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Boundedness properties of
maximal operators on Lorentz spaces

Dariusz Kosz

Abstract. We study mapping properties of the centered Hardy–Littlewood maximal operator
M acting on Lorentz spaces. Given p ∈ (1,∞) and a metric measure space X = (X, ρ, µ) we let
Ωp

HL
(X) ⊂ [0, 1]2 be the set of all pairs (1

q
, 1
r
) such that M is bounded from Lp,q(X) to Lp,r(X).

Under mild assumptions on µ, for each fixed p all possible shapes of Ωp
HL

(X) are characterized.
Namely, we show that the boundary of Ωp

HL
(X) either is empty or takes the form

{δ} × [0, lim
u→δ

F (u)] ∪ {(u, F (u)) : u ∈ (δ, 1]},

where δ ∈ [0, 1] and F : [δ, 1] → [0, 1] is concave, nondecreasing, and satisfies F (u) ≤ u. Conversely,

for each such F we find X such that M is bounded from Lp,q(X) to Lp,r(X) if and only if the point

(1
q
, 1

r
) lies on or under the graph of F , that is, 1

q
≥ δ and 1

r
≤ F

(
1

q

)
.

Maksimaalioperaattoreiden rajallisuus Lorentzin avaruuksissa

Tiivistelmä. Tutkimme keskitetyn Hardyn–Littlewoodin maksimaalioperaattorin M kuvaus-
ominaisuuksia Lorentzin avaruuksien välillä. Jos p ∈ (1,∞) ja X = (X, ρ, µ) on metrinen mitta-
avaruus, olkoon Ωp

HL
(X) ⊂ [0, 1]2 niiden parien (1

q
, 1

r
) joukko, joilla M kuvaa avaruuden Lp,q(X)

rajoitetusti avaruuteen Lp,r(X). Lievillä oletuksilla mitasta µ selvitämme joukon Ωp
HL

(X) kaikki
mahdolliset muodot jokaisella kiinteällä eksponentilla p. Osoitamme, että joukon Ωp

HL
(X) reuna on

joko tyhjä tai muotoa
{δ} × [0, lim

u→δ
F (u)] ∪ {(u, F (u)) : u ∈ (δ, 1]},

missä δ ∈ [0, 1] ja F : [δ, 1] → [0, 1] on konkaavi, ei-vähenevä ja toteuttaa ehdon F (u) ≤ u. Vastaa-

vasti jokaista tällaista funktiota F kohti löydämme sellaisen avaruuden X, että M kuvaa avaruuden

Lp,q(X) rajoitetusti avaruuteen Lp,r(X), jos ja vain jos piste (1
q
, 1

r
) on funktion F kuvaajan alapuo-

lella ts. 1

q
≥ δ ja 1

r
≤ F

(
1

q

)
.

1. Introduction

Consider an arbitrary metric measure space X, that is, a triple (X, ρ, µ), where
X is a set, ρ is a metric, and µ is a Borel measure. For any x ∈ X and s ∈ (0,∞) let

B(x, s) := Bρ(x, s) := {y ∈ X : ρ(x, y) < s}
denote the open ball centered at x and of radius s. Then the associated centered

Hardy–Littlewood maximal operator MX is defined by

MXf(x) := sup
s∈(0,∞)

1

µ(B(x, s))

ˆ

B(x,s)

|f | dµ, x ∈ X,

where f : X → C is any Borel function. For balls B satisfying µ(B) ∈ {0,∞} we use
the convection 1

µ(B)

´

B
|f | dµ = 0.

https://doi.org/10.54330/afm.131758
2020 Mathematics Subject Classification: Primary 42B25, 46E30.
Key words: Centered Hardy–Littlewood maximal operator, Lorentz space, nondoubling metric

measure space.
c© 2023 The Finnish Mathematical Society



516 Dariusz Kosz

The aim of this article is to study mapping properties of MX for various X. The
only constraint on X that appears a few times later on, including our main result
Theorem 1, is that we additionally assume µ(X \ supp(µ)) = 0, where

supp(µ) :=
{
x ∈ X : µ(B(x, s)) > 0 for all s ∈ (0,∞)

}

is the support of µ. Loosely speaking, this condition allows us to avoid pathological
cases in which it is not a priori obvious that MXf is essentially larger than f . We
note that the equality µ(X \ supp(µ)) = 0 holds trivially if X is separable. It is true
also when X is locally compact and µ is a Radon measure (cf. [4, p. 218]).

Let us recall that an operator H is said to be of strong type (p, p) (resp. of

weak type (p, p)) for some p ∈ [1,∞] if H is bounded on Lp(X) (resp. from Lp(X) to
Lp,∞(X)). Thus, for example, MX is of strong type (∞,∞) no matter what the exact
structure of X is. Moreover, if X is doubling (that is, µ(B(x, 2s)) ≤ Cµ(B(x, s)) holds
with some C ∈ (0,∞) independent of x and s), then MX is also of weak type (1, 1)
and hence, by interpolation, of strong type (p, p) for each p ∈ (1,∞). For arbitrary
(nondoubling) X it may happen that the weak type (1, 1) inequality for MX fails to
occur. For example, Sjögren [16] showed that this is the case for the two-dimensional

Gaussian measure dµ(x, y) = e−(x2+y2)/2 dx dy and the uncentered Hardy–Littlewood
maximal operator (by “uncentered” we mean that the supremum in the definition is
taken over the family of balls containing x, not only those centered at x).

There are several articles devoted to studying various mapping properties of the
Hardy–Littlewood maximal operators (or their modifications) for nondoubling spaces
(see, e.g., [1, 14, 15, 17]). It is particularly interesting to find spaces for which such
properties are very specific. Li wrote a series of papers [10, 11, 12] in which the
so-called cusp spaces have been introduced for this purpose. For example, in [11] it is
shown that for each fixed p0 ∈ (1,∞) there exists X such that, given p ∈ [1,∞], the
associated centered maximal operator is of strong type (p, p) if and only if p > p0.

Recently, the author also contributed to the development of this field [7, 8, 9]. In
particular, in [9] certain mapping properties of MX acting on Lorentz spaces Lp,q(X)
have been studied. More precisely, it is proven there that for each p0, q0, r0 ∈ (1,∞)
with r0 ≥ q0 it is possible to construct

(a) a (nondoubling) space X such that MX is bounded from Lp0,q0(X) to Lp0,r0(X),
but is not bounded from Lp0,q0(X) to Lp0,r(X) for all r ∈ [1, r0),

(b) a (nondoubling) space X such that MX is bounded from Lp0,1(X) to Lp0,r0(X),
but is not bounded from Lp0,q0(X) to Lp0,r0(X).

In both cases above the boundedness of MX acting from Lp,q(X) to Lp,r(X) is
studied and only one of the parameters q, r is varying, while both, the remaining
parameter and p, are fixed. In Theorem 1 below we strengthen the results of [9] by
providing a detailed analysis of a more complex problem in which p is the only fixed
parameter and all pairs (q, r) are studied simultaneously. Namely, we characterize
all possible shapes of the sets

Ωp
HL(X) :=

{
(1
q
, 1
r
) ∈ [0, 1]2 : MX is bounded from Lp,q(X) to Lp,r(X)

}
⊂ [0, 1]2

(the shapes of these sets are described in terms of their topological boundaries, where
the underlying space is the square [0, 1]2 with its natural topology).

Theorem 1. Fix p ∈ (1,∞). Then for each X satisfying µ(X \ supp(µ)) = 0 one
of the following two possibilities holds:

• the boundary of Ωp
HL(X) is empty, that is, Ωp

HL(X) = ∅ or Ωp
HL(X) = [0, 1]2,
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• the boundary of Ωp
HL(X) is of the form

{δ} × [0, lim
u→δ

F (u)] ∪ {(u, F (u)) : u ∈ (δ, 1]},

where δ ∈ [0, 1] and F : [δ, 1] → [0, 1] is concave, nondecreasing, and satisfies
F (u) ≤ u.

Conversely, for each F as above there exists X such that Ωp
HL(X) is the set of points

lying on or under the graph of F , that is, points (1
q
, 1
r
) ∈ [0, 1]2 with 1

q
≥ δ and

1
r
≤ F

(
1
q

)
.

Although Theorem 1 is stated for the centered Hardy–Littlewood maximal oper-
ator, it is possible to obtain its analogous version with the uncentered operator used
instead.

To prove Theorem 1 we should focus on two separate tasks. First we want to
indicate some conditions that the sets Ωp

HL(X) must satisfy in general, in order to
ensure that no situation other than those listed in Theorem 1 is possible. This
problem is treated in Section 6 (see Remark 1, Remark 2, and Theorem 3). The
second goal, which turns out to be the more challenging one, is to introduce a special
class of spaces for which we can precisely control the behavior of the maximal operator
and, at the same time, this behavior is very peculiar. This problem is covered by
Theorem 2 stated below. We note that, in fact, Theorem 2 is slightly more general
and it consists of four similar results which have been collected together for the sake
of completeness. In what follows, for each p ∈ (1,∞) and q, r ∈ [1,∞] by c(p, q, r,X)
we mean the smallest constant C for which

‖MXf‖p,r ≤ C‖f‖p,q, f ∈ Lp,q(X),

holds (we put c(p, q, r,X) = ∞ if no such constant exists).

Theorem 2. Fix p ∈ (1,∞) and δ ∈ [0, 1] (resp. δ ∈ [0, 1)). Let F : [δ, 1] → [0, 1]
(resp. F : (δ, 1] → [0, 1]) be concave, nondecreasing, and satisfy F (u) ≤ u for each
u ∈ [δ, 1] (resp. u ∈ (δ, 1]). Then

• there exists a (nondoubling) metric measure space Y such that c(p, q, r,Y) <
∞ if and only if 1

q
≥ δ (resp. 1

q
> δ) and 1

r
≤ F

(
1
q

)
,

• there exists a (nondoubling) metric measure space Z such that c(p, q, r,Z) <
∞ if and only if 1

q
≥ δ (resp. 1

q
> δ) and 1

r
< F

(
1
q

)
.

Two comments regarding Theorem 2 are in order. Firstly, although the word
“exists” is used above, the spaces Y and Z are constructed explicitly. In fact, our
construction process originates in a beautiful idea of Stempak [18], who provided
interesting examples of spaces while dealing with some related problem regarding
modified maximal operators. Secondly, Theorem 2 does not cover the extreme cases
Ωp

HL(X) = ∅ and Ωp
HL(X) = [0, 1]2. For the latter one, it suffices to take a single point

with a trivial metric and counting measure. For the former one, see the comment
after Lemma 6.

The rest of the paper is organized as follows. In Section 2 we recall basic prop-
erties of Lorentz spaces and the so-called space combining technique introduced in
[9]. Next, in Section 3 and Section 4 we study the behavior of the maximal operator
for the so-called test spaces and composite test spaces. The latter class will be used
in Section 5 to prove Theorem 2. Section 6 is devoted to indicating properties of
Ωp

HL(X), which allow us to deduce the first part of Theorem 1. In particular, we
formulate a suitable interpolation theorem for Lorentz spaces Lp,q(X) with the first
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parameter fixed and the second varying (see Theorem 3). This result follows from a
more general fact [3, Theorem 5.3.1] using advanced interpolation methods. However,
in Appendix we give its elementary proof, which, to the author’s best knowledge, has
never appeared in the literature so far.

To avoid misunderstandings, we note that several times in the paper we iden-
tify 1/∞ and 1/0 with 0 and ∞, respectively, when dealing with q, r ∈ [1,∞]
and u, F (u) ∈ [0, 1]. Also, for δ = 1 the conventions [δ, 1] = {1}, (δ, 1] = ∅, and
limu→δ F (u) = F (1) are used. For each n ∈ N := {1, 2, . . . } the symbol [n] stands for
the set {1, . . . , n}. Also, by 1E we mean the indicator function of a given Borel set
E. Finally, we emphasize that, in view of the equality MXf = MX|f |, we can and
will focus only on functions f ≥ 0.
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2. Preliminaries

We begin with some basic facts about Lorentz spaces Lp,q(X) (for more detailed
information see, e.g., [2]). For any Borel function f : X → C we define the distribution

function df : [0,∞) → [0,∞] by

df(t) := µ({x ∈ X : |f(x)| ≥ t}).

Then for any p ∈ [1,∞) and q ∈ [1,∞] the space Lp,q(X) consists of those functions
f for which the following quasinorm

‖f‖p,q :=




p1/q

(
´∞

0

(
t df(t)

1/p
)q dt

t

)1/q
if q ∈ [1,∞),

supt∈(0,∞) t df(t)
1/p if q = ∞,

is finite. Recall that if p = q, then (Lp,q(X), ‖ · ‖p,q) coincides with the standard
Lebesgue space (Lp(X), ‖ · ‖p). Now we present several properties of Lp,q(X) spaces.
The metric measure space is arbitrary here, except for the condition µ(X) < ∞
assumed in Fact 2.

Fact 1. Let p ∈ (1,∞) and q ∈ [1,∞]. Then there exists a numerical constant
C△(p, q) independent of X such that

∥∥∥∥∥
∑

n∈N

fn

∥∥∥∥∥
p,q

≤ C△(p, q)
∑

n∈N

‖fn‖p,q, fn ∈ Lp,q(X), n ∈ N.
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Fact 2. Let p ∈ (1,∞) and q ∈ [1,∞], and assume that µ(X) < ∞. Then there
exists a numerical constant Cavg(p, q) independent of X such that

‖favg‖p,q ≤ Cavg(p, q)‖f‖p,q, f ∈ Lp,q(X),

where favg := ‖f‖1/µ(X) is a constant function.

Fact 3. Let p ∈ (1,∞) and 1 ≤ q ≤ r ≤ ∞. Then Lp,q(X) ⊂ Lp,r(X) and there
exists a numerical constant C→֒(p, q, r) independent of X such that

‖f‖p,r ≤ C→֒(p, q, r)‖f‖p,q, f ∈ Lp,q(X).

These facts are rather well known. For the proof of Fact 3 see, e.g., [2, Propo-
sition 4.2]. Fact 1 and Fact 2 are in turn easy consequences of [2, Lemma 4.5 and
Theorem 4.6].

We also need the following auxiliary lemma.

Lemma 1. Fix p ∈ (1,∞) and q ∈ [1,∞], and consider a sequence (fn)n∈N of
functions with disjoint supports An. Assume that for each n ∈ N and t ∈ (0,∞) we
have either dfn(t) ≥ µ(An+1 ∪ An+2 ∪ · · · ) or dfn(t) = 0. Then for some numerical
constant C1 = C1(p, q) independent of X and (fn)n∈N we have: if q ∈ [1,∞),

C
−1
1

(
∑

n∈N

‖fn‖qp,q

)1/q

≤
∥∥∥∥∥
∑

n∈N

fn

∥∥∥∥∥
p,q

≤ C1

(
∑

n∈N

‖fn‖qp,q

)1/q

,

or, if q = ∞,

C
−1
1 sup

n∈N
‖fn‖p,∞ ≤

∥∥∥∥∥
∑

n∈N

fn

∥∥∥∥∥
p,∞

≤ C1 sup
n∈N

‖fn‖p,∞.

Proof. Let f =
∑

n∈N fn and consider q ∈ [1,∞) (the case q = ∞ is similar).

Then, under the specified assumptions, the quantities df(t)
q/p and

∑
n∈N dfn(t)

q/p are
comparable to each other with multiplicative constants possibly depending on p and
q but independent of t ∈ (0,∞). Integrating both quantities against the weight tq−1

completes the proof. �

The main tool used in the proof of Theorem 2 is the following space combining
technique which was introduced in [9].

Proposition 1. (cf. [9, Proposition 1]) Let (Xn)n∈N be a given sequence of metric
measure spaces Xn = (Xn, ρn, µn). Assume that each of them consists of finitely many
(not zero) elements and every singleton is of positive (finite and not zero) measure.
Let X = (X, ρ, µ) be the space constructed with the aid of (Xn)n∈N by using the
method described below.

Step 1. Introduce ρ′n and µ′
n by rescaling (if necessary) ρn and µn, respectively,

so that the following conditions are satisfied:

• the diameter of Xn with respect to ρ′n is strictly smaller than 1,
• 0 < 2µ′

n+1(Xn+1) ≤ µ′
n({x}) for every x ∈ Xn and n ∈ N.

Step 2. Denote X′
n = (Xn, ρ

′
n, µ

′
n) and notice that c(p, q, r,Xn) = c(p, q, r,X′

n) for
all n ∈ N, p ∈ (1,∞), and q, r ∈ [1,∞].
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Step 3. Set X :=
⋃

n∈N Xn, assuming that Xn1 ∩Xn2 = ∅ when n1 6= n2. Finally,
define the metric ρ on X by

ρ(x, y) :=

{
ρ′n(x, y) if {x, y} ⊂ Xn for some n ∈ N,

1 otherwise,

and the measure µ on X by

µ(E) :=
∑

n∈N

µ′
n(E ∩Xn), E ⊂ X.

Then for each p ∈ (1,∞) and 1 ≤ q ≤ r ≤ ∞ we have

(1) C
−1 sup

n∈N
c(p, q, r,Xn) ≤ c(p, q, r,X) ≤ C sup

n∈N
c(p, q, r,Xn),

where C = C(p, q, r) is a numerical constant independent of (Xn)n∈N.

Proof. We present the proof for the sake of completeness. To this end, it will be
convenient to deal with the local and global versions of MX:

Mlocf(x) := sup
s∈(0,1]

1

µ(B(x, s))

ˆ

B(x,s)

|f | dµ, x ∈ X,

and

Mglobf(x) := sup
s∈(1,∞)

1

µ(B(x, s))

ˆ

B(x,s)

|f | dµ, x ∈ X.

Let us first show

sup
n∈N

c(p, q, r,Xn) ≤ c(p, q, r,X),

assuming that c(p, q, r,X) < ∞ holds. For fixed n ∈ N take f ∈ Lp,q(X′
n) and extend

it to F ∈ Lp,q(X) by setting F (x) := 0 for x ∈ X \ Xn. Then ‖F‖p,q = ‖f‖p,q
(here the symbol ‖ · ‖p,q refers to function spaces over different measure spaces).
Moreover, by the definition of ρ, we have MXF (x) ≥ MlocF (x) = MX′

n
f(x) for any

x ∈ Xn. Consequently, if ‖MXF‖p,r ≤ c(p, q, r,X)‖F‖p,q, then also ‖MX′
n
f‖p,r ≤

c(p, q, r,X)‖f‖p,q. This justifies the first inequality in (1).
Conversely, let us show

c(p, q, r,X) ≤ C sup
n∈N

c(p, q, r,Xn).

Assume that r < ∞ (the case r = ∞ is similar) and let F ∈ Lp,q(X). By Fact 1 we
have

‖MXF‖p,r ≤ C△(p, r)
(
‖MlocF‖p,r + ‖MglobF‖p,r

)
.

Define fn ∈ Lp,q(X′
n), n ∈ N, by restricting F to Xn. Using Lemma 1, together with

the definitions of ρ and µ, we see that

‖MlocF‖p,r ≤ C1(p, r)

(
∑

n∈N

‖MlocF · 1Xn‖rp,r

)1/r

= C1(p, r)

(
∑

n∈N

‖MX′
n
fn‖rp,r

)1/r

≤ C1(p, r)

(
∑

n∈N

(
c(p, q, r,Xn)‖fn‖p,q

)r
)1/r

≤ C1(p, r) sup
n∈N

c(p, q, r,Xn)

(
∑

n∈N

‖fn‖rp,q

)1/r

.
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Using Lemma 1 again, we obtain
(
∑

n∈N

‖fn‖rp,q

)1/r

≤
(
∑

n∈N

‖fn‖qp,q

)1/q

=

(
∑

n∈N

‖F · 1Xn‖qp,q

)1/q

≤ C1(p, q)‖F‖p,q.

Now we estimate ‖MglobF‖p,r. Note that MglobF ≡ ‖F‖1/µ(X) is constant by the
definition of ρ. Thus, Fact 2 and Fact 3 imply

‖MglobF‖p,r ≤ Cavg(p, r)‖F‖p,r ≤ Cavg(p, q)C→֒(p, q, r)‖F‖p,q.
Consequently,

c(p, q, r,X) ≤ C△(p, r)
(
C1(p, r)C1(p, q) sup

n∈N
c(p, q, r,Xn) +Cavg(p, q)C→֒(p, q, r)

)

and it remains to notice that supn∈N c(p, q, r,Xn) cannot be arbitrarily small. To this
end, we take g := 1X1 ∈ Lp,q(X′

1) and observe that

‖MX′
1
g‖p,r = ‖g‖p,r =

(p/r)1/r

(p/q)1/q
‖g‖p,q

(here for r = ∞ we use the convention ∞1/∞ = 1). Hence,

sup
n∈N

c(p, q, r,Xn) ≥ c(p, q, r,X1) ≥
(p/r)1/r

(p/q)1/q

and the proof is complete. �

Two comments are in order. Firstly, whenever we want to apply Proposition 1
later on, we omit the details related to the proper indexing of the component spaces.
The only important fact is that each time we use countably many spaces. Secondly,
we indicate that each space X obtained by using Proposition 1 is nondoubling. Indeed,
fix ǫ ∈ (0,∞) and let n0 = n0(ǫ) ∈ N be such that µ(Xn0) < ǫµ(X1). Then for
any x ∈ Xn0 we have B(x, 1) = Xn0 which implies µ(B(x, 1)) < ǫµ(X1), while
µ(B(x, 2)) = µ(X) ≥ µ(X1).

3. Test spaces

We now introduce and analyze certain auxiliary structures which we call test

spaces later on. We emphasize here that each test space may be used as a component
space in Proposition 1, because it consists of finitely many elements.

Informally, our goal is to find a space such that the maximal operator splits into
two parts, one of them having trivial mapping properties and the other one looking
like

ℓq([N ]) ∋ (x1, . . . , xN) 7→ (C(x1 + · · ·+ xN ), . . . , C(x1 + · · ·+ xN)) ∈ ℓr([M ]),

which has norm CN1−1/qM1/r (here ℓq([N ]) or ℓr([M ]) is the usual Lebesque space
introduced with respect to counting measure on [N ] or [M ]). Analyzing the last
expression and taking suitable triples (Cn, Nn,Mn) in Proposition 1, we recover The-
orem 2.

Below we work with fixed parameters p ∈ (1,∞) and N,M,L ∈ N, and associate
with each quadruple (p,N,M,L) four sequences (mi)i∈[N ], (hi)i∈[N ], (αk)k∈[M ], (βk)k∈[M ]

of positive integers, satisfying the following properties:

(i) hN/hi ∈ N,
(ii) mi+1 ≥ 2mihi,
(iii) 1 ≤ m1−p

i hi < 2,
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(iv) α1 ≥ 2mNhN ,
(v) αk+1 ≥ 2αkLβkhN ,
(vi) 1 ≤ α1−p

k βkhN < 2.

Let us check that the properties (i)–(vi) can be met simultaneously. Set m1 =
h1 = 1. Then we specify mi+1 and hi+1 for some i ∈ [N − 1], assuming that
m1, . . . , mi, h1, . . . , hi have already been chosen. We take mi+1 ≥ 2mihi such that
{h ∈ N : 1 ≤ m1−p

i+1h < 2} contains at least hi elements. Then we choose hi+1 sat-

isfying both hi+1/hi ∈ N and 1 ≤ m1−p
i+1hi+1 < 2. Thus, the properties (i)–(iii)

are satisfied. Next we take α1 such that α1 ≥ 2mNhN and α1−p
1 hN < 2 hold, and

choose β1 satisfying 1 ≤ α1−p
1 β1hN < 2. Then we specify αk+1 and βk+1 for some

k ∈ [M − 1], assuming that α1, . . . , αk, β1, . . . , βk have already been chosen. We take
αk+1 ≥ 2αkLβkhN . Since α1−p

k+1hN ≤ α1−p
1 hN < 2, we can choose βk+1 satisfying

1 ≤ α1−p
k+1βk+1hN < 2. Thus, the properties (iv)–(vi) are satisfied.

The four sequences will determine the structure of the test space constructed
below. Here we formulate a few thoughts that one should keep in mind later on:

• our space consists of two levels (lower and upper) with points of N and M
types, respectively (see Figure 1 below in this section),

• the sequences (mi)i∈[N ] and (αk)k∈[M ] are used to define the associated mea-
sure, while (hk)i∈[N ] and (βk)k∈[M ] determine the number of elements of each
type,

• the property (i) makes the set of points of a given type divisible into a suitable
number of equinumerous subsets,

• the properties (ii) and (v) say that the sequences (mi)i∈[N ] and (αk)k∈[M ] grow
very fast; huge differences between the masses of points of different types allow
one to use Lemma 1 frequently,

• the properties (iv) and (v) say that the values αi are large compared with mk

and hk; the points from the upper level have much greater masses than the
ones from the lower level and Lemma 1 can be applied also in this context,

• the properties (iii) and (vi) are of technical nature; they keep the right balance
between the number of points of a given type and the mass of each one of
them,

• the property (v) is the only one where the parameter L is used.

We fix K ∈ [1,∞) and define a test space S = Sp,N,M,K,L = (S, ρ, µ) as follows.
Set

S :=
{
xi,j, x

◦
k,l : i ∈ [N ], j ∈ [hi], k ∈ [M ], l ∈ [LβkhN ]

}
,

where all elements are different. We use auxiliary symbols for some subsets of S:

S◦ :=
{
x◦
k,l : k ∈ [M ], l ∈ [LβkhN ]

}
;

for i ∈ [N ] and k ∈ [M ],

Si :=
{
xi,j : j ∈ [hi]

}
, S◦

k :=
{
x◦
k,l : l ∈ [LβkhN ]

}
;

for i ∈ [N ], j ∈ [hi], and k ∈ [M ],

S◦
i,j,k :=

{
x◦
k,l : l ∈

[ j
hi

LβkhN

]
\
[j − 1

hi

LβkhN

]}
.

Observe that the sets S◦
i,j,k, j ∈ [hi], are disjoint and, in view of (i), each of them

contains exactly LβkhN/hi elements. Moreover,
⋃

j∈[hi]
S◦
i,j,k = S◦

k holds for each

i ∈ [N ].
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We introduce µ by letting µ({xi,j}) := mi and µ({x◦
k,l}) := Kαk. Then the

following inequalities hold: for each x ∈ S◦ by (iv),

(2) µ({x}) > µ(S \ S◦),

for each i ∈ [N ] \ {1} and x ∈ Si by (ii),

(3) µ({x}) > µ(S1 ∪ · · · ∪ Si−1),

and for each k ∈ [M ] \ {1} and x◦ ∈ S◦
k by (v),

(4) µ({x◦}) > µ(S◦
1 ∪ · · · ∪ S◦

k−1).

Finally, we define the distance function ρ by the formula

ρ(x, y) :=





0 if x = y,

1 if {x, y} = {xi,j , x
◦
k,l} and x◦

k,l ∈ S◦
i,j,k,

2 otherwise.

It is worth noting here that for each i ∈ [N ], k ∈ [M ], and x◦ ∈ S◦
k , there is exactly

one point x ∈ Si such that ρ(x, x◦) = 1. For this point we will use the symbol Γi(x
◦).

Figure 1 shows a model of the space (S, ρ) for N = 3 and M = 2. The solid line
between two points indicates that the distance between them equals 1. Otherwise
the distance equals 2.

x1,1 x2,1 x2,2 x3,1 x3,2 x3,3 x3,4

x◦
1,1 x

◦
1,2 x

◦
1,3 x

◦
1,4 x◦

2,1 x
◦
2,2 x

◦
2,3 x

◦
2,4 x

◦
2,5 x

◦
2,6 x

◦
2,7 x

◦
2,8

Figure 1. The model of the space (S, ρ) for N = 3 and M = 2.

For the reader’s convenience we explicitly describe any ball B ⊂ S. Thus we
have: for i ∈ [N ], j ∈ [hi],

B(xi,j , s) =





{xi,j} for 0 < s ≤ 1,

{xi,j} ∪ {x◦ ∈ S◦ : Γi(x
◦) = xi,j} for 1 < s ≤ 2,

S for 2 < s,

and, for k ∈ [M ], l ∈ [LβkhN ],

B(x◦
k,l, s) =





{x◦
k,l} for 0 < s ≤ 1,

{x◦
k,l} ∪ {Γi(x

◦
k,l) : i ∈ [N ]} for 1 < s ≤ 2,

S for 2 < s.

Now, for each fixed i ∈ [N ] and k ∈ [M ], we introduce a linear operator Ak,i =
Ak,i,S given by the formula

Ak,if(x) :=

{
f(Γi(x))µ({Γi(x)})

µ({x})
if x ∈ S◦

k ,

0 otherwise.

By the definition of Γi(x), we see that Ak,if depends only on the values of f on Si.
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In the following lemma we estimate the norm of Ak,i acting from Lp,q(S) to
Lp,r(S).

Lemma 2. Let S = Sp,N,M,K,L be the metric measure space defined as above.
Fix 1 ≤ q ≤ r ≤ ∞, i ∈ [N ], and k ∈ [M ], and consider the operator Ak,i. Then
there exists a numerical constant C2 = C2(p, q, r) independent of N , M , K, L, i,
and k such that

C
−1
2 K−1+1/pL1/p ≤ ‖Ak,i‖Lp,q(S)→Lp,r(S) ≤ C2K

−1+1/pL1/p.

Proof. First we estimate ‖Ak,i‖Lp,q(S)→Lp,r(S) from above. Take f ∈ Lp,q(S).
Since Ak,if ≡ Ak,i(f · 1Si

), we can assume that the support of f is contained in Si.
If this is the case, then for each t ∈ (0,∞) we have the equality

dAk,if (t) =
KLαkβkhN

mihi
df(tKαk/mi)

because every point with mass mi where f equals t determines LβkhN/hi points with
masses Kαk where Ak,if equals tmi/Kαk. Then a simple calculation gives

‖Ak,if‖p,r = K−1+1/pL1/pm
1−1/p
i h

−1/p
i α

−1+1/p
k β

1/p
k h

1/p
N ‖f‖p,r.

Thus, in view of (iii), (vi), and Fact 3, we obtain

‖Ak,if‖p,r ≤ 2C→֒(p, q, r)K−1+1/pL1/p‖f‖p,q.
Finally, consider g := 1Si

. Then we have Ak,ig ≡ mi

Kαk
1S◦

k
and hence

‖Ak,ig‖p,r
‖g‖p,q

=
(p/r)1/r

(p/q)1/q
K−1+1/pL1/pm

1−1/p
i h

−1/p
i α

−1+1/p
k β

1/p
k h

1/p
N

≥ 1

2

(p/r)1/r

(p/q)1/q
K−1+1/pL1/p,

where in the last inequality we again used (iii) and (vi). �

Next we introduce a linear operator A = AS given by the formula

Af(x) :=
∑

i∈[N ]

∑

k∈[M ]

Ak,if(x).

We see that Af depends only on the values of f on S \ S◦.
As before, we estimate the norm of A acting from Lp,q(S) to Lp,r(S).

Lemma 3. Let S = Sp,N,M,K,L be the metric measure space defined as above.
Fix 1 ≤ q ≤ r ≤ ∞ and consider the operator A. Then there exists a numerical
constant C3 = C3(p, q, r) independent of N , M , K, and L such that

C
−1
3 K−1+1/pL1/pM1/rN1−1/q ≤ ‖A‖Lp,q(S)→Lp,r(S) ≤ C3K

−1+1/pL1/pM1/rN1−1/q.

Proof. First we estimate ‖A‖Lp,q(S)→Lp,r(S) from above. Take f ∈ Lp,q(S). Since
Af ≡ A(f · 1S\S◦), we can assume that the support of f is contained in S \ S◦. We
decompose f =

∑
i∈[N ] fi, where fi := f · 1Si

. Then we have, by Lemma 1 in view of

(3),

C1(p, q) ‖f‖p,q ≥


∑

i∈[N ]

‖fi‖qp,q




1/q
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and, by Lemma 1 in view of (4),

‖Af‖p,r ≤ C1(p, r)


∑

k∈[M ]

∥∥Af · 1S◦

k

∥∥r
p,r




1/r

.

Next, by using the definition of A, Fact 1, and Lemma 2, we obtain

‖Af · 1S◦

k
‖p,r ≤ C△(p, r)

∑

i∈[N ]

‖Ak,ifi‖p,r

≤ C△(p, r)C2(p, q, r)K
−1+1/pL1/p

∑

i∈[N ]

‖fi‖p,q

for each k ∈ [M ]. Therefore,

‖Af‖p,r ≤ C1(p, r)C△(p, r)C2(p, q, r)K
−1+1/pL1/pM1/r

∑

i∈[N ]

‖fi‖p,q.

On the other hand, Hölder’s inequality applied with respect to i gives

∑

i∈[N ]

‖fi‖qp,q




1/q

≥ N−1+1/q
∑

i∈[N ]

‖fi‖p,q.

Combining all these estimates we conclude that

‖Af‖p,r ≤ C1(p, q)C1(p, r)C△(p, r)C2(p, q, r)K
−1+1/pL1/pM1/rN1−1/q‖f‖p,q.

Finally, consider g :=
∑

i∈[N ](himi)
−1/p · 1Si

. Then, by using (iii), we have

Ag ≥
∑

k∈[M ]

N

21/pKαk
· 1S◦

k

and thus

‖Ag‖p,r
‖g‖p,q

≥ (p/r)1/r

(p/q)1/q

(∑
k∈[M ]

(
K−1+1/pL1/pNα

−1+1/p
k β

1/p
k h

1/p
N

)r)1/r

21/p C1(p, q)C1(p, r)N1/q

≥ (p/r)1/r

(p/q)1/q
K−1+1/pL1/pM1/rN1−1/q

21/p C1(p, q)C1(p, r)
,

where in the first inequality we used (3) and (4) in order to apply Lemma 1 to g and
Ag, respectively, and in the second inequality we used (vi). �

In the following lemma we estimate the norm of the maximal operator MS acting
from Lp,q(S) to Lp,r(S). This is the main result of this section.

Lemma 4. Let S = Sp,N,M,K,L be the metric measure space defined as above.
Fix 1 ≤ q ≤ r ≤ ∞ and consider the associated operator MS. Then there exists a
numerical constant C4 = C4(p, q, r) independent of N , M , K, and L such that

C
−1
4

(
1+K−1+1/pL1/pM1/rN1−1/q

)
≤ c(p, q, r,S) ≤ C4

(
1+K−1+1/pL1/pM1/rN1−1/q

)
.

Proof. First we estimate c(p, q, r,S) from above. Take nonnegative f ∈ Lp,q(S)
such that ‖f‖p,q = 1. One can check that

MSf ≤ max{f, 4Af, 2M̃f, favg},
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where M̃f := 1S\S◦ ·maxx◦∈S◦ f(x◦). Therefore, by Fact 1, we have

‖MSf‖p,r ≤ 4C△(p, r)
(
‖f‖p,r + ‖Af‖p,r + ‖M̃f‖p,r + ‖favg‖p,r

)
.

The inequalities ‖M̃f‖p,r ≤ ‖f‖p,r and ‖favg‖p,r ≤ Cavg(p, r)‖f‖p,r follows respec-
tively from (2) and Fact 2. Combining all these estimates with Fact 3 and Lemma 3
we conclude that ‖MSf‖p,r is controlled by

4C△(p, r)
(
C→֒(p, q, r)

(
2 +Cavg(p, r)

)
+C3(p, q, r)

(
K−1+1/pL1/pM1/rN1−1/q

))
.

Now we estimate c(p, q, r,S) from below. First, arguing as in the last part of
the proof of Proposition 1, we obtain c(p, q, r,S) ≥ (p/r)1/r(p/q)−1/q. Finally, the
inequality

c(p, q, r,S) ≥ K−1+1/pL1/pM1/rN1−1/q

2C3(p, q, r)

follows from Lemma 3, since by (2) we have MSf ≥ Af/2 for each f ∈ Lp,q(S). �

At the end of this section we reformulate the result of the previous lemma in a
way that makes it easier to use later on.

Corollary 1. Fix p ∈ (1,∞), λ ∈ (0,∞), and a, b, κ ∈ N. Let S(p,λ,a,b,κ) be the
test space Sp,N,M,K,L with p as above, N = κb, M = κa, and some K,L satisfying
K−1+1/pL1/p = λκ−b. Then for each 1 ≤ q ≤ r ≤ ∞ we have

C
−1
4

(
1 + λκa/r−b/q

)
≤ c(p, q, r,S(p,λ,a,b,κ)) ≤ C4

(
1 + λκa/r−b/q

)
,

where C4 = C4(p, q, r) is the constant from Lemma 4.

4. Composite test spaces

In the following two sections by a composite test space we mean any metric
measure space T that arises as a result of applying Proposition 1 to a certain family
of test spaces introduced in Section 3. This is a bit imprecise, but one can think of
composite test spaces as intermediate objects between test spaces and the spaces we
want to obtain in Theorem 2. More precisely, these latter ones will be composite test
spaces constructed with the aid of a sequence of simpler composite test spaces. We
now briefly explain the details of such a construction.

Proposition 2. Let (Tn)n∈N be a given sequence of composite test spaces. Then
there exists a composite test space T such that for each p ∈ (1,∞) and 1 ≤ q ≤ r ≤ ∞
we have

C
−2 sup

n∈N
c(p, q, r,Tn) ≤ c(p, q, r,T) ≤ C

2 sup
n∈N

c(p, q, r,Tn),

where C = C(p, q, r) is the constant from Proposition 1.

Proof. Each space Tn is constructed with the aid of some sequence of test spaces,
say (Sn,m)m∈N. We let T be the space constructed by using Proposition 1 for the
whole family of test spaces {Sn,m : n,m ∈ N}. It follows directly from Proposition 1
that T satisfies the desired condition. �

Now we will construct some composite test spaces for which the associated max-
imal operators have very specific properties.
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Lemma 5. Let p ∈ (1,∞), γ ∈ R, a, b, R ∈ N, and ǫ ∈ (0,∞). Then there exists
a composite test space T = Tp,γ,a,b,R,ǫ such that for each 1 ≤ q ≤ r ≤ ∞ we have

c(p, q, r,T) = ∞ if a/r − b/q = γ,

C
−1
5 Rǫd ≤ c(p, q, r,T) ≤ C5R

2ǫd if a/r − b/q ∈ (γ − 2ǫd, γ − ǫd),

c(p, q, r,T) ≤ C5 if a/r − b/q ≤ γ − 3ǫd,

where d =
√
a2 + b2 and C5 = C5(p, q, r) is independent of γ, a, b, R, and ǫ.

Figure 2 describes the behavior of the function c(p, q, r,T). The parameter d
appears here only for purely aesthetical reasons (for example, the Euclidean distance
between the lines a/r − b/q = γ and a/r − b/q = γ − ǫd equals ǫ).

1/q

1/r

0

1

1

q = r

a/r − b/q = γ

a/r − b/q = γ − ǫd

a/r − b/q = γ − 2ǫd

a/r − b/q = γ − 3ǫd

= ∞

C
−1
5 Rǫd ≤ · ≤ C5R

2ǫd

≤ C5

Figure 2. The behavior of the function c(p, q, r,T).

Proof. For each n ∈ N let Sn be the test space S(p,λ,a,b,κ) from Corollary 1 with

p, a, and b as above, κ = Rn, and λ = R−nγ+(n+2)ǫd. We let T be the space obtained
by using Proposition 1 for the sequence (Sn)n∈N. The following estimates hold: if
a/r − b/q = γ, then

c(p, q, r,T) ≥ limn→∞R−nγ+(n+2)ǫdRnγ

CC4
= ∞,

if a/r − b/q ∈ (γ − 2ǫd, γ − ǫd), then

c(p, q, r,T) ≥ supn∈N R
−nγ+(n+2)ǫdRn(γ−2ǫd)

CC4
=

Rǫd

CC4

(here and in the remaining two cases the supremum is attained at n = 1) and

c(p, q, r,T) ≤ CC4 sup
n∈N

(
1 +R−nγ+(n+2)ǫdRn(γ−ǫd)

)
≤ 2CC4R

2ǫd,

and, if a/r − b/q ≤ γ − 3ǫd, then

c(p, q, r,T) ≤ CC4 sup
n∈N

(
1 +R−nγ+(n+2)ǫdRn(γ−3ǫd)

)
= 2CC4.

Therefore, T satisfies the desired properties. �

At the end of this section we present another result for composite test spaces,
which is particularly helpful if the domain of F in Theorem 2 is of the form (δ, 1], or
if the domain is of the form [δ, 1], but either δ = 1 or F is not continuous at δ.
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Lemma 6. Let p ∈ (1,∞), δ ∈ [0, 1], and ω ∈ [0, δ]. Then there exists

• a composite test space T≤ = T≤
p,δ,ω such that c(p, q, r,T≤) < ∞ if and only if

1/q > δ, 1/r ≤ 1/q or 1/q = δ, 1/r ≤ ω,
• a composite test space T< = T<

p,δ,ω such that c(p, q, r,T<) < ∞ if and only if
1/q > δ, 1/r ≤ 1/q or 1/q = δ, 1/r < ω.

Proof. Fix p ∈ (1,∞), δ ∈ [0, 1], and ω ∈ [0, δ]. First we construct T≤. For
each n take an = n, bn = n2, and γn satisfying anω − bnδ = γn − 3dnǫn, where
dn =

√
a2n + b2n and ǫn = 1/3n2. Let Tn be the composite test space T from Lemma 5

with p as above, γ = γn, a = an, b = bn, R = n, and ǫ = ǫn. Since limn→∞ bn/an = ∞
and an(ω + 1/n) − bnδ > γn − 2dnǫn, it is routine to check that T≤ may be chosen
to be the space obtained by using Proposition 2 for the sequence of composite test

spaces (Tn)n∈N (to obtain c(p, q, r, T̃) = ∞ for 1/q > δ, 1/r > 1/q we use Remark 2,
see Section 6). Finally, to construct T< we take an = n, bn = n2, and γn satisfying
an(ω − 1/n)− bnδ = γn − 3dnǫn with dn and ǫn are as before, and use the fact that
anω − bnδ > γn − 2dnǫn. �

We note that Lemma 6 may also be used to construct X such that Ωp
HL(X) = ∅.

Indeed, it suffices to take T< with p as above, δ = 1, and ω = 0.

5. Proof of Theorem 2

Case 1: F : [δ, 1] → [0, 1], F is continuous at δ. Fix p ∈ (1,∞) and δ ∈ [0, 1],
and take F : [δ, 1] → [0, 1] concave, nondecreasing, continuous at δ, and such that
F (u) ≤ u for each u ∈ [δ, 1].

First we construct Y. We can assume that δ < 1, since the case δ = 1 is covered
by Lemma 6. Consider the countable set

{
(1
q
, 1
r
) ∈

(
[0, 1] ∩Q

)2
:
(
1
q
≥ δ and 1

r
> F (1

q
)
)

or
(
1
q
< δ
)}

and enumerate it to get a sequence (Pn)n∈N. Fix n ∈ N and let Pn = ( 1
qn
, 1
rn
). Since

F is concave and nondecreasing, we can choose γn ∈ R, an, bn ∈ N, and ǫn ∈ (0,∞)
such that

• an/rn − bn/qn = γn,
• if an/r − bn/q > γn − 3ǫndn, then 1

q
≥ δ, 1

r
> F (1

q
) or 1

q
< δ, where dn =√

a2n + b2n.

Let Tn be the composite test space T from Lemma 5 with p as above, γ = γn, a = an,
b = bn, R = 1, and ǫ = ǫn. It is routine to check that Y may be chosen to be the space
obtained by using Proposition 2 for the sequence of composite test spaces (Tn)n∈N.

Now we construct Z. Again we assume that δ < 1, since the case δ = 1 is covered
by Lemma 6. For each n ∈ N and u ∈ [δ, 1] we choose γn,u ∈ R and an,u, bn,u ∈ N

such that

• γn,u − 2dn,u/n < an,uu− bn,uF (u) < γn,u − dn,u/n, where dn,u =
√
a2n,u + b2n,u,

• if an,u/r − bn,u/q ≥ γn,u − dn,u/n, then 1
q
≥ δ, 1

r
> F

(
1
q

)
or 1

q
< δ.

Let Tn,u be the composite test space T from Lemma 5 with p as above, γ = γn,u,
a = an,u, b = bn,u, R = nn, and ǫ = 1/n. Fix n ∈ N and observe that for each
u ∈ [δ, 1] the set

En,u =
{
v ∈ [δ, 1] : γn,u − 2dn/n < av − bF (v) < γn,u − dn/n

}

is open in [δ, 1] with its natural topology. Thus {En,u : u ∈ [δ, 1]} is an open cover of
[δ, 1] and we can find a finite subset Un ⊂ [δ, 1] such that

⋃
u∈Un

En,u = [δ, 1]. Finally,
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we let Z be the space obtained by using Proposition 2 for the family {Tn,u : n ∈
N, u ∈ Un}. We will show that Z satisfies the desired properties. Fix u0 ∈ [δ, 1] and
observe that for each n ∈ N there exists un ∈ Un such that u0 ∈ En,un. Therefore, in
view of Lemma 5,

c(p, 1/u0, 1/F (u0),Z) ≥ C
−2

c(p, 1/u0, 1/F (u0),Tn,un) ≥ C
−2ndn,u .

Since n is arbitrary and dn,u ≥ 1, we conclude that c(p, 1/u0, 1/F (u0),Z) = ∞. As
a result, we obtain c(p, q, r,Z) = ∞ for each pair (q, r) satisfying 1

q
≥ δ, 1

r
≥ F

(
1
q

)

or 1
q
< δ. Now let us consider a pair (q, r) satisfying 1

q
≥ δ, 1

r
< F

(
1
q

)
. Then we have

d(q, r, F ) := min
{
dE
(
(1
q
, 1
r
), (u, F (u))

)
: u ∈ [δ, 1]

}
> 0,

where dE is the standard Euclidean metric on the plane. Observe that for each n ∈ N

and u ∈ Un we have the following implication

an,u/r − bn,u/q > γn,u − 3dn,u/n =⇒ d(q, r, F ) ≤ 2/n.

Hence if n > 2/d(q, r, F ), then for each u ∈ Un we have an,u/r−bn,u/q ≤ γn,u−3dn,u/n,
which implies c(p, q, r,Tn,u) ≤ C5. Finally, since for each of the finitely many pairs
(n, u) satisfying n ≤ 2/d(q, r, F ) and u ∈ Un there is c(p, q, r,Tn,t) < ∞, we conclude
that c(p, q, r,Z) < ∞.

Case 2: F : [δ, 1] → [0, 1], F is not continuous at δ. Fix p ∈ (1,∞) and δ ∈ (0, 1),
and take F : [δ, 1] → [0, 1] concave, nondecreasing, satisfying F (δ) = ω < limu→δ F (u)
for some ω ∈ [0, δ), and such that F (u) ≤ u for each u ∈ [δ, 1]. We modify F to

get F̃ : [δ, 1] → [0, 1] continuous at δ, by setting F̃ (u) = F (u) for u ∈ (δ, 1) and

F̃ (δ) = limu→δ F (u). Then F̃ satisfies the conditions specified in Case 1. Let Ỹ

(resp. Z̃) be the space obtained in Case 1 for F̃ . We also let T̃ be the composite test
space T≤ (resp. T<) from Lemma 6 with p, δ, and ω as above. It is routine to check
that Y (resp. Z) may be chosen to be the space obtained by using Proposition 2 for

Ỹ (resp. Z̃) and countably many copies of T̃.

Case 3: F : (δ, 1] → [0, 1]. Fix p ∈ (1,∞) and δ ∈ [0, 1), and take F : (δ, 1] →
[0, 1] concave, nondecreasing and such that F (u) ≤ u for each u ∈ (δ, 1]. We extend

F to get F̃ : [δ, 1] → [0, 1] continuous at δ, by setting F̃ (δ) = limu→δ F (u). Then F̃

satisfies the conditions specified in Case 1. Let Ỹ and Z̃ be the spaces obtained in

Case 1 for F̃ . We also let T̃ be the composite test space T< from Lemma 6 with p
and δ as above, and ω = 0. It is routine to check that Y (resp. Z) may be chosen to

be the space obtained by using Proposition 2 for Ỹ (resp. Z̃) and countably many

copies of T̃.

6. Necessary conditions

In the last section we briefly discuss why there are no alternatives for the shape
of Ωp

HL(X) other than those mentioned in Theorem 1. We begin with the following
simple observation.

Remark 1. Fix p ∈ (1,∞) and let X be an arbitrary metric measure space. If
(u, w) ∈ Ωp

HL(X), then [0, u]× [w, 1] ⊂ Ωp
HL(X).

Indeed, this follows by the fact that the Lorentz spaces Lp,q(X) increase as the
parameter q increases.

By Remark 1 we know that either Ωp
HL(X) is empty or it consists of points lying

under the graph of some nondecreasing function, say F , and the domain of F is of
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the form [δ, 1] or (δ, 1] for some δ ∈ [0, 1] or δ ∈ [0, 1), respectively. More precisely,
for each u from the domain of F we have (u, w) ∈ Ωp

HL(X) for w < F (u) and
(u, w) /∈ Ωp

HL(X) for w > F (u) (here we do not focus on whether (u, F (u)) belongs
to Ωp

HL(X) or not, except for the case F (u) = 0, which forces that the first option
actually takes place).

Remark 2 below, in turn, explains why the assumption F (u) ≤ u is needed.

Remark 2. Let X be a metric measure space such that µ(X \ supp(µ)) = 0.
Assume that there exists an infinite family B of disjoint balls B satisfying 0 <
µ(B) < ∞. Then for each p ∈ (1,∞) we have Ωp

HL(X) ⊂ {(u, w) ∈ [0, 1]2 : w ≤ u}.
Indeed, fix p ∈ (1,∞) and 1 ≤ r < q < ∞ (the case q = ∞ is similar). Let n0 ∈ N.

We can find a sequence (En)n∈[n0] of disjoint sets with the following properties:

• each En is a union of finitely many elements from B,
• µ(En) ≥ 2µ(En−1) for each n ∈ [n0] \ [1].

Precisely, if B contains balls with arbitrarily small measures, then we can start from
n = n0 and choose each En to be a single ball. If not, then we can start from n = 1
and choose suitable finite unions of balls. Consider gn0 ∈ Lp,q(X) defined by

gn0
:=
∑

n∈[n0]

n− 2
q+rµ(En)

−1/p
1En.

By Lemma 1 the following estimates hold

‖gn0‖p,q ≤ C1(p, q)(p/q)
1/q


∑

n∈[n0]

n− 2q
q+r




1/q

, ‖gn0‖p,r ≥
(p/r)1/r

C1(p, r)


∑

n∈[n0]

n− 2r
q+r




1/r

.

Observe that for each x ∈ supp(µ) we have MXgn0(x) ≥ gn0(x). Therefore,
‖MXgn0‖p,r ≥ ‖gn0‖p,r follows in view of µ(X \ supp(µ)) = 0. Since 2r/(q+ r) < 1 <

2q/(q + r), we obtain limn0→∞
‖gn0‖p,r
‖gn0‖p,q

= ∞ and, consequently, (1
q
, 1
r
) /∈ Ωp

HL(X).

One additional comment should be made here. Namely, if B from Remark 2
does not exist, then there are only finitely many points x ∈ supp(µ) such that
µ(B(x, s(x))) < ∞ for some s(x) ∈ (0,∞). In this case Ωp

HL(X) = [0, 1]2 holds
trivially for each p ∈ (1,∞), provided that µ(X \ supp(µ)) = 0 is satisfied. Indeed,
let E be the set of all points with this property. If E is infinite, then we can find x ∈ E
and sx ∈ (0, s(x)] such that E\B(x, sx) is infinite. Next, we can find x′ ∈ E\B(x, sx)
and sx′ ∈ (0, s(x′)] such that B(x′, sx′)∩B(x, sx) = ∅ and E \ (B(x, sx)∪B(x, sx′)) is
still infinite. By repeating this procedure, we construct B. On the other hand, if E
is finite, then MXf is negligible on X \ supp(µ), bounded by maxx∈E:µ({x})>0 |f(x)|
on E, and equal to 0 on supp(µ) \ E, since each open ball containing at least one
point from supp(µ) \ E has infinite measure.

Finally, the fact that Ωp
HL(X) is convex, and hence F must be concave, is justified

by the following interpolation argument.

Theorem 3. Fix p ∈ [1,∞), 1 ≤ q0 ≤ q1 ≤ ∞, and 1 ≤ r0, r1 ≤ ∞ such
that qi ≤ ri for i ∈ {0, 1}. Let X be an arbitrary metric measure space and assume
that the associated maximal operator MX is bounded from Lp,qi(X) to Lp,ri(X) for
i ∈ {0, 1}. Then for each θ ∈ (0, 1) the operator MX is bounded from Lp,qθ(X) to
Lp,rθ(X), where

1

qθ
=

1− θ

q0
+

θ

q1
,

1

rθ
=

1− θ

r0
+

θ

r1
.
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We explain briefly how Theorem 3 can be inferred from the general theory of
interpolation. We begin with the comment that Lorentz spaces in this context were
considered for the first time by Hunt in [5]. However, the theorem formulated there
does not cover Theorem 3. Hence, we are forced to refer to the literature where some
more advanced interpolation methods are developed. The appropriate variant of
Theorem 3 for linear operators can be directly deduced from [3, Theorem 5.3.1] (see
also [13], where the K-functional for the couple (Lp,q0, Lp,q1) is computed). Then, a
suitable linearization argument (see [6], for example) allows us to extend this result to
the class of sublinear operators and thus the maximal operator MX is also included.

Although there are several ways to deduce Theorem 3 from the theorems that
appear in the literature, each of them, to the author’s best knowledge, requires a
deep understanding of the interpolation theory. As the author found an elegant,
elementary proof of Theorem 3, he decided to present it in Appendix.

The last issue we want to mention is the boundary problem. Denote be ∂̄Ωp
HL(X)

the upper part of the boundary of Ωp
HL(X), that is, the set {(u, F (u)) : u ∈ Dom(F)},

where Dom(F) is the domain of F . According to this, for each space constructed in
Theorem 2 one of the following two possibilities holds

∂̄Ωp
HL(X) ⊂ Ωp

HL(X) or ∂̄Ωp
HL(X) ∩ Ωp

HL(X) = ∅.
In fact, Proposition 2 combined with Lemma 5 and Lemma 6 can provide a wide
range of other cases. For example, if F is strictly concave, then for a given set
E ⊂ Dom(F) such that E is countable we can find X such that MX is bounded
from Lp,1/u(X) to Lp,1/F (u)(X) if and only if u /∈ E. Nevertheless, it is probably very
difficult to describe precisely all forms that the intersections ∂̄Ωp

HL(X) ∩ Ωp
HL(X) can

take.

Appendix. Proof of Theorem 3

Here we give an elementary proof of Theorem 3. In what follows we replace MX

by an arbitrary operator H such that, if f is of the form f0+ f1 for fi ∈ Lp,qi(X), i ∈
{0, 1}, then Hf is well defined, measurable, and satisfies |Hf | ≤ 2nH(|Hf0|+ |Hf1|)
for some numerical nH ∈ N. These are the only properties needed in the proof.

First we observe that it suffices to consider the case q0 < q1 and r0 < r1. Indeed,
in each of the remaining cases our claim is an easy consequence of Fact 3. Fix
θ ∈ (0, 1) and let C→ be such that

‖Hg‖p,ri ≤ C→‖g‖p,qi, g ∈ Lp,qi(X), i ∈ {0, 1}.
Our aim is to show

(5) ‖Hg‖p,rθ ≤ C‖g‖p,qθ
for all g ∈ Lp,qθ(X) with C independent of g. For any measurable function g : X → C

we introduce Sg, T g : Z → [0,∞] given by

Sg(n) := 2ndg(2
n)1/p, n ∈ Z,

and
T g(n) := SHg(n) = 2ndHg(2

n)1/p, n ∈ Z.

We observe that for each q ∈ [1,∞] there is a numerical constant C�(p, q) such that

C�(p, q)
−1 ‖Sg‖q ≤ ‖g‖p,q ≤ C�(p, q) ‖Sg‖q, g ∈ Lp,q(X),

where ‖ · ‖q denotes the standard norm on ℓq(Z). Let

C� := max{C�(p, q0),C�(p, qθ),C�(p, q1),C�(p, r0),C�(p, rθ),C�(p, r1)}.
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Thus for each i ∈ {0, 1} we have

(6) ‖T g‖ri ≤ C
2
�
C→ ‖Sg‖qi

and our goal is to prove

(7) ‖T g‖rθ ≤ C̃‖Sg‖qθ ,
which would imply (5) with C = C̃C

2
�
.

In order to deduce (7) from (6) we follow the classical proof of the Marcinkiewicz
interpolation theorem for operators acting on the Lebesgue spaces (see [19, Theo-
rem 1]). It turns out that this strategy can be successfully applied but we must take
into account certain additional difficulties. Namely, our “map” is given by Sg 7→ T g,
hence it cannot be interpreted as a well defined operator because there are usually
many different functions with the same distribution function. Thus, we proceed with
the details.

Assume that r1 < ∞ and fix f ∈ Lp,qθ(X). For each λ ∈ (0,∞) we set Nλ :=
{n ∈ Z : Sf(n) > λ}. Also, for n ∈ Z let En := {x ∈ X : |f(x)| ≥ 2n}. We define

fλ
0 := f ·

∑

n∈Nλ

1En\En+1
, fλ

1 := f ·
∑

n∈Z\Nλ

1En\En+1
.

Note that f = fλ
0 + fλ

1 . Moreover, we have fλ
i ∈ Lp,q1(X) because

(8) ‖Sfλ
i ‖qi ≤

(
1 + 2−qi + 4−qi + · · ·

)1/qi ‖(Sf)λi ‖qi,
where (Sf)λ0 := Sf · 1Nλ

and (Sf)λ1 := Sf · 1Z\Nλ
. Indeed, to verify (8) we note that

dfλ
0
(2n) = dfλ

0
(2n+1) when n ∈ Z \ Nλ, and analogously for fλ

1 and n ∈ Nλ. Then

for n ∈ Nλ we have Sfλ
0 (n) ≤ Sf(n) = (Sf)λ0(n), while if n ∈ Z \ Nλ, then either

Sfλ
0 (n) = 0 or there exists j ∈ N such that n + j ∈ Nλ and dfλ

0
(2n) = dfλ

0
(2n+j), so

that Sfλ
0 (n) = 2−jSfλ

0 (n + j) ≤ 2−j(Sf)λ0(n + j) follows. Similar arguments works
for Sfλ

1 . Summing all these estimates with respect to the appropriate norms gives
(8).

Next we study the distribution functions of (Sf)λi , i ∈ {0, 1}, more carefully.
Observe that we have d(Sf)λ0 (y) ≤ dSf(λ) for y ∈ (0, λ) and d(Sf)λ0 (y) ≤ dSf(y) for

y ∈ (λ,∞). Combining both estimates and the fact that d(Sf)λ0 is nonincreasing with
the equality

2q0
ˆ λ/2

0

yq0−1 dy =

ˆ λ

0

yq0−1 dy,

we conclude that
ˆ ∞

0

yq0−1d(Sf)λ0 (y) dy ≤ 2q0

2q0 − 1

ˆ ∞

λ/2

yq0−1dSf(y) dy

≤ 2q0
ˆ ∞

λ/4

(y − λ
4
)q0−1dSf(y) dy.

(9)

Similarly, we note that d(Sf)λ1 (y) ≤ dSf(y) for y ∈ (0, λ) and d(Sf)λ1 (y) = 0 for

y ∈ (λ,∞), which gives

(10)

ˆ ∞

0

yq1−1d(Sf)λ1 (y) dy ≤
ˆ λ

0

yq1−1dSf(y) dy ≤ 22q1
ˆ λ/4

0

yq1−1dSf(y) dy.

Now we turn our attention to T f . Fix y ∈ (0,∞) and λ = λ(y) which will be
specified later on. We have T f(n) ≤ 21+nH(T fλ

0 (n − 1 − nH) + T fλ
1 (n − 1 − nH))
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for each n ∈ N thanks to |Hf | ≤ 2nH(|Hfλ
0 |+ |Hfλ

1 |) and (a+ b)1/p ≤ a1/p + b1/p for
a, b ∈ [0,∞). Hence

(11) dT f(y) ≤ dT fλ
0
(y/22+nH) + dT fλ

1
(y/22+nH).

By the hypothesis we obtain

(12) dT fλ
i
(y/22+nH) ≤ ‖T fλ

i ‖riri
(y/22+nH)ri

≤
(
22+nHC

2
�
C→

)ri ‖Sfλ
i ‖riqi

yri
.

Therefore, combining (8), (9), (10), (11), and (12) gives

‖T f‖rθrθ = rθ

ˆ ∞

0

yrθ−1dT f(y) dy

≤ C ′

(
ˆ ∞

0

yrθ−r0−1

(
ˆ ∞

λ(y)/4

(t− λ(y)/4)q0−1dSf(t) dt

)r0/q0

dy

+

ˆ ∞

0

yrθ−r1−1

(
ˆ λ(y)/4

0

tq1−1dSf(t) dt

)r1/q1

dy

)
,

with some constant C ′ which may depend on p, q0, q1, r0, r1, θ, nH, and C→ but is
independent of f and the choice of λ(y) (we only need that y 7→ λ(y) is measurable).

It is worth noting here that the inequality above reduces the problem to estimat-
ing the expression of the form very similar to that appearing in [19, (3.7)] (here dSf ,
λ/4, q0, q1, r0, r1, and rθ play the roles of m, z, a2, a1, b2, b1, and b, respectively).
Thus, in order to obtain (7), we may repeat the remaining calculations without any
further changes. We briefly sketch the rest of the proof for the sake of completeness.

Denote by P and Q the two double integrals in the last estimate. Then

P q0/r0 = sup
ω0

ˆ ∞

0

yrθ−r0−1

ˆ ∞

λ(y)/4

(t− λ(y)/4)q0−1 dSf(t) dt ω0(y) dy

and

Qq1/r1 = sup
ω1

ˆ ∞

0

yrθ−r1−1

ˆ λ(y)/4

0

tq1−1 dSf(t) dt ω1(y) dy,

where the functions ωi ≥ 0 satisfy
ˆ ∞

0

yrθ−ri−1ω
(ri/qi)′

i (y) dy ≤ 1,

with (ri/qi)
′, the exponent conjugate to ri/qi. We set λ(y) := 4‖Sf‖−τξ

qθ
yξ, where τ

and ξ will be determined later on. Now, by using Hölder’s inequality, we obtain
ˆ ∞

0

yrθ−r0−1

ˆ ∞

‖Sf‖−τξ
qθ

yξ
(t− ‖Sf‖−τξ

qθ
yξ)q0−1 dSf(t) dt ω0(y) dy

≤
ˆ ∞

0

tq0−1 dSf(t)

ˆ ‖Sf‖τqθ
t
1
ξ

0

yrθ−r0−1ω0(y) dy dt

≤
ˆ ∞

0

tq0−1dSf(t)



ˆ ‖Sf‖τqθ

t
1
ξ

0

yrθ−r0−1dy




q0
r0



ˆ ‖Sf‖τqθ

t
1
ξ

0

yrθ−r0−1ω
(
r0
q0

)′

0 (y)dy




1
(r0/q0)

′

dt

≤ (rθ − r0)
−q0/r0‖Sf‖

(rθ−r0)q0τ

r0
qθ

ˆ ∞

0

t
q0−1+

(rθ−r0)q0
ξr0 dSf(t) dt.
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Similarly, we obtain
ˆ ∞

0

yrθ−r1−1

ˆ ‖Sf‖−τξ
qθ

yξ

0

tq1−1 dSf(t) dt ω1(y) dy

≤ (r1 − rθ)
−q1/r1‖Sf‖

(rθ−r1)q1τ

r1
qθ

ˆ ∞

0

t
q1−1+

(rθ−r1)q1
ξr1 dSf(t) dt.

Collecting these results we conclude that

‖T f‖rθrθ ≤ C ′′
∑

i∈{0,1}

‖Sf‖(rθ−ri)τ
qθ

(
ˆ ∞

0

t
qi−1+

(rθ−ri)qi
riξ dSf(t) dt

)ri/qi

,

for some C ′′ independent of f . Choosing

(13) τ :=
qθ(r1/q1 − r0/q0)

r1 − r0
, ξ :=

q−1
θ (r−1

1 − r−1
θ )

r−1
θ (q−1

1 − q−1
θ )

,

gives that both terms in the sum above equal ‖Sf‖rθqθ . Thus (7) holds with C̃ =

(2C ′′)1/rθ , which completes the proof in the case r1 < ∞.
Finally, let us assume that r1 = ∞. If q1 = ∞, then the formulas in (13) reduce

to
τ = 0, ξ = 1.

We choose λ(y) := cy for some sufficiently small constant c ∈ (0,∞). In fact, if
c < C

−1
→ C

−2
�
2−2−nH, then we have dT fλ

1
(y/22+nH) = 0, while dT fλ

0
(y/22+nH) may be

estimated as before. On the other hand, if q1 < ∞, then the formulas in (13) reduce
to

τ = qθ/q1, ξ = q1/(q1 − qθ).

Again, it can be shown that if λ(y) := c′‖f‖−qθ/(q1−qθ)
qθ yq1/(q1−qθ), where c′ ∈ (0,∞)

is sufficiently small (but independent of f and y), then dT fλ
1
(y/22+nH) = 0 and

dT fλ
0
(y/22+nH) may be estimated as before. This completes the proof in the case

r1 = ∞.

References

[1] Aldaz, J.M.: An example on the maximal function associated to a nondoubling measure. -
Publ. Mat. 49, 2005, 453–458.

[2] Bennett, C., and R. Sharpley: Interpolation of operators. - Pure Appl. Math. 129, Aca-
demic Press, Inc., Boston, MA, 1988.

[3] Bergh, J., and J. Löfström: Interpolation spaces: An introduction. - Grundlehren Math.
Wiss. 223, Springer-Verlag, Berlin-Heidelberg-New York, 1976.

[4] Folland, G.B.: Real analysis: Modern techniques and their applications. - Wiley, New York,
1999.

[5] Hunt, R.: An extension of the Marcinkiewicz interpolation. - Bull. Amer. Math. Soc. 70, 1964,
803–807.

[6] Janson, S.: On the interpolation of sublinear operators. - Studia Math. 75, 1982, 51–53.

[7] Kosz, D.: On relations between weak and strong type inequalities for maximal operators on
non-doubling metric measure spaces. - Publ. Mat. 62, 2018, 37–54.

[8] Kosz, D.: On relations between weak and restricted weak type inequalities for maximal oper-
ators on non-doubling metric measure spaces. - Studia Math. 241, 2018, 57–70.

[9] Kosz, D.: Maximal operators on Lorentz spaces in non-doubling setting. - Math. Z. 298, 2021,
1523–1543.



Boundedness properties of maximal operators on Lorentz spaces 535

[10] Li, H.-Q.: La fonction maximale de Hardy–Littlewood sur une classe d’espaces métriques
mesurables. - C. R. Math. Acad. Sci. Paris 338, 2004, 31–34.

[11] Li, H.-Q.: La fonction maximale non centrée sur les variétés de type cuspidale. - J. Funct.
Anal. 229, 2005, 155–183.

[12] Li, H.-Q.: Les fonctions maximales de Hardy–Littlewood pour des mesures sur les variétés
cuspidales. - J. Math. Pures Appl. 88, 2007, 261–275.

[13] Maligranda, L.: The K-functional for symmetric spaces. - Lecture Notes in Math. 1070,
1984, 169–182.

[14] Nazarov, F., S. Treil, and A. Volberg: Weak type estimates and Cotlar inequalities for
Calderón–Zygmund operators on nonhomogeneous spaces. - Int. Math. Res. Not. IMRN 9,
1998, 463–487.

[15] Sawano, Y.: Sharp estimates of the modified HardyŰLittlewood maximal operator on the
nonhomogeneous space via covering lemmas. - Hokkaido Math. J. 34, 2005, 435–458.

[16] Sjögren, P.: A remark on the maximal function for measures in Rn. Amer. J. Math. 105

(1983), 1231–1233.

[17] Stempak, K.: Modified Hardy–Littlewood maximal operators on nondoubling metric measure
spaces. - Ann. Acad. Sci. Fenn. Math. 40, 2015, 443–448.

[18] Stempak, K.: Examples of metric measure spaces related to modified Hardy–Littlewood max-
imal operators. - Ann. Acad. Sci. Fenn. Math. 41, 2016, 313–314.

[19] Zygmund, A.: On a theorem of Marcinkiewicz concerning interpolation of operations. - J.
Math. Pures Appl. 34, 1956, 223–248.

Received 14 August 2021 • Revision received 10 July 2023 • Accepted 12 July 2023

Published online 28 July 2023

Dariusz Kosz

Basque Center for Applied Mathematics

48009 Bilbao, Spain

and Wrocław University of Science and Technology

50-370 Wrocław, Poland

dkosz@bcamath.org


	1. Introduction
	2. Preliminaries
	3. Test spaces
	4. Composite test spaces
	5. Proof of Theorem 2
	6. Necessary conditions
	Appendix. Proof of Theorem 3
	References

