let u,v € S,, be the vertices such that
u,v are descendants of @, v respectively. Let ¢ € c¢(x,y). As shown in the proof of
Lemma 2.6, either u (resp. ) is equal to ¢ or is a horizontal neighbor of u (resp.
v). Therefore by (H2), m(u) V 7(v) < Kom(c(z,y)). We now construct the desired
path v from u to v as follows. We join u to w and v to v using the geneology. We
can connect u to v using ¢ if necessary. By (H1) and (H2), the length L,(v) of 7 is
bounded by

2K,

Ly(y) < wlef,y) (1+—— ). O
1 —ny

The following proposition provides a bound on visual parameter on 9(S, D,) and

relies crucially on (H3). This construction of metric is slightly different from that of

[Car| and [Sha, Theorem 5.1].

Proposition 3.6. (Visual parameter control) Let (X,d) and S be as in the
statement of Theorem 3.3. Let p: & — (0, 00) which satisfies hypotheses (H1), (H2),
and (H3). Then there exists a visual metric §, on 0(S, D,) with base point vy € Sy
with visual parameter e, where D, is as defined in (3.6). There exists Cy > 1 such
that the metric 8, satisfies

Cyim(e(r,y)) < 0,(10(2), [ () < w(c(w,y)) forallz,y € X.

Furthermore, the map p: (0(S,D,),0,) = (X,d) is a power quasisymmetry.
Proof. We define the desired metric 6, as

k—1
Qp([_ (), 11 mf{Zﬂ c(x, i) k€ Nxg=x,2, =y,x; € X for allz}.
=0

Clearly, 6, is non-negative, satisfies the triangle inequality and 6,(I.}(z), ([} (y)) <
m(c(z,y)) for all x,y € X. It suffices to show

0,1 (), 15 () 2 m(e(z, y))

To this end consider a sequence xy, ..., ) such that zo = x, 2, = y. Without loss of
generality, we may assume that z; # x;,; for alli =0,...,k — 1. We choose n large
enough so that we can apply Lemma 3.5(d) to each pair z;, x;11,7 = 0,...,k — 1.
Choose v; € §,, such that z; € B,, for all « = 0,..., k. By concatenating all points
obtained by applying Lemma 3.5(d) to each pair z;,z;,1, we obtain a path v €
[, (x,y) such that
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where C' is the constant from Lemma 3.5(d). Combining the above estimate with
(H3), we obtain

(3.7) (K1 C) M (e(z,y)) < 0,(10 (2), 10 (v)) < 7(e(x, ),
where K is the constant in (H3).

By Proposition 2.5(c), the map p: (0(S,D1),61) — (X,d) is a bi-Lipschitz
map where 6; is a visual metric on 9(S, D;) with base point vy € Sy and visual
parameter a. Since the identity map Id: (S,D,) — (S,D;) is a quasi-isometry
by Lemma 3.5(a), the induced boundary map (as defined in Proposition 2.2(b))
o0ld: (0(S,D,),0,) = (0(S, Dy), 6,) is a power quasisymmetry by Proposition 2.2(c).
Composing this power quasisymmetry 0ld: (9(S,D,),0,) — (9(S,D:),60:) with
the bi-Lipschitz map p: (0(S, D1),601) — (X,d) yields the desired conclusion that

p: (0(S,D,),0,) = (X,d) is a power quasisymmetry. O
Consider the metric ©,: X x X — [0, 00) defined by
(3.8) O,(x,y) = 0,(I (), 1 (1))-

where 6, is the visual metric from Proposition 3.6. The following is an immediate
corollary of Proposition 3.6.

Corollary 3.7. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) which satisfies hypotheses (H1), (H2), and (H3). Then the metric O,
defined in (3.8) satisfies ©, € J,(X,d).

The following lemma provides a sequence in [ !(z) € 9(S, Dy) with desirable
properties and is useful for approximating balls centered at x € X in different metrics.

Lemma 3.8. Let (X,d) be a compact doubling metric space and let (S, Ds)
denote the corresponding hyperbolic filling with vertical and horizontal parameters
a, A respectively such that a > A\ > 6. For any x € X, there exists a sequence of
vertices v, € S,,n > 0 such that v, is the parent of v, and d(x, m (v,)) < 172_1 a™"
for all n € Nxy.

Proof. For each n, we choose w,, € S, be such that d(w,,, x) < a™" (this is possible
since X, is a maximal a~"-separated subset). Consider the sequence of genealogies
g(wy,) for each n € N3(. By a diagonal argument the sequence of genealogies g(w,,)
converge along a subsequence to yield the a sequence v, € S, such that v, is the
parent of v, for all n € Nxq. If v, € &, is in the genealogy of wy, k > n, we
have d(z, 7 (v,)) < a™* + Zf:n a~*. Letting k — oo along a subsequence yields the
desired bound d(z, m (v,)) < T—=a " O

The following lemma provides an approximation of balls in (X, ©,) using the balls
in (X, d). In the following lemma, we use the notation Bg(,-), Bqa(+, ) to denote the
balls in the metrics ©,, d respectively.

Lemma 3.9. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) which satisfies hypotheses (H1), (H2), and (H3). Let ©, € J,(X,d)
be as defined in (3.8) and let Ky denote the constant in (H2). Let L > 1 such that
1
(3.9) T(e(z,y)) < Oy(z,y) s m(c(z,y)) forallz,ye X.

For any x € X, let (Un)neNzo denote a sequence such that v, € S, for all n € N> as
given in Lemma 3.8. Then

(3.10) By(m(vg),2a7%) € Be(z,7), whenever vy, satisfies m(vy,) < Ky 'r,
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and
(3.11) Bo(z,7) C By(mi(vg), 2(A + 2)a™%),
whenever k € N is such that m(vg) < KoLr and m(vg—1) > KoLr.

Proof. First, we show (3.10). Let k € Nsg be such that 7(v;) < Ky'r and
let y € By(mi(v),2a7%). Let (2,1) € c(z,y). Since {x,y} C Bd( 1(vg), 2a7%), we
have [ < k. Note that Dy((z,1),v,) < 1, since d(m(v;),x) < d(mi(vy), Wl(vk)) +
dimi(vg),z) < (1 —aH e+ 1 —-a ) e <20 -aHtal < and z €
B(z,2a7') C B(z,Aa7!). This along with (H2) implies that

m(e(x,y)) < Kom(v) < Kom(vg) < 7.
This estimate along with (3.9) implies (3.10).

Next, we show (3.11). Let £ € N be such that m(v;) < KoLr and 7(vg—y1) > KoLr
and let y € Bo(x,r). By (3.9), m(c(z,y)) < Lr. Let (z,1) € c¢(z,y). Note that
Ds(vy, (2,1)) < 1 which along with (H2) implies that

m(v) < Kor(e(x,y)) < KoLr.
The choice of k implies that [ > k. Hence by Lemma 3.8

d(mi(vr), y) < d(mi(ve), m(w)) + d(m (), 2) + d(2,y)
<(lI—aHa*+2xa7 +2a7"  (since Dy(uvy, (2,1)) < 1
(3.12) and (z,1) € c(x,y))
<@2+@-a)y ' +20)a " <22+ Na* (since k > 1).
This completes the proof of (3.11). 0.

3.4. Construction of homogeneous measures using weights. Next, we
need to control the Assouad dimension of (X,©,), where ©, € J,(X,d) is as given
in Corollary 3.7. To this end, we construct a p-homogeneous measure on (X, 0,)
using hypothesis (H4). This along with Theorem 3.1 implies an upper bound on the
Assouad dimension dimy (X, ©,) < p. To this end, we construct a doubling measure
on X using the weight function p: & — (0,00). The idea is to construct a measure
on X as a limit of discrete measures on S; as k — oo. To this end, we introduce the
following notions.

Definition 3.10. Let £ € N,p € (0,00),C € (1,00) and fy: S — (0,00), f1:
Sk+1 — (0,00). Let m: § — (0, 00) be a weight.

(a) We say that fyo: S — (0,00) is (C,m)-balanced if 7’:((’5;2, < 027{?1(};2 for all
vertices u,v € S with Dy(u,v) = 1.

(b) A function fo‘ Sk — (0, oo) is (C, 7)-unbalanced on e = {u, v} if either £ 1)‘) >
C? 7{‘21()1)2 W(U C’2 fo . Similarly, we say that a functlon fo: Sk — (0 00)
is (C,m)-balanced on e = {u,v} if C~ 27{‘21(};’27 < 7{‘2;;2, < L f“

(c) We say that the pair (fo, f1) is (C, 7)-compatible if for all pomts u € S, and
v € Sgy1 such that u is the parent of v, we have

folw) _ Fi0) _ o fol)
m(u)p = w(o)p T w(u)p

We remark that the notions of balanced and compatibility depend only on the
horizontal and vertical edges of (S, Ds) respectively.

(3.13)
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Given a horizontal edge e = {u, v} in Sy, we define the (C, 7)-balancing operator
B¢ (0,00)% — (0,00)5k as follows. If fy is (C, w)-balanced on e, we set Bf(fy) = fo.
Otherwise, if 7{‘23;2, > (2 7{‘257)}2, we set

fo(w) if w ¢ {u,v},
(Bi(fo)(w) = § fou) — o ifw=u,
fow)+a; fw=wv,
where «; is given by

oz1< ¢ 1 ) _ folw) o folv)

m(v)P  w(u)P m(u)P m(v)P

I

so that LD ((fs))z = 027191(({?)3(”). The case —f(() W > C? fo(q;p is similar to 7{(()5)‘27 >
C? 7{?” The terminology is due to the fact that Bg(fy) is (C,m)-balanced on e for

all f € (0, 00)5
We need the following modification of a lemma of Vol’berg and Konyagin [VK,
Lemma, p. 631] which plays a key role in the construction of doubling measures.

Lemma 3.11. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S = (0,00) be function that satisfies hypotheses (H1) and (H4). Let C' > n_",
where the constants ), p are as given in the hypotheses (H1) and (H4). Let k € N>,
and let p, be a probability mass function on Sy, such that py, is (C, w)-balanced. Then
there exists a probability mass function py41 on Siy1 such that the following hold.

(1) The pair (g, pg+1) is (C, m)-compatible.

(2) The function pyyq is (C, m)-balanced.

(3) The construction of the measure i1 from the measure i, can be regarded
as the transfer of masses from the points of X to those of Xj.1, with no
mass transferred over a distance greater than (1+2X\a~')a*. More precisely,
there is a probability measure jix 41 on X x X which is a coupling of the
probability measures iy = Zuesk Lo (W) ey () s g1 = Zveskﬂ o1 (V) Oy (o)
such that

e ({(@1,22) € X x Xt d(21,20) > (14 2Xa "a"*}) =0,

where 6, denotes the Dirac measure at x € X. Here by a coupling we mean
the projection maps from X x X to X on the first and second component
pushes forward the measure fi, 41 to jir and fi41 respectively.

The proof of Lemma 3.11 is done in two steps. First is an ‘averaging’ step where
we construct a measure on Sy by distributing the mass py(u) of every vertex u € Sk
to its children so that the mass received by each child v is proportional to m(v)P. At
end of this step, we obtain a measure which satisfies the compatibility condition but
not necessarily (C,m)-balanced. In the second ‘balancing’ step, we ensure that the
measure is (C, 7)-balanced by a repeated local transfer of mass along edges in Syiq
using the balancing operators By, ,. By a local transfer we mean that the mass is
transferred from a vertex to its neighbor. The next two lemmas show useful properties
of the balancing operators. The first one shows that the compatibility condition is
preserved by balancing operators.

Lemma 3.12. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) be function that satisfies hypotheses (H1) and (H4). Let uy be
a probability mass function on Sy that is (C,m)-balanced for some C' > 1. Let
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fo: Sk+1 — (0,1] be a probability mass function on Sk such that (pu, fo) is (C,7)-
compatible. Let e = {wy,w|} be an edge in Sy, such that fy is (C, m)-unbalanced
on e. Then the pair (ju, By, ,(fo)) is also (C, ﬂ)-compat;ib]e

Proof. Without loss of generality, we assume that f‘z 02 f O(wl . Let v; and
v} be parents of wy, w] respectively and let f, := Bi_(fo). By constructlon, we have
(3.14) fi(wr) < fo(wr),  fr(wy) > fo(w)).
Therefore by the (C, 7)-compatibility of (u, fo) and (3.14), we have
filw) _ ) filw) | m))
m(w)? = (o) w(wh)P T ow(vh)P
Therefore it suffices to verify that
(3.15) Si(wr) > uk(m)’ Si(w)) < ohe(vn)
m(wy)? — w(o)P w(wy)P T ()P

Suppose the first inequality in (3.15) fails to be true, then by construction, (3.14)
and the (C, 7)-compatibility of (ug, fo), we have

pe(vr)  filwy) e fiw)) o Jo(wh) o e tn(v)
m(v)P ~ w(w)? m(wy)P m(wy)p — - w(o)?’
,uzz v1 CQ Nk(vl
1 and therefore the above estlmate contradicts the assumption that py is (C,7)-
balanced. This proves the first inequality in (3.15). The proof of the second inequality

(3.16)

which implies However, Lemma 2.4(b) implies that Dy(vy,v]) <

p .

in (3.15) is similar. Indeed, assume to the contrary that ! 1((1311, > C“lzivlp’ then we
have
an ) el oo file) Al el

7T(’01)P ﬂ(wl)p ﬂ(wl)p ﬂ-(wl)p W(Ul)p

which again implies £ ‘(“le > (2L ’“(Ulp, a contradiction to the assumption that py is

(C, m)-balanced. In particular (Mk, B; 1 (fo)) is (C,m)-balanced. O

The next property is that a balancing operator cannot create unbalanced edges.
More precisely, we have the following lemma.

Lemma 3.13. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) be function that satisfies hypotheses (H1) and (H4). Let uy be
a probability mass function on Sy that is (C,m)-balanced for some C' > 1. Let
fo: Sk+1 — (0, 1] be a probability mass function on Sk, such that (uy, fo) is (C,7)-
compatible. Let e = {wy,w|} be an edge in Siy1 such that fy is (C,7)-unbalanced
on e. If an edge ¢ = {w,w'} on Sy, is such that fy is (C,m)-balanced on €', then
B 1 (fo) is also (C, m)-balanced on €'

Proof. Without loss of generality, we assume that L& > (2 fo(wl). Let

m(w1)P (wy)?

e/ = {w,w'} be such that fo is (C,m)-balanced on €. Let f; := Bk+1(fo) By our
assumption 2004) > ) e have {w, w'} £ {wy, w)}. If {w, w'}n{w,w)} =0,

(wn)? w(w])
then there is nothing to prove since fy and f; agree on {w, w'}.
The only remaining case to consider is if {w,w'} N{wy, w}} contains exactly one

element. Next, we consider the case {wy, w]} N{w,w'} = {w,} where w; = w. Since
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fo(w)/m(w)? > C2 fo(wh) /m(w})?,

D)/
(3.18) 7{1(52‘;7))— 7{1(52‘1“)])) Cafl(w’l)’ fi(w) < fo(w),  fi(w') = fo(w').

m(wy)P
We need to show that
19, W) _ ahw)  Hilw) _ o hiw)
m(w')? m(w)r” w(w)? m(w')?
Therefore by (3.18), only the first inequality in (3.19) can fail for f;. Suppose that
this happens, that is

/
m(w') m(w)?
Let v',v] € Sk be parents of w’, w)| respectively. By Lemma 3.12, (ug, f1) is (C,7)-
compatible. Then by the (C, 7)-compatibility of (u, f1), (3.20), and (3.18), we obtain

(3.21) ACH) > (J—lfl( w’) (200 - fi(w) 1) Cgfl(w1) C3Nk(v1) - Cz#k(v{)

rwy = wwy 7 Crey A i A R O T

which contradicts the assumption that py is (C, 7)-balanced (since Do(v',v]) < 1 by
Lemma 2.4(b) and A > 2+4Xa™!). The remaining case {wy,w|} N{w,w'} = {w]} is
analyzed similarly and therefore the assertion that By, ,(fo) is also (C,m)-balanced
on €' is proved. O

The following iterative construction uses Lemmas 3.12 and 3.13 to obtain a bal-
anced and compatible function from a compatible function.

Lemma 3.14. Let (X,d) and S be as in the statement of Theorem 3.3. Let
p: S — (0,00) be function that satisfies hypotheses (H1) and (H4). Let uy be
a probability mass function on Sy that is (C,m)-balanced for some C' > 1. Let
fo: Sk+1 — (0,1] be a probability mass function on Sk such that (py, fo) is (C,7)-

compatible. Let p; = {v;,vi}, i = 1,...,T, be an enumeration of all edges in Si.;.
We inductively define
(3.22) fi=B' (fis1) € (0,1]%+ foralli=1,...,T.

Then, f;;2=0,...,T satisfy the following properties.

(a) Each f; is a probability mass function such that (uy, f;) is (C, 7)-compatible
foralli =0,1,...,T.

(b) The probability mass function fr is (C,w)-balanced.

(¢) There are no pairs of edges p; = {wy,ws}, p, = {wa, w3}, ,n € ZN[1,T],1 <
n, such that mass is transferred from w, to ws in the transition from f;_1 to
fi and then mass is transferred from wy to ws in the transition from f, 1 to

fo-

Proof. (a) Since the balancing operators preserve the sum, each f; is a probability
mass function. By Lemma 3.12, (ug, f;) is (C, m)-compatible.

(b) This is an immediate consequence of Lemma 3.13, since fr is (C, 7)-balanced
on every edge in Sy 1.

(c) Assume the opposite; that is, there are a mass transfer from wy to we (in the
transition from f;_; to f;) followed by a mass transfer from ws to ws (in the transition
from f,_q to f, with n > 1), so that

filwy) o2 filwe)  faoa(w2) - szn—l(wz).

m(w)p T w(w)?’ w(wy)? 7 (w3)P

(3.23)



Conformal Assouad dimension as the critical exponent for combinatorial modulus 473

By choosing [ as the largest number less than n such that mass is transferred into ws
in the transition from f;_; to f; before the mass transfer from ws to w3 takes place
in the transition from f,,_; to f,, we may assume that

(3.24) filwz) = fr—1(w2).
If vy, v3 denote the parents of wy, w3 respectively, then by Lemma 2.4(b)
DQ(’Ul,’Ug) S 1.

Consequently by assumption that puy is (C,m)-balanced, we have pg(vi)/m(vy)? <
C?uy(vs)/m(v3)P. However (3.23), (C,m)-compatibility of (ug, fi), (1, fn_1) along
with (3.24) imply the opposite inequality gy (vy)/7(v1)P > C?py.(v3)/7(v3)P. We have
arrived at the desired contradiction and therefore the property (c) is verified. O

Next, we prove Lemma 3.11 by using the inductive construction in Lemma 3.14.

Proof of Lemma 3.11. Let k € N>, and let py be a (C, )-balanced probability
mass function on Sy. As explained earlier, the transfer of mass is accomplished in two
steps. In the first ‘averaging’ step, we distribute the mass yx(v) to all its children such
that the mass distributed to each child w is proportional to m(w)? (or equivalently
p(w)P); that is
m(w)”
f0<w> Zw/ec(v) 7r<w/)p :uk<v)7

for all v € S and w € C(v), where C(v) is as defined in (2.2).
By (H4), (H1) and the fact that every vertex has at least one child, we obtain

n’ w(v)P < Z m(w')? < w(v)P.

w’eC(v)

Therefore, we have

~—
~—

) _ folw) _ o) _ o folw

m()P = w(w)r T w(w)p T w(w)

(3.25)

=

for all points v € S and w € C(v). Note that every point v € Sy has at least one
child, because we always have (71 (v), ma(v)+1) € C(v) for any v € S. This implies f
is probability mass function on Sy such that (uy, fo) is (C, 7)-compatible as shown
in (3.25).

Let fr denote the probability mass function constructed from p; and fy as given
by Lemma 3.14. We claim that pg,q := fr is the probability mass function on Sii1
with the desired properties. Next, we show that p,, satisfies the conditions.

(1) This is an immediate consequence of Lemma 3.14(a).

(2) This follows from Lemma 3.14(b).

(3) Tt remains to verify condition (3). Since d(m(v), m(w)) < a=* for all w €
C(v),v € S, there was a mass transfer over a distance of at most a~* while
passing from pu; to fy. Therefore it suffices to verify that while passing from
fo to fr = pp41 there is a transfer over a distance of at most 2 a~*~1. Since
d(m(w), m(w')) < 2Aa=F~1 for all points w, w’ € Sy41 such that Dy(w, w') =
1, the desired conclusion follows from Lemma 3.14(c). O

We construct a doubling measure on (X, d) in Lemma 3.15 using Lemma 3.11.

Lemma 3.15. (Construction of doubling measure) Let (X, d) be a compact dou-
bling metric space and let S denote a hyperbolic filling with vertical and horizontal
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parameters a, \ respectively witha > X\ > 6. Let p: S — (0, 00) denote a weight func-
tion that satisfies the hypotheses (H1), (H2), and (H4). Let po denote the (unique)
probability measure on &y = {vo}. Let u, denote the probability measure on Sy for
all k € N constructed inductively using Lemma 3.11. Let

fir =Y (v)ry) for all k € Nxo,

vESE

denote a sequence of probability measures on X associated with the above construc-
tion. Then any sub-sequential weak limit p of (fix)ren is a doubling measure on

(X, d).

Proof. Observe that such a sub-sequential limit p exists by Prokhorov’s theorem
along with the compactness of (X, d).

Since diam(X,d) = 1, it suffices to consider r < 1. For z € X choose a sequence
{vn} as given in Lemma 3.8. We obtain two sided bounds on u(B(z,)) using p,(v,,)
for a suitably chosen value of n. To describe this let n € N5y denote the largest
integer such that a=™™ > r. We claim that

(3.26) w(B(z,r)) < pn(vn)
where the constants of comparison are independent of x € X, r € (0,1). Let us first

show the upper bound. If mass from p,(v),v € S, contributes to p(B(x,r)), then
by Lemma 3.11(3) we have

d(m(v),z) <r+ Z(l +20a e = (1+(1+20a )1 —a ) ) a "
k=n
Since A > ((1 —a 171 (1 +2Xa™!), we have that x € B(v, \a™") N B(v,, A\a™") and
hence Ds(v,v,) < 1. Therefore

WBE < S ).
VESn:Da(v,v,)<1

If Dy(v,v,) <1 and v €S, then by Lemma 3.11(1) and (H2), we obtain p,(v,) =<
p(v) for any pair of such vertices. Furthermore since (X,d) satisfies the metric
doubling property, the number of neighbors of each vertex is uniformly bounded
above [BBS, Proposition 4.5]. Combining the above estimates yields the upper bound
in (3.26).

For the lower bound, we consider pi,12(vn12). By Lemma 3.11(3) and d(m (v,42),
z) < (1+2Xa")a~ "2 we note that the mass from v, stays within B(x, s) where

s=14+2 ) (14+(1—-a)) a” " <

(since a™" ! < rand a”'(1+2Xa™)(1—a"1)~! < 1). This implies that u(B(x,r)) >
fn+2(Ung2). This along with Lemma 3.11(2) and (H1), we obtain i, o(vpie) <
fin(vy,). Combining these estimates yields the lower bound for u(B(x,r)) in (3.26).
Next, we show that (3.26) implies the desired doubling property. For the re-
mainder of the proof we assume r € (0,1/2). The case r > 1/2 is similar and
easier. Let N € Nsq denote th largest integer such that a=™ > 2r. This implies
a~N+2) < 2¢7'r < r. This implies that n = N or n = N + 1. Therefore by the same
argument as above (using Lemma 3.11(2) and (H1)), we have u,,(v,) < pn(vn). This
along with (3.26) shows that p is a doubling measure on (X, d). O

Let ©, denote the metric defined in (3.8). In the following proposition, we obtain
upper bound on the Assouad dimension of (X,0,). We establish this by showing
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that the measure p in Lemma 3.15 is p-homogeneous in (X,0,). This along with
Theorem 3.1 shows that dim4(X,0,) < p.

Proposition 3.16. Let (X, d) be a compact doubling metric space and let S
denote a hyperbolic filling with vertical and horizontal parameters a, A\ respectively
such that a > X\ > 6. Let p: S — (0,00) denote a weight function that satisfies the

hypotheses (H1), (H2), (H3), and (H4). Let ©, denote the metric defined in (3.8)
using Proposition 3.6. Then the measure u defined in Lemma 3.15 is p-homogeneous
in (X,©,), where p is the constant in (H4). In particular, dima (X, 0,) < p.

Proof. For ease of notation, we abbreviate ©, by ©. By (3.7), there exists L > 1
such that (3.9) holds. Let n_,n., Ko denote the constants in (H1) and (H2).

Next, we show that u is p-homogeneous in (X, ©); that is, there exists C' > 1
such that

1(Be(z,7))
1(Be(z, s))
Let 0 < s < r and x € X. Choose a sequence (Un>n€NZo such that v, € S, for all

n € N>g as given in Lemma 3.8. Let k € N5( be the smallest non-negative integer
such that 7(vy) < K;j's. By Lemma 3.9, Lemma 3.15 and (3.26), we have

(3.28) 1(Be(x,s)) 2 p(vr)-

If £ =0, then it we have 1 > u(Beg(z, 7)) > u(Beo(x,s)) 2 1 which implies (3.27). So
it suffices to consider the case k > 1. The choice of k£ along with (H1) implies that
(3.29) n-Ky's <n_m(vp_1) < wlvp) < Ky's.

Next, we bound p(Beg(z,r)) from above. We consider two cases depending on
whether or not r < (KoL) 'm(vg). If r < (KoL) 'm(vg), there exists [ € N such that
7(v) < KoLr and w(v;_1) > KoLr. Hence by (H1), we have
(3.30) n-KoLr <n_m(v_1) < 7m(v) < KoLr.

By Lemma 3.9, Lemma 3.15, and (3.26), we have

(3.31)  p(Bo(z,r)) < p (Balm(u), 200+ 2)a™) $ pt (Bami (), a™)) S pu(wr).
Since r > s, we have | < k. Therefore by Lemma 3.11(2), we have
o) _ px(vr)
m(u)p = w(o)?
By (3.28), (3.31), (3.29), (3.30) and (3.32), we have

w(Be(z,r)) _ plv) _ m(w)” _ 1P

w(Be(z,s)) ~ p(vr) ~ wlog) s
This implies (3.27) in the case r < (KoL) ' (vp).

On the other hand, if r > (KoL) 'm(vg) we use the trivial bound p(Be(x,1)) <

1 = po(vp). By (3.28), (3.29), (3.32) and the bound 1 =< 7(vy) < 7, we have
p(Bolr,r)) _ molw) _ (v _ "

w(Be(x,s)) ™ pu(vr) ~ w(op)p ™ s
This completes the proof of (3.27). By Theorem 3.1, we obtain the desired bound
on Assouad dimension. 0

(3.27) SC’(g)p forallz € X,0 <s<r.

(3.32)

for any [ < k.

Proof of Theorem 3.3. This follows immediately from Corollary 3.7 and Propo-
sition 3.16. U
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3.5. Upper bound on Assouad dimension using weights. In this subsec-
tion, we prove Theorem 3.4. The proof of the Theorem 3.4 is very similar to that of
[Car, Theorem 1.2| except for the use of Theorem 3.3 instead of [Car, Theorem 1.1].
For the convenience of the reader, we provide further details since the hypothesis (H4)
is different from (H4) of [Car|. To the reader who is familiar with Carrasco’s work,
we point out that the estimate in [Car, (2.52)] implies our version of (H4) for small
enough 7ny. The proof of other three hypothesis is similar. Readers who are familiar
with the proof of [Car, Theorem 1.2] may want to skip the proof of Theorem 3.4.

Let p: & — [0,00) be a function. We define p*: S — [0, 00) as

(3.33)  p*(v) =min{p(w): w € S: m(w) = my(v), Do(v,w) < 1} forallv e S.
Similarly, we define 7*: § — [0, 00) as
(3.34) 7*(v) =min{n(w): w € §: m(w) = my(v), Do(v,w) <1} forallv e S.

If v = (v1,...,vy) is a horizontal path, we define

=

-1

(3.35) Lu(v,p) = D p"(v;) A p*(vj1)-

7=1

We introduce the following hypothesis on p: & — [0, 00) which serves as a simpler
sufficient condition for (H3):

(H3’) for all £ > 1, for all v € S; and for all v € T'y41(v), it holds Ly (v, p) > 1,

where Ly(7, p) is as defined in (3.35). The hypothesis (H3’) is simpler to verify than
(H3) because it only involves curves with horizontal edges. The following is a version
of [Car, Proposition 2.9] and provides a useful sufficient condition for (H3).

Proposition 3.17. Let (X, d) be a compact doubling metric space. Let (S, Ds)
denote the hyperbolic filling with horizontal and vertial parameters X, a respectively
that satisfy a > \ > 6. Assume that there exists p > 0 and a function p: S — (0, 00)
which satisfy the hypotheses (H1), (H2), and (H3’). Then the function p also satisfies
(H3).

The proof of Proposition 3.17 requires several lemmas. We say that a path
v = (v1,...,vn) is of level k (resp. level at most k) if my(v;) = k (resp. mo(v;) < k)
forallz=1,...,N.

Lemma 3.18. |Car, Lemma 2.10| Let (X, d) and (S, Ds) be as given in Propo-
sition 3.17. Let k > 0 and v € S;. Assume that p satisfies (H3"). Consider a
horizontal path v = (vy,...,v,) of level k + 1 such that m (v;) € B(m(v),3a™*) for
alli=1,...,N, m(v1) € B(m(v),a™") and m (vy) ¢ B(mi(v),2a"%). Let w denote
the parent of z;. Then

N-1

Z 7 (v;) AT (vig1) > max{n*(v), 7" (w)}.

i=1
Proof. First, we show that for all j =1,..., N,

(3.36) 7*(v;) > max{r*(v), 7" (w)} min{p(w;): w; € Sg41, Da2(w;,v;) < 1}.
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Let w; € Sky1 be such that 7*(v;) = m(w;) and Dy(w;,v;) < 1. Let u; € Sy, be the
parent of w;. Then by Lemma 2.4(a),

d(m (v), m(uy)) < d(mi(v), m(vy)) + d(mi(v;), m(w;)) + d(m(w;), m(uy))

<3a P42 o= 4+ 22 NaF < Aa7F,

d(mi(w), m(v)) < d(m(w), m(v1)) + d(mi(v1), m(v) < aF+a* < Aa™F
The above estimates imply that Dy(v,u;) < 1 and Dy(w,u;) < 1. Therefore m(u;) >
max{7*(v), 7*(w)} and hence

™ (v;) = m(w;) = m(uy)p(w;)
> max{7"(v), 7" (w)} min{p(w,): w; € Sgt1, Do(wj,v;) < 1}.

This completes the proof of (3.36). Therefore, we have

) AR () 2 masle(0), 7)) Y 60 A (v

i=1 —
— max{r*(v), 7 (w)} La(, p) > max{n*(v), 7*(w)},
where we use (3.36) in the first line and (H3’) and the second line above. O

We introduce a different notion of length on paths. For any edge e = {u, v} we

define

~ ™ (u) Am*(v) if e ={u,v} is a horizontal edge,
B37) D=4 WAmW Fe—lnulisa o ;
KonZ—'n*(v) if e ={u,v} and u is a parent of v,
and for a path v = (vy,...,vy), we define
(3.38) 6L(y) = Z l1(e;), where e; = {v;, v}
i=1

If w € Sgi1,u,v €Sy such that Dy(u,v) = Dy(u, w) = 1, then by (H1) and (H2), we
have
(339)  O({u,v}) < 7*(u) < 7(w) < n7law) < Kop~'n*(w) < G({u,w}).

Lemma 3.19. [Car, Lemma 2.11| Let (X, d) and (S, Ds) be as given in Proposi-
tion 3.17. Assume that p: S — |0, 00) satisfies the hypotheses (H1), (H2), (H3’). Let
u,v € Sgy1 be such that d(m(u), m (v)) > 4a=*. Let v = (v1,...,vy) be a path of
level at most k+1 from v1 = u to vy = v. Then there exists a pathy' = (uy, ..., uy)
of level at most k such that:

1. uy,uys are parents of vy and vy respectively, and
2. 6L(Y) < ()

Proof. Let v = (vq,...,vy) be a path of level at most k + 1 as given in the
statement of the lemma. We decompose v into sub-paths of level at most & or level
equal to k + 1. Let s; = 1. Define inductively positive integers s;,t; as

ti =min{j > s;: ma(v;) < kor j = N},
Si+1 = mln{j Z tz 7T2(Uj+1) =k + ]_}
We stop when ¢; = N for some i = L. Note that m(vs,) = ma(v,) = k+ 1, and
mo(vs,) = m2(vy;) = k for i # 1 and j # L. Since we are trying to bound /() from
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below, we may assume that path v has no self-intersections; that is v; # v; for all
¢ # j. In particular, v,, # v, for all 7.

For each i =1,..., L, let ; denote the sub-path (vs,,...,v;_1). We will replace
each path ~; with ~/ such that 2\1(7;) < Zl(%)

First, we consider 2 < ¢ < L — 1 and postpone the cases ¢ = 1, L to the end. Let
2 <i< L —1. We consider two cases.

Case 1. m (v;) € B(m(vs;),2a7%) forall j = s;+1,...,t;—1. In this case, vg,, vy, €
Sk, and are the parents of vs, 1, vy, 1 respectively. By Lemma 2.4(c), Dy(vs,, v,) = 1
and hence we replace ; with 7/ = (vs,, v;,). From (3.39), we obtain

(7)) < G{vs vsi1}) < ).
Case 2. There exists j; € {s;+1,¢; — 1} such that 7, (vj,) & B(m1(vs,,2a7%)). We
assume j; is the first index with this property. We denote jp = s; + 1, wg = vs, € S
Suppose j;, w; are defined, and if j; < ¢; — 1, we define

Jin = min{j; < j <t;— 1: m(vy) € B(mi(w),2a ") or j =t; — 1},
and let w;; € Si be the parent of vj,1; € Sg41. Let L; be such that j;, =1¢; — 1.
Ifl € {0,...,L; — 2}, we have mi(v;,,,) & B(m(w),2a™*). Since a > 2X, we have
d(ﬂ-l (wl)> Ty ('U]H—l)) < d(ﬂ-l (wl)> Ty (vjl)) + d(ﬂ-l(vjl)’ Wl(vjl-i-l)) < 2a7F 420! <
3a~*. Therefore by Lemma 3.18, Lemma 2.4(c), and (3.39), we have

(3.40) O ((w,wi)) < 7 (wy) < b (g, 0,05, 1)) foralll=0,..., L —2.

The above estimate (3.40) is also true for j = L; — 1 by combining the above argu-
ment and with that of case 1 by considering depending on whether or not m (v;,) ¢
B(mi(vs,,2a7%)). Hence v, = (wo,...,wr, 1, wr,), where wg = v,,,wr, = v;,. By
(3.40) along with the above remark, we obtain

O(y) < b(y), forie{2,...,L—1}.

The case ¢ = 1 is also similar to above. Let u; be the parent of v;. Similar to argument
above, we consider two cases depending on whether or not m(v;) € B(mi(uy),2a™")
for all j = 1,...,t; — 1 as explained in [Car, proof of Lemma 2.11]. This yields a
path ~1 from wu; to v,. The case i = L is exactly same as i = 1 after reversing the
order in which the vertices of vy, appear. By concatenating the paths ~1,...,7}, we
obtain the path (ui, ..., uy ) with desired properties. O

Lemma 3.20. [Car, Lemma 2.12| Let (X, d) and (S, Ds) be as given in Proposi-
tion 3.17. Assume that p: S — [0, 00) satisfies the hypotheses (H1), (H2), and (H3’).
There exists a constant Ko > 1 such that the following property: for all x,y € X,
there exists ko depending on x,y such that for all k > kg, if u,v € S, such that
x € By,y € B,, then any path ~ joining u and v satisfies

0(y) > Ky 'a(c(z, y)).
Proof. Let u,v € S be such that x € B,y € B,. Let m be such that m(w)

for some (or equivalently, for all) w € c¢(z,y). By (2.8), we have d(z,y) > a~
For k > m + 2, we have (using a > 12)

d(my(u), m(v)) = d(z,y) — d(z, m(u)) — d(y, m(v))

>a ™ - 2072 > 102,

=m
m—1

(3.41)

The idea is to use Lemma 3.18 to find a path of level at most m + 2 whose Zl length
is larger than ¢,(y). We consider two cases.
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Case 1. The path ~ is of level at most k, where k > m + 2. By (3.41), we can
apply Lemma 3.18. Set v, = 7. Let w;,v; € § be such that u,v are descendants of
uy, v, respectively. By Lemma 2.4(a), for all [ > m + 2, we have

d(mi (), m () 2 d(mi(u), m(v)) = d(m(u), m(w)) = d(m(v), m(v))

> 100 ™2 -2 0> 6
a—1

Using the above estimate, and applying Lemma 3.18 repeatedly we obtain path 7,2
of level at most m + 2 from w19 t0 vy42 such that ¢1(y) > €1(Ymi2). This along
with (3.39), (H1), (H2), implies
() 2 Ko *m(um) 2 Ko ntm(un) 2 Kt n(e(z,y).

In the last estimate, we used Ds(u,,, w) < 1 for any w € c(z,y) (since x € B(m(uy,),
Aa~") N B(m(w), \a™™) # 0).

Case 2. ~ is not a path of level at most k. Let n > k be the smallest integer such
that v is a path of level at most n. Let ky > m + 2 be large enough so that

Ko™ > 4Kon™" ) .
i=ko
Let w,,v, € S, be such that x € B, ,y € B;, and let uy, v, € S be the ancestors
of Uy, v, respectively. By Lemma 2.4(a), Dy(u,,u,) < 1 and Dy(v,,v,) < 1. Let v,
denote the path from u, to u formed by concatenating the genealogy from wu, to y
and adding an edge from uy, to uy if necessary. Similarly, let +, denote the path from
v to v, formed in a similar fashion. By concatenating ~,,,, we obtain a path 7
from v,, to w, whose level is at most n. Using the first case, we obtain

06F) = K a(e(z,y) > K n™ > 4K~ > 0} > 26 (va) + 201().

i=ko

This implies
I .
bi(y) > §Ko niw(c(z,y))

for any k > k. O
Proof of Proposition 3.17. By (H1), (H2), there exists ¢ > 0 such that

Ly(v) > cZ\l(y) for all paths v in (S, Ds).
This estimate along with Lemma 3.20 implies (H3). O

The statement of the lemma below is slightly different from that of [Car, Lem-
ma 2.13] and the proof is omitted as it is similar to [Car].

Lemma 3.21. [Car, Lemma 2.13| Let (X,d) and (S, Dy) be as given in Theo-
rem 3.4. Suppose we have a function 7y: S — (0, 00) such that

(3.42) % < :3;;’}))

where K > 1 is a constant. Suppose also that there is function 7 : Sgy1 — (0, 00)
such that for any u € Sy and for any v € Sy such that u is the parent of v, we have

< K forallv,w € S such that Ds(v,w) < 1,

mo(u)
(3.43) 1< 2

< K.
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Let Ty : Sgv1 — [0, 00) be defined as

~ 1
(3.44) i (w) = m(w) vV (f max{m(v): v € Sgy1, Da2(v,w) < 1}) :
Then for all wy, wy € Sky1 such that Dy(wy, wy) < 1, we have

;T\l (wl)

%1 (w2

(3.45) < < K.

1
K
Lemma 3.22. [Car, Lemma 2.14] Let G = (V, E) be a graph whose vertices
has a degree bounded by K and let p > 0. Let I' be a family of paths of G. Let
7:V — [0,00) that satisfies
N—1
Z 7(v;) > 1 for all paths v = (vy,...,vy) € T.

i=1

~—

Let dg: V x V — [0,00) denote the combinatorial graph distance metric on V. Let
7:V — [0,00) be defined as

T(v) = 2max{7(w): w € V,dg(w,v) < 2}.
Then

Z T (v;)) AT (viy1) > 1 for all paths v = (vy,...,vy) €T,
i=1
where 7%(v) = min{7(w): dg(w,v) < 1}, and such that

Y FP <P(K+1)Y ()
veV veV
The statement of Lemma 3.22 is slightly different from that of [Car, Lemma 2.14|
where the term K? + 1 was replaced by K?. This is because the estimate #{w €
V:idg(w,v) < 2} < K? for all v € V in [Car| must be replaced by #{w €
V:dg(w,v) <2} < K?+ 1. The proof is otherwise identical and is omitted.

Proof of Theorem 3.4. Let 1y € (0,1) whose value will be determined later.
Since (X, d) is doubling there exists M; € N, depending only on a, A and the doubling
constant such that the number of neighbors of each vertex in (S, D;) is bounded by
My, and in particular the number of children of each vertex uniformly bounded above
[BBS, Proposition 4.5]. Set

n- = (M) € (0,1).

Let 0: § — [0,00) satisfy (S1) and (S2). We define 7: § — [0,00) as 7 := (o? +
n” )P > n_ which also satisfies (S1). The function 7 satisfies
(3.46) S rr< Y (o +n") <2 forallues.

veC(u) veC(u)

By [Hei, Exercise 10.17], there exists M,, depending only on A and doubling constant
of (X, d), such that

(3.47) #{w € S: Dy(v,w) =1, m(w) =me(v)} < My forallvesS.

That is, the number of horizontal edges at any vertex is uniformly bounded in M,.
By Lemma 3.22, the function

T(v) := 2max{7(w): w € Sr,w), Da(v,w) < 2}
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satisfies condition (H3’) and
> Awp<2(Mi+1) > 7(w)” (by Lemma 3.22)

vEC (u) WES g (w)+1
Do (w,w)<2

< 2P(M3 + Z Z w)?  (by Lemma 2.4(b))
uES, 5 (u)s wGC(u)
Dg(w,v)gl

<2 (M3 +1) Y me (by (S2))

UES Ty (u)
D2 (wvv) Sl

(3.48) <P MZ + 1) (My + 1)ne  (by (3.47)).

We construct a function p: & — [0, 00) that satisfies

(1) p(v) >7(v) for allv € S.

(2) p satisfies (H2) with K, = n_".

(3) p(v) < max{7(w): Dy(w,v) < 1,m(w) = m(v)} for all v € S.
The idea behind the proof is to inductively construct p on S; for £ =0,1,.... Since
the conditions (2) and (3) depend only on horizontal edges this inductive construction
works well. We pick p(vg) = T(vg) where vy € Sy. Clearly, this satisfies (1), (2), (3)
on 8y because &y is a singleton set. Suppose we have constructed p on Ué‘:o S;, we
construct p on S;;1 as follows. Define my: S; — (0,00), 71 : Sip1 — (0, 00) as

= II rtw). m@)y=70) [ s =70)m@
weg(u) weg(v),w#v

for all u € S;,v € S;11, where v € S; is the parent of v € S;;1. Using the estimate
7 > n_ along with induction hypothesis, m, m; satisfy the hypotheses of Lemma 3.21
with K = n~'. Consider the function 7, : S;;1 — (0, 00) defined by (3.44) as

Aiw) =m0 v (&

and set p: S;11 — (0,00) as

max{m (v): v € S;y1, Da(v,w) < 1}) ,

plw) = ﬂl(lﬁ) for all w € §;41, where w is the parent of w.
mo(w)
Since 7 > m the condition (1) is satisfied. By Lemma 3.21, the condition (2) above
is also satisfied on U . It only remains to check (3) on S;;1. For v € S§;41, we

have two p0551b111t1es for 7T1< ); either 71 (v) = mi(v) or Ty (v) = K~ 1m(w) for some
w € S;41 such that Dy(v,w) = 1. The first possibility implies that p(v) = 7(v) and
hence (3) is satisfied for v. The other possibility is that 7, (v) = K1y (w) > 7 (v).
In this case, let v, w € S; denote the parents of v, w respectively. By Lemma 2.4(b),
Dy(v,w) < 1. Therefore by condition (2) in the induction hypothesis, we have

T(w)mo(w) _
= A0 <
p(v) Kro@) = T(w),
which concludes the proof of condition (3) above. By induction, there exists a func-
tion p: & — (0, 00) which satisfies (1), (2), (3) above.
Next, we want to show that p satisfies the upper bound p < 7, in (H1) for
some 74 € (0,1) and the hypothesis (H4) whenever 7, is small enough. To this end,
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consider
Z p(v)P < Z Z 7(w)?  (by condition (3))
veC(u) veC (u) weS:Da(v,w)<1,

mo(v)=m2(w)

<(Mp+1) ) > #(v)” (by (3.47) and Lemma 2.4(c))
u€eS:Da(u,u)<1, veC(u)
m2(u)=m2(u)

< PPN (MF +1)(My +1)%ny  (by (3.47) and (3.48)).

By the above estimate, the choice 19 € (0,1) such that 2P (MZ +1)(My+1)3n = 277
implies the upper bound p < ny in (H1) for ny = 1 € (0,1) and also (H4). Since 7
satisfies (H3’) and p > 7, p also satisfies (H3’). This along with conditions (1), (2)
above and Proposition 3.17 implies that p satisfies (H1), (H2), (H3), and (H4). The
desired conclusion follows from Theorem 3.3. U

4. Critical exponent associated to the combinatorial modulus

Let G = (V,E) be a graph and let " be a family of paths in G. Consider a
function p: V' — [0, 00) and for v € ', we define its p-length as

L) =3 pl),

vey

and its p-mass by
My(p) = 3 (o).
veV

The p-combinatorial modulus? of I is defined as

Mod,(I',;G) = inf M,(p),

ody(I,G) = _jnf . Mo(p)

where Adm(I") := {p: V' — [0,00) | £,(y) > 1 for all v € I'} denote the set of I'-
admissible functions. If T' = ), we set Mod,(I', G) = 0 by convention.

We recall the definition of critical exponent of the combinatorial modulus asso-
ciated to a compact metric space (X, d). The idea behind the following definition
is to approximate the compact metric space by a sequence of graphs Gj.. Then the
behavior of the modulus of (discrete) family of curves on Gy, which ‘cross an annulus’
as k — oo determines a critical exponent.

Definition 4.1. Let a, A\, L € (1,00) and p > 0 and let (X,d) be a compact
metric space. Let X} denote a maximal a* separated subset of X for all k >
0 and let Sy = {(z,k): x € Xi}. In this section, we need not assume that X
is increasing in k. Let m: Sy — X, m: S — Nsg be the projection maps to
the first and second components. For each k& > 1, we define a graph G} whose

vertex set is S and there is an edge between distinct vertices v and w if and only if
B(mi(v), \a™™®) N B(m(v), A\a™™®)) #£ (. For v € S, we define

(4.1) Tyr(v) = inf{7 = (v1,...,0p)

7 is a path in G, )4k With m(v1) € B,,
Ty (vn) ¢ B(?Tl (1)), LQ_W2(U)) .

20ne could alternatively define the function p on edges instead of vertices but for bounded degree
graphs this would lead to an equivalent quantity. This follows from an argument of He and Schramm
proof in [HS, Proof of Theorem 8.1]. Our results could be stated in terms of this alternate definition
as well.
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Define
M, (L) = sug Mod,(T's,.(v), Gry(w)+)
ve
(4.2) M,(L) = lign inf M, ,(L).
—00

The critical exponent of the combinatorial modulus of (X, d) is defined as
(4.3) CE(X,d) =inf{p € (0,00): M,(L) = 0}.

If p € Adm(I'), then 1 A p € Adm(I"). This shows that Mod,(I',G) is non-
increasing in G for any family of paths I' and any graph GG. This shows that the set
of p such that M,(L) = 0 is an interval.

Strictly speaking CE(X,d) should be denoted as CE(X,d,a, A\, L, {Xy: k > 0})
since it might depend on all these choices of a, A\, L and {X}: & > 0}. It is known that
this exponent does not depend on the choice of L > 1 [Car, Lemma 3.3]. We will show
that it also does not depend on the choices of the a, A € (1,00) and {X;: k > 0}. To
this end, we recall the following lemma. Given a set Y, we use the notation 2¥ and
#Y to denote the power set of Y and the cardinality of Y respectively.

Lemma 4.2. [Kig22, Lemma C.4] Let G = (V, E),G = (V,E) be two graphs
and let H:V — 2V be a function so that #H (v) < oo for allv € V. Let T',T be two

families of paths in G, G respectively such that for each v € T', there exists ¥ € I" so
that 7 is contained in {J,., H(v). Then

(4.4) Mod,(I", G) < (sup #H(v))psup #{v eV | v e H(v)}Mod,(T,G).

veV eV
The following proposition shows that the critical exponent for the combinatorial
modulus is well defined.
Proposition 4.3. (Critical exponent is well defined) Let a, a, A, X, L, Le (1, 00).
Let X, (resp. X}.) denote a sequence of maximal a~*-separated (resp. a*-separated)

subsets of X. Let (), () denote the corresponding critical exponents be as defined in
(4.3) for these two sets of parameters. Then

Q=0Q.
Proof. Let M, (L) and Mpk(i) be as defined in (4.2). Let Gy, Gy, k > 0 be the
corresponding graphs with vertex sets Si, Sy respectively. By symmetry, it suffices
to show that ) < Q. Or equivalently, it suffices to show that ) < p for any p > Q.

To show this, we need an upper bound on Mod, (I, .(v), Gryw)4#) for v € Gp,n € N.
Let m € Z be the unique integer such that

~ L —1 ~
(4.5) 2La ™ < %a—l < 2La ™,

For any n € N, let n € N be the unique positive integer such that

L—1)

(46) ofg e < LoV o g fgaveaom.

For any ke N, let k € Z be the unique integer such that

(47> a*k < (L~_ 1)()\ - ]-)fd,E < a*k+1.
T AL (-m)4
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It is evident that there exists kg € N such that k > ko implies that & > 1 (that is

k € N). For the remainder of the proof we assume k > k. By (4.6) and (4.7), we
have

—h—k aa

A-1
Foralll,] € N, we define a family of maps H & — g;such that H, {(v) = {w} where

ing 7. a

(4.8) Aa"F < (N =1)a "k,

a—n—k

w € §l~ is such that d(m(v),m(w)) < @' or equivalently, m(v) € B(m(w),a™").

Since |J,.5 B(mi(u),a!) = X such a w € & exists. By [Hei, Exercise 10.17], there
l

exists > dima(X,d) and C; > 1 such that

~ 7\ B
sup #{v € §;: w € H(v)} < Cy (1\/a—l> .

-1
weSy a

In particular, for any k, k,n,7 € N that satisfy (4.7) and (4.8), we have

aa \”

(4.9) sup #{ve S we Hu)} <C 1V = :
wegﬁ”;
Let v = (v1,...,vn) € [k(v),v € S, denote an arbitrary path. Note that,
v; € Spyp for all ¢ = 1,...,N. Consider the sequence (wy,...,wy) such that
{wi} = H,,5.5(v) for all i = 1,..., N. By the first estimate in (4.8), we have
B(mi(v;), \a"%) C B(m(w;),\a"*) for all i. This in turn implies for any i =
1,...,N — 1, either w; = w;;; or w; and w;,, are neighboriilg vertices in GEJFE.
This implies that for any v € 'y, (v) there exists a path 7 in G 7 from w; to wy.
Therefore by the triangle inequality,
 (4.6)

(4.10)  d(m(wy), m(wy)) > (L—1)a™ —2a " F > AL —2a*a ™ > 3La "

for all k € N large enough such that 2a* < L. Since mi(v1) € B(m(v),a™) N

B(m(wy),a=""*%), we have d(m (v), m (w1)) < a™™+a "*. There exists v € S; such
that 7, (w;) € B(m(v),a™™). Therefore by (4.10), the path 7 € 'z z(v) for any k
large enough such that 2a=% < L, where

d(mi(v), m(v)) < d(mi(v), m(wr)) + d(m (V) ™ (wr))

<a"+a " Frat<a 420"

_ AL G+ (1=m)4

aLgtt—m+

Setting k = (2 4 %£4—
v € S, v € 'yr(v), there exists 7 € sz such that 7 € S; with d(m V), m (v)) <

n

), we conclude that for all large enough ke N, n € N,
ka~" and 7 is contained in e, H,  5,5(u), where n,k are as given by (4.6) and
(4.7) respectively. By [Hei, Exercise 10.17], there exists Cy > 1 such that

(4.11) sup #{0 € Sy: d(m (D), m(v)) < kA "} < Cor”.
vES,
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Now combining the above with Lemma 4.2, (4.9) and (4.11), we obtain

aar \? ~

Mod(Ty1(v)) < C, (1 v ) Mod U T,®
>\ 563}“ N
d(m1(9),m1(v))<wka ™"

<C (1 v ;“_Al)ﬁ 3 Mod (’fm(z))

5€§ﬁ, B
d(7r1 (5) , 1 (U))<I{din

aar \” ~ o~
<Oy (1 Vv T 1) Cor” M 5(L)

for all n € N,v € §,, and for all keN large enough. This implies that

aa) \” —~ o~
M, (L) < C4 <1 V = ) Cor’M (L)

for all k& € N large enough and for all k& € N defined by (4.7). This immediately
implies the desired inequality @) < p for any p > Q. U

The following ‘reverse volume doubling estimate’ is known if the metric space
is uniformly perfect [Hei, Exercise 13.1]. Since our metric space is not necessarily

uniformly perfect, the following lemma provides a substitute for uniform perfectness
at sufficiently many scales.

Lemma 4.4. Let p be a doubling measure on a metric space (X, d) such that
w(B(x,2r)) < Cpu(B(x,r)) for all € X,r > 0. Let xg,...,xny be a set of
points such that d(z;,z;41) < r/4 for all i = 0,...,N — 1 where d(zo,xy) >
R > r. Then there exists ¢, > 0 depending only on Cp such that u(B(zo, R)) >
c(R/r)*u(B(xo,7))-

Proof. If s € [r, R/2], then by triangle inequality there exists x; such that
7
4

3
Y& < d(xg,xj) < —s.

By the doubling property, for such z;, we have
u(Bla;,5/4)) > Cou(B(a;, 45)) > Cp*u(Blao, s)).
Therefore
u(B(zo,25)) = pu(B(zo, 8)) + p(B(aj, 5/4)) = (1 + Cp*)u(B(o, 5))

for all such s € [r, R/2]. Let k be the largest integer such that 2¥r < R. By iterating
the above estimate

(B, 1) 2 (B, 270) 2 (14 O (Bl 1) 2 ¢ () B, )

r
where a = log(1+ C5*)/log2 and ¢ = (1 + C5*)~". O

4.1. Proof of Theorem 1.2. In this section, we complete the proof of Theo-
rem 1.2. That is, we show that for any compact, doubling, metric space (X, d), we
have

dimea (X, d) = CE(X, d) = inf{dima (X, 0): 6 € J,(X,d)}.
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The following lemma is useful to obtain upper bounds on the critical exponent
CE(X,d).
Lemma 4.5. Let (X,d) be a compact metric space and a > X > 6. Let 0 €

J(X,d) and pu be a g-homogeneous measure on (X,0). Let S denote a hyperbolic
filling with parameters a, \. For allv € S,k € N, we define p,: Sx,w)+rx — [0,00) as

1
(B8)"" it B 1 Bufma(0), (L + 1) £,

(4.12) po(w) = w € 7y for some 7 € Ty 1(v),

0 otherwise.

Then there exists ¢ > 0, ky € N depending only on d, 0, i, a, L so that
(4.13) va(w) >c¢ forallyeTly(v),veS

wey
for all k > k.

Proof. Let v € T’y (v). To show (4.13), by choosing a sub-path if necessary, we
may assume that v = (v1,...,vy) and 7 (v1) € By, m(v;) ¢ B(m(v),a ™") = B,
forall j = 2,...,N —1, m(v;) € B(m(v),La"™W) for alli = 1,...,N — 1 and
vy & m(v;) € By(mi(v), La=™®). Since

(4.14) d(my(v5), T (vig1)) < 2haF7m™20) < g kmmFL < g =ma(v)
foralli=1,...,N —1, we have vy € B(v, (L + 1)a~™®). In particular,
(4.15) 2z € By(mi(v), 20 a™ ™)\ By(my(vs),a ™)) £ foralli=1,..., N,

where z; = m(v;4q1) fori =1,...,N — 1 and m(v;_1) for i = N. Let n: [0,00) —
[0,00) be a distortion function such that the identity map Id: (X, d) — (X, 0) is an
n-quasisymmetry. This along with the choice of z; above this implies that

By(m1(vs), 10(m1(v5), %)) C Ba(my(v),a” ™)) = B,
C By(mi (vi), n(1)0(m (vi), 2;))

for alli = 1,..., N, where ¢; = [(2\)]". Since d(m (v), w1 (v;)) < (L4 1)a=™® for
alli=1,..., N, we have B, = By(m1(v),a ™®) C By(m1(v;), (L+2)a~™®). Choos-
ing w; € {m (v), m (vy)} such that 2(L+1)a=™® > d(m(v;),w;) > d(m(v),71(vn))/2
> La~™) /2, we have

(A17) By C Ba(m(vi), (L + 2)a=™®) € By(m(v;), Co(m (v1), w;))
foralli=1,..., N, where Cy = n(2(L + 2)L~'). Furthermore
By(mi(vs), 0(m1 (i), wi)) C Ba(mi(v), n(1)d(m(vs), wy))

C By(m(v), Csa™ ™),

(4.16)

(4.18)

where C3 = (L +1)(2n(1) + 1).
Since p is g-homogeneous on (X, ) and 0 € J(X,d), p is a doubling measure on
(X, d). Therefore

(4.19) u(By) Z p (Ba(mi(v), Csa™ ™)) = p(Bo(mi(vy), 0(m (vi), wy))).
Since d(m (v;), T (vit1))/d(m1(v;), w;) < AL Aa™F
(4.20)  O(my(vs), m(vig1)) < O(m(vi), wi)n (4L_1)\a_k) foralli=1,...,N —1.
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Pick ky € N large enough so that
(4.21) an (4L ™) < 1.

Let k > k. Since u is a g-homogeneous measure on (X, 0) and Id: (X,d) — (X, 0)
is an n-quasisymmetry, we have

Soncn 3 (2)
S (

N— p(By(m1(v;), c10(m1(v;), m1(vig1))) 1/q
. i1 ( 1 (Bo(mi(vs), 0(mi (), wy))) ) (by (4.16) and (4.17))
2 Z:l (7"91(<77T}z)(;}7r)1 (112431)> (by (4.21) and g-homogeneity of p in (X, 6))
z Z 9( Uz) WI(Uerl)) (sin(}e d(ﬂ'l(U@'), wz) g d(ﬂ'l(v), 7T1<UN>>>

> > 1
™ O(mi(v), m(on)) ™
(by triangle inequality and d(m(v1), 7(vy)) 2 d(m(v), m(vN))).

This completes the proof of (4.13), where ¢ > 0 depends only on 7, ¢g-homogeneity
constants of y and A, a, L. O

Proof of Theorem 1.2. By Proposition 4.3, it suffices to consider the critical
exponent a > A > 6, where the maximal a™" separated subsets are increasing (similar
to the definition of hyperbolic filling).

The inequality dimga (X, d) < CE(X,d) follows from the same argument as the
proof of dimarc(X,d) < CE(X,d) in [Car, Theorem 1.3] where the use of [Car,
Theorem 1.2] is replaced with Theorem 3.4. This yields the inequality

(4.22) dimea (X, d) < inf{dima(X,0): 0 € J,(X,d)} < CE(X,d).

So it suffices to show CE(X,d) < dimca(X,d). Let p > dimca(X,d). We
consider a hyperbolic filling S of (X, d) with parameters a > A > 6. Then by Theo-
rem 3.1, for any ¢ € (dimca (X, d), p), there exists 0 € J(X,d) and a g-homogeneous
measure 4 on (X, 0).

Next, we show the following estimate: there exists C' > 0, kg € N such that

(4.23) Mod, (T..(v)) < Ca™*®=9  for any v € S,k € N with k > k.

Let py: Srywy+k — [0,00) be as given in Lemma 4.5. By Lemma 4.5, it suffices to
estimate ) p,(w)?.

To this end, we first obtain an upper bound on p,(w). For any v € S, let
w € Spywy+r such that w € « for some (vi,...,vy) = v € 'y r(v). Note that
d(m(w), 1 (v1)) V d(m(w), w1 (vn)) > Ld(mi(v1), mi(vn)) > (L — 1)a™®) /2. There-
fore there exists a sequence w = mg,..., oy so that d(zg,zp) > (L — 1)a™™W),
Choose k; € N such that (L —1)a™* < ;. By the volume doubling property of p on
(X,d), we have p(B,) > pu(B(m (v),2La=™®)) > u(B(m (w), (L — 1)a~™®)/2)). For
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all £ > ki, by Lemma 4.4, we have
1(Bu) /1(Buw)
(4.24) 1(By) ~ p(B(mi(w), (L —1)a~m0) /2))
<Ca™ forallveS wery,yelL(v),

where C| « only depends on A, a, L, and the doubling constant of p in (X, d). Since
1 is a doubling measure, we have

. #(Bw)
Z po(w)? < Z p (Ba(mi(v), (L + 2)a=m)))

WES s (v)+k WES g (v) ks
71 (w)EB(my (v),(L+1)a~ "2 ()

p(Bulmy (), a0 /2))
S 2 i (Balma(0), (L + 2)a—2))

weswg(v)+kv
71 (w)EB(m1 (v), (L+1)a~T2 ()

(since p is doubling)
(4.25) <1 (since By(m(w),a ™™ /2)) pairwise disjoint).

By Lemma 4.5, there exists ¢ > 0,ky € N such that ¢™'p, € Adm(Ty 1(v)) for al
k > ko. Hence by (4.24) and (4.25), we have

pP—q
Mod,,(I'x.(v)) < va(w)p < (sup pv(w)> va(w)q < a R0 for all k > k.

This concludes the proof of (4.23) and hence we obtain M, (L) < a=*P=9 for all
k > ko. This shows M,(L) = 0 and hence CE(X,d) < p for all p > dimca (X, d).
This along with (4.22) concludes the proof. O

One might wonder if the assumption dimy (X, d) < oo (or equivalently, (X, d) is
a doubling metric space) in Theorem 1.2 is necessary. To this end, we present the
following example.

Example 4.6. Let X denote the set of all sequences (x;);eny such that x; €
{1,2,...,i}; that is, X = [[.2,{1,...,i}. We define a metric on X by setting
0 if x; =y, for all i € N,
d((:)ien, (Yi)ien) = e .

It is easy to see that (X, d) is a compact, ultrametric space. Since every open ball of
radius 27 has k + 1 distinct points with mutual distance of at least 27%~! for each
k € N, we have

(4.26) dimy (X, d) = 0.

On the other hand, consider a, A\, L > 1, X, S, as given in Definition 4.1. For any
veS,and any v = (vq,...,0n) € I'y1(v), since (X, d) is an ultrametric space, we
have

(L — 1)(1/7” S d(ﬂ'l(Ul),’ﬂ'l(’UN)) S 1<I_1’§34\Z;( 1d<7T1(’Ui), 7T1<UZ'+1)) < 2)\017”7]?.
Therefore for all k large enough so that a™ < L1, we have Ty, (v) = () and hence
M, (L) = 0 for all p > 0 and k large. This implies CE(X,d) = 0. Therefore by
(4.26), we have
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Therefore the assumption that (X, d) is a doubling metric space is necessary in The-
orem 1.2.

We conclude with some questions about the closely related notion of conformal
(Hausdorff) dimension. Recall that the conformal (Hausdorff) dimension dimeg (X, d)
is defined as

dimen(X, d) = inf{dimg(X,0): 0 € J(X,d)},
where dimg (X, §) denotes the Hausdorff dimension of (X, 6). Does the equality
dimen (X, d) = inf{dimy(X,0): 0 € J,(X,d)}

always hold? Theorem 1.2 shows a similar result for the Ahlfors regular conformal
dimension. It is also interesting to know for which metric spaces does dimcy (X, d) =
dimea (X, d) hold? It is easy to see that dimeg(X,d) < dimea(X,d). One might
expect that for ‘self-similar sets’ like the standard Sierpinski carpet dimgy (X, d) =
dimca (X, d) holds. This seems to be a difficult problem since ‘self-similarity’ is not
a quasisymmetry invariant. It is not known whether the equality dimcy(X,d) =
dimga (X, d) holds even for the standard Sierpinski carpet.
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