ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

314

NOTE ON AN EQUATION IN
A FINITE FIELD

BY

VEIKKO ENNOLA

HELSINKI 1962
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1962.314


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1962.314


Communicated 9 February 1962 by P. J. MyYrRBERG and K. INKERI

KESKUSKIRJAPAINO
HELSINKI 1962



Note on an equation in a finite field

Our intention is to use our results on the conjugacy classes of the finite
unitary groups [1] in order to prove the following result. Let §, = GF(q°)
denote the finite field with ¢* elements (¢ = power of a prime).

Theorem. Let a be q+ 1 or ¢5+ 1. Then the number of vectors
(z,y,2) such that

(1) 2+ Yyt 22 =0,
where x, 1,z are linearly independent elements of Fg over F, equals

g+ 1)*g — (¢ —1).

From this we can derive a new proof of the following fact. (For the
general result see [2].)

Corollary. The number of vectors (x,y,z) such that (1) is true for a =
g+ 1 or ¢+ 1 and x,y,z are non-zero elements of T equals

(@* — (g + 1)*¢* — ¢* +q— 2).

Thus the statement: »In every solution of (1) with ayz £ 0, =z, 9,z
are necessarily linearly independent over §,» is true if and only if ¢ = 2.

Proof of the theorem. Let o be a primitive element of e Put
7= and 7,= (@ =0,1,2; 715=71). Then the <r;s are the
conjugates of 7 with respect to g, and we have

(2) =7t
Clearly 7; % 1; for @ 5 j. If we write

ft) = (t = 1)t — 1)t — 73,

then f(t) is an irreducible polynomial over $,. Let f(t) = 4 at* +
bt + c. Write f(t) = ¢! (ct® + b2+ at + 1), where for z €F, we put
z = 2. (Note that if x €, then z = ax9) Now (2) easily implies.
f@® :f(t). Let M = M(f) € GL(3, 9% be the companion matrix of f.
Then we know [1] that M is similar to a unitary matrix and the number
p(M) (see [1]) is
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g(1, ¢%)

u(l, ¢%)
Hence the number of non-singular matrices X with elements in &, such
that

=¢ — 1.

(3) XMX-1e U, ¢?)
equals (see [1])
(4) (@ — D3, ¢®) = ¢*q + 1)%(g — 1)(¢* — 1).

We now go up to the field F; We can find a matrix P with elements
in &g such that

P1MP = diag (15, 71, 7o) = D .

Since the column vectors of P are eigenvectors of M belonging to the
distinct eigenvalues 7; we may assume them to be conjugate over ,.

Suppose now that Y is a non-singular matrix with elements in g
such that

(5) YDY1€eU@. ¢?).
From the results of [1] it follows that Y*} must be diagonal, i.e., if

3
Y = (yij). then Z Uiy = 0, for j + k. Also, if we multiply each
i=0
column vector by a suitable element of g then we get a matrix in which
the column vectors are conjugate over F,.
But this is easily seen to hold also conversely, i.e., if 1 satisfies these
conditions, then (5) is true.
Denote by S the number solutions of (1) with « and z, y, z as required
in the theorem. Let x,y, z be an arbitrary solution. Consider the matrix

XX X
Y Y Y2
z 2 2

where x; = 29" (1 = 1, 2) ete. It is non-singular, because x,y,z are

linearly independent over §,. If « = ¢ + 1, we have
Xy + Yy + 27y = 0
and rajsing this to the ¢%th power we have
axy + Yy, + 2z = 0.
If a=¢°+ 1, we get the same results. So we see that the total number

of different non-singular matrices Y with conjugate column vectors
satisfying (5) is equal to S.
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Suppose now that X is a non-singular matrix with elements in &,
satisfying (3). Then Y = XP is a matrix with elements in &, aud
conjugate column vectors satisfying (5).

Conversely, by using the eigenvector argument again, it is easy to see
that if Y is a non-singular matrix with elements in s and with conjugate
column vectors, then X = YP-! has its elements in ¥, and satisfies (3).

Hence S is equal to the expression (4) and this proves the theorem.

Proof of the Corollary Suppose that (1) is valid for a=¢ -+ 1 or
¢+ 1, x,y,z are linearly dependent over &, and axyz # 0. Write

x Y

U= = ,0=

2 ~ - We may assume that ¢ =gq + 1, otherwise we raise (1)

to the ¢-th power. We have
(6) witt ottt L1 == 0,
where u,v, 1 are linearly dependent over &, Clearly we may assume
u==bv+c, b cE€F,.
Then
wl = bo! + .

Multiplying these, using (6), and then raising the equation to the power
q, ¢%, ¢3, respectively, we get the following system of equations

VI L be vt - bew e+ 1 =0,

‘( b+ 1) v

- (b_J~ 1) o4 4 be vt -+ be ot +ce 4+ 1 =0,
(b + )0‘1*‘1+bcz"+bcz"*cc—r—1::ﬂ
|(5—{~ )L‘I’QJ—bcﬂf»bcﬂ—t—cc—Ll—O

“onsider here bb + 1, l;c, be. ce — 1 as indeterminates. Then the deter-
minant of (7) is

(8) PITHE L ) (0 T - 1) (0T — 1)2.
If v€g, then v '—13% 0 and thus (8) does not vanish. Hence

bb 4 1 =cc+ 1 =>bc=0, which is impossible. So we must have u,

v € Fy.
Write (6) in the form

witl = — (1 171,

We can take » to be any one of the ¢> — 1 elements of 3, except those
¢ + 1 which make »""' = — 1. For each » we have q 4 1 possible u’s.
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So the total number of linearly dependent solutions of (6) is (¢ + 1)2
(¢ — 2). Multiplying this by ¢% — 1 we get the corresponding number for
the equation (1). From this the Corollary follows.
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