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§ 1. Introduction

1. Let Q denote the extended complex plane (or the Riemann sphere),
and let C be the unit circle and D be the open unit disk.

A sequence 4 of distinet Jordan curves Jy, Jy, ..., Ja, ... in D
will be called an annulation if

1) J, lies in the interior of J,,, (n =1, 2,3, ...)
and

2) given any e > 0, there exists an n, = ny(e) such that n > n,
implies that J, lies in the region 1 —e& < |z] < 1.

If, furthermore,

3) every J, is a circle with the origin as center, then the sequence A4
will be called a strict annulation.

Suppose that the function f(z) is meromorphic in D . Then we define
the sets O(f) and O°(f) as follows: The point ¢ € 2 belongs to O(f),
resp. O°(f), provided that, for some annulation, resp. strict annulation,
A = {J,}, given any ¢ > 0, there exists an n, = ny(¢) such that n > n,
implies that, for every z€.J,, we have [f(z) —c| <e or [1/f(z)] <e
according as ¢ is finite or the point at infinity. Under these conditions we
say that the function f tends to the value ¢ on the annulation A .

2. An immediate consequence of the forezoinz definition is that ©°(f)
C O(f). In § 6 we shall give an example of a function f for which O°(f) #
O(f); in fact, we shall show that ©° and @ can be prescribed arbitrarily
except for the natural restrictions that they be closed sets and that ©° C O .

The main question that arises at once, however, is: What kind of point
gets are @° and O ? Tt is again obvious that ©° and O are closed sets.
We are going to establish the following characterization:

Theorem 1. Let F be an arbitrary closed subset of Q. Then there exists
a function f(z), meromorphic in D, such that O°(f) = O(f) = F .

Moreover, if F is not empty, and A is a given annulation, then there
exists an f such that O(f) = F and every value ¢ € F is approached by f
on a subannulation of A .
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§ 2. Relations between R(f) and O(f)

3. It is well known that although a function f(z) that is holomorphic
in D cannot tend uniformly to infinity as z approaches C, nevertheless
there exist holomorphie functions f(z) in D for which {w} = 60°(f) =
G(f) (see, e.g., [1]). For any holomorphic function f, we have co ¢ R(f),
where, as is customary, R(f) stands for the range of values of f in D
[5, p- 48].

Now suppose that f(z) is meromorphic in D and that R(f) omits at
least three values of 2. Then (see [4, p. 97, Theorem 6] or [3, pp. 52—53])
O(f) is empty if f(z) is not identically constant.

If R(f) omits just two values of Q, then (see [4, p. 112, Theorem 9,
(i1)] or [5, pp. 50—51, Theorem 1, (ii)]) f(z) possesses at least two asympto-
tic values, and hence O(f) is empty.

If the complement of R(f) consists of the sole value ¢ € 2, then
either, as in the preceding case, O(f) is empty, or ¢ is an asymptotic value
of f, co that if O(f) is not empty, then O(f) = {c}. For example, let

1
h(z) = cos S and set f(z) equal to h(z), 1/h(z), (1/h(z)) + b accord-

1 —
ing as ¢ is equal to o, 0, b, where b€ Q2 — {0, co}. Then f(z) is
meromorphic in D, R(f) omits the sole value ¢, and O(f) isempty.
On the other hand, let A(z) be the function described as an infinite product
in [2, p. 79], and then define f(z) as in the preceding sentence. The function
f(z) is meromorphic in D, R(f) omits the sole value ¢ (cf. [5, p. 75. Re-
mark, (v)]), and O°(f) = O(f) = {c}.

The reason for making a distinction betweenr O°(f) and O(f) is that.
although it may be known for a specific f that ¢ € O(f), it may be by no
means an easy matter to determine whether ¢ € O°(f) — and a strict an-
nulation is, after all, the neatest.

§ 3. The skeleton S and the continuous function g(z) on §

4. To prove the theorem formulated in § 1, we shall assume that the
given closed subset F of © is not empty, because if F is empty. the
assertion of the theorem is obviously true.

Let the annulation 4 = {J.} be given. We shall show that there exists
a meromorphic function f(z) in D such that O(f) = F and every value
¢ € F is approached by f on a subannulation of 4 ; this will prove the
second part of the theorem. If we then take A4 to be a strict annulation,
we obtain the first part of the theorem.
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5. To accomplish this, we first define a point set S in D, where

S>> U J.. Let qy and a,, be distinct points in the interior of J,,

n=1
and take B,, B, to be mutually exclusive Jordan arcs with initial points
dp Tesp. ay, and terminal points 1 resp. — 1; we regard the initial

points, but not the terminal points, as belonging to these arcs. We further
require B, and B; to lie in D, and each of them to intersect every .J.
in precisely one point, «,, resp. a;,, so that

ByNJn={ag}, ByNJn={a,,} ®m=123,...).
We put
S=B,UB,U(U Ju)
n=1
and call § the skeleton.

6. Our next step is to define a certain continuous function g(z) on S.
Whereas the definition of the skeleton depended on the given annulation
A , the definition of g(z) depends on the given (nonempty) closed set F# .

Suppose that F contains oo as an isolated point. Then there exists
a finite point ¢ € F . The image of F under the transformation 2’ =

1

is a set F’ that does not contain oo . If we can prove that there

exists a meromorphic function %(z) in D such that &(h) = F’ and every
value in F’ is approached by % on a subannulation of 4, then the func-
tion f(z) = % -+ ¢ is meromorphic in D, O(f) = F , and every value in
F is approached by f on a subannulation of 4. We may therefore as-
sume, in what follows, that F does not contain oo as an isolated point.

7. Let
€15 Coy vy Cn,

be an infinite sequence of finite complex numbers in ¥ with the property
that {c.} is everywhere dense in F in the sense that every isolated point
of F occurs infinitely often as a term of the sequence.

We put
(1) g)=c¢n (F€Jn; n=12,3,...).

For every natural number n, let Aj, (j =0, 1) be the subarc of B;
extending from @, , to @, including the two end points.

We set
9(z) =c¢, (€ A5 U 4yy) .
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For every n > 1, consider ¢, and ¢, ;. If ¢, =1¢c,_,, we put
(2) g(z) = Cn (’2 € AOn U Aln) .

But if ¢, # ¢,_;, we take the circle whose diameter is the rectilinear seg-
ment joining ¢, and c,_,, and denote one of the semicircular arcs of
this circle extending from ¢,_; to ¢,, including the end points, by Ag, ,
and the other one, also extending from ¢, ; to ¢., by Af . We now
define g(z) on Aj.(j = 0, 1) to be a homeomorphism of A; onto A}
such that g(a; ,_1) = ¢,_, and g(a;) = ca.

This completes the definition of ¢(z) on S; ¢(z) is obviously a con-
tinuous function on S .

§ 4. The relation between g(z) and f(2)

8. For every mnatural number =, choose a point bj,(j= 0,1) on
B; between aj, and a;,,;, and let Bj, be the subarc of B; that ex-
tends from b, ; to bj.. including the end points, where we set b;, =
aj, . Then put

(3) Sy = B, UB;, UJ, (mn=1.2,3....).

We propose to demonstrate in § 5 the existence of a meromorphic func-
tion f(z) in D, with no poles on the skeleton, such that

(4) lim max |f(z) — g(z)] = 0.

n>w z€S,

9. Suppose for a moment that this has already been accomplished. We
wish to show how the conclusion of our theorem follows.
We first prove that F CO(f). Let ¢€F . Then there exists an in-

finite subsequence {ca} of ¢, such that lim Cn, = . Let & >0 be given.
k—>co

If ¢ is finite, then there exists a k&, = ky(e) such that, for every &k >k, .

&

(5) oy — €1 < 5 -

k
According to (1), for every z €./, we have

(6) g(z) = c"k .

It follows from (5) and (6) that, for every & >k, ,

™

(7 19(z) —¢| < (z€Jn,) .

2
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By (3) and (4) there exists a &y = ky(e) such that, for every k >k, ,

(8) ) —g@) < 5 €T

Now for every k > max (k;. ky), (8) and (7) yield
(9) Ifz) — ¢l <e (z€Jx) .

This implies that f(z) tends to ¢ along the subannulation {Jn} of 4.

2
In case ¢ — oo, replace inequalities (3), (7), (8), (9) by [en] >
2 o] 1

{g(z){>—8—, Ef(z)—9(2)3<-8*, EJ;?)‘ <e.

10. Tt remains to be proved that @(f) € F . This is accomplished by
showing that if c¢F then c€O(f).

If ¢ is finite, it is a positive distance d from the nonempty closed set
F . Suppose that c€6(f) . Then there exists an annulation A* = {J¥}

v 2
onwhich f(z) tendsto c. Take e = ——— . According to (4), (3), and
2V 24 4

(1), there exists an n, such that, for every »n > n,.
(10) f2) —9(x)] <e (z€8,),
and hence, in particular,

(11) IfR) — el <& (z€Jn).

Let 6 be the positive distance between J, ., and C. By 2) in the de-
finition of annulation, there exists an m, such that J% lies in the region
1— 6 <z <1 for every m >m,. There also exists an m, such that,
for every m > m,,

(12) fz) —c] <e (z€J%).

If my= max (my,m,), then m >m, implies that J* intersects no
J. with % >n,, for otherwise it would follow from (11) and (12) that
o 2vV2 :
¢ —¢a <d —=— <d, contradicting the definition of d . Therefore
2424+ 4
there exists an m; > n, such that J, is in the interior of J¥ and JX
is in the interior of J, ., . Consequently .J * intersects A, , .,in at least
one (interior) point t, and A, , ., in at least one point ¢, . Let

g(t) = tf (j=0,1).
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11. Suppose first that ¢, # ¢, ;. It then follows from the definition
of g(z) that

(13) tredr, (j=0,1).

In view of (3) and (10) for n = n;, n; + 1, we have
(14) JG) =t <e (j=10,1).
From (12), for z =#;(j = 0, 1), and (14), we obtain
(15) it —c| <26 (Gj=0,1),

and hence

142

16 ltF —tfl <de=d ——— .
(16) I to 11 < 4e 2\/2+4
Now

(17) jt}k—c,,l{ >d— 2¢ (j=0,1),

because otherwise, in view of {15), we should have [c —¢,| <d, contrary
to the definition of d. Likewise we must have

(18) el >d—2e  (j=0,1).
Because of (17), (18), and (13), lc, — ¢, 1| > (d — 2¢) V2 and
(19) it — ] >(d—2eV 2.

According to (16) and (19),
— 4vV'2
d—28)V2<d ———,
22 4+ 4
dv'2
which implies that ¢ >-——=—— | contrary to our choice of ¢. Hence, if
24/2 4 4
Co, 7 Coi1 > then ¢ €0(f).

12. Suppose next that ¢, = ¢, ;. It then follows from (2) that

t;k = cn1+1 (.] = 0> 1) s
and from (3) and (10) that
(20) () — pua| < (j=0,1).

On the other hand, (12) implies that

(21) fty) —cl <e (j=0,1).
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From (20) and (21) we infer that |¢ — ¢, ,| < 2¢ <d, contradicting the
definition of d, and hence ¢ €¢6(f).
This disposes of the case that ¢ is finite.

13. Now suppose that ¢ = oo. Then F is a bounded set. It follows
from this and the way in which g(z) was defined, that g(z) is a bounded
function on S, and (4) now implies that ¢ € O(f) .

§ 5. The construetion of f(2)

14. To complete the proof of the theorem all, that remains is the demon-
stration of the existence of a function f(z), meromorphicin D, satisfying
(4). This is accomplished by means of approximation and interpolation by
rational functions. We use a modification of a method devised in [3].

Let K, be a Jordan curve in the interior of J, having no point in
common with By, UB;;. For every natural number n, let K, be a
Jordan curve containing J, in its interior and contained in the interior
of J,.,, such that

K.N AO,n+1 = {b()n} s K.N Al,n+1 = {bln} .

Denote by D, (n=0,1,2, ...) the set of all points lying either on
K, orin the interior of K,, and put
(22) E,=D,US,.,.

15. We now define, by induction on n, a function ¢.(z) on K. and
a rational function r.(2).
Let
[ 0, z€Dy;

) Z\:
P g, es,.

The function ¢(z) is evidently continuous on E, and holomorphic at all
interior points of E,. Because of the nature of E;, there exists (cf. [6,
pp. 260—261, 313]) a rational function ry(z) with no poles on D, US,
such that

70(2) — @ol2)l < 1 (2 € L),

and
7o(bj1) = 9(bj1) (j=0,1).
Now suppose that # > 0 and that rational functions 74(2), 74(2), ...,
r,_.(z) have been determined so that ry(z) + 74(2) + ... 4 r._1(z) has

no poles on S and
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(23)  Tu_a(bjn) = g(bjn) — [ro(bjn) + 71(Bjn) + .-+ 7 s(bi)] (G =0.1),

where the expression in brackets is missing in case n = 1.
Let

(24) [ 0, 2€D,;

gn(2) = (P } : ,
(25) 9(z) — [re(z) +11(z) + ...+ ra®)] . €8,
It follows from (23), (24), and (25) that ¢a(z) is continuous on K, and
holomorphic at all interior points of E,. As before, there exists a rational
function 7.(2) with no poles on D, U S , such that

1
(26) ra(z) — @a(x) <5 (2 €Fn),

=

and
7’n(bj, ni1) = g(bj, nt1) = [70(0j, ni1) + 710 ny1) oo F Tu1(bj, n41)] (j=0.1).

This completes the induction.

16. Set

Suppose that z € D, . It follows from (24) and (26) that

1
(27) Ern—l-k(z):<ﬁ (k:0,1>2:"')'

Since 7,,4(2) (k=0,1,2, ...) is holomorphic on D,, (27) implies that
z 7.x(2) is holomorphic in the interior of D,, and hence f(z) is
k=0

meromorphic in the interior of D, . Every point of D, however, is in the

interior of D, for some value of n ; this is so because of 2) in the definition
of annulation, and because of the way in which K, was defined. Hence,
f(#) is meromorphicin D .

17. Let 2 €8,, where n > 1. Then by (26) and (22), we have

1
(28) irn—l(z) — ¢n-1 (Z) < :)7:1 .

According to (25),
(29) Pn1(z) = g(2) — [ro(2) + r1(2) 4 ... 4+ 7, 2(2)] -

Combining (28) and (29), we obtain
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1
(30) o) + r1(2) + ..+ 1aa(2) — 9(R)] < Sz -

Now (30), (27), and the definition of f(z) yield
= 1) + @)+ (2) = 9R) F )] [ @) 4

which implies (4).

§ 6. A function f(2) with preseribed ©°(f) and O(f)

18. As we remarked in § 1, for every function f(z) that is meromorphic
in D, 6°(f) and O(f) are closed subsets of 2 such that @°(f) C O(f).
We are going to show that ©° and @ are subject to no further restrictions.
Specifically, we shall prove the following:

Theorem 2. Let F and F, be closed subsets of Q such that

FO
Then there exists a function f(z), meromorphic in D , such that O°(f)
and O(f)=1F .

CcCF.
:FO

19. If Fy = F, then Theorem 2 reduces to the first part of Theorem 1.
We shall therefore assume that F, C F .

As in § 2.6, we may assume that F does not contain oo as an isolated
point.

If F contains co, but not as an isolated point, whereas F, contains
o0 as an isolated point, we can reduce this case to the case that neither F
nor F, contains oo as an isolated point by taking a finite point ¢ € F,
such that { is not an isolated point of F and proceeding as in § 2.6.

20. We define an annulation 4 and, in case F, is not empty, a sub-
annulation A4, , as follows.

Let
O<y <o, <... < 1 <tn<...<1,
and
limea,=1.
Put

an-—l + Un

fn = p (n=1,2,3,..).
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If F, is not empty, we take J,,_; (n =1,2,3, ...) to be the circle
with center at the origin and radius fy,_;, and Jy, (n=1,2,3,...)

—xi 3t
to be the ellipre whose major axis extends from ay, e * to ay,e *
ai Sai

whose minor axis extends from «,,_,e* to «,,_ e * . We then set

A=1{J), Ag=1{Jo 1} (=1,2.3,..).

and

In case F, is empty, we set

A={,) (m=1,2.3,..).

21. Our next step is the definition of a skeleton S .

[¢4
Let g, = EO, and denote by B, resp. B; the rectilinear segment
extending from f, resp. — f, to 1 resp. —1; the initial point is included,
the terminal point not.
We take 7' 5, ; tesp. T, 9.1 (n=1,2,3, ...) to be the closed
rectilinear segment extending from f,,_; et resp. fon 1€’ 10 oy et
Sai
resp. fBo._oe¢ * ; we similarly define 7 ,, resp. T, (n =1.2.3,...)
3xi — i 31 — i

to extend from f,, ¢ * resp. By, € *
If F, is not empty, put

to ﬂ?n—l € * resp' /32,,_16 *

S=BUBUUJIUWU T UL,

=1

In case F, is empty, set

S = B,UB, U (

n

s

Ju) UU T U (U T3).

1 n

22. We now show how to define a continuous function ¢(z) on S.
In case F, is not empty, we take

to be an infinite sequence of finite complex numbers in F such that {c,,_;}
is everywhere dense in ¥, and we let

Cos Cqs Cgs -vvsr Cops

be a similar sequence in F — F, that is everywhere dense in F — F| .
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If F, is empty, we consider merely a sequence
Cos Cy Cgs ooy Cgpy,

in F that is everywhere dense in F .
If F, is not empty, set

g(z) — {czn—l s 2€Jy  UT oy U 5,  UTy 5, UT, ,,:
Con » 2€Jy,;
m=1,2,3,...).
But if F, is empty, put

07 ZGUTOn:
n=1
g(Z): ]-: ZGUT1n7
n=1
Con » 2 € J,, m=1,2,3, ...).

On the segments of B, and B; where g¢(z) has not yet been defined,
we define g(z) by means of homeomorphisms like those described in § 2.7,
and thus obtain a continuous function ¢(z) on S.

23. Now it is not difficult to see that a function f(z), meromorphic
in D, can be constructed after the pattern of § 5 so that

(31) lim max  [f(z) — g(z)| = 0.
n— o an<lzf<an+1
€S

If F, is empty, then clearly O(f) = F . Furthermore, @°(f) is empty,
because every circle @ in D with the origin as center and a sufficiently
large radius, intersects both 7', and 7', for a suitable n. By the de-
finition of g(z) on T,, it follows from (31) that every @ sufficiently
near (' contains a point at which f(z) is very close to zero as well as a
point at which f(z) is very close to one, and hence f(z) cannot tend to a
limit on any sequence of such circles ¢ tending to C .

If F, is not empty, it is again clear that O(f) = F , and that every
value ¢ € F, is approached by f on the annulation 4,. The way in which
g(z) was defined on 7, in this case evidently guarantees that no value
in the complement of ¥, can be approached by f on a sequence of circles
@) with the origin as center and tending to €', and hence O°(f) = F,.

24. Remark. We have also succeeded in characterizing the well-known
sets @(f, €Y% and @(f) for a function f(z) meromorphicin D. Our results
in this direction will appear elsewhere (Math. Z. 80 (1962), 230—238).
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