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The distinguished boundary sets and value distribution of funections
of two complex variables*

1. The problem of function theoretical characterization of domains in the
space of two complex variables

Every simply connected domain with at least two boundary points can
be mapped onto the unit disc. Therefore, the study of value distribution
of an analytic function f(z) in a simply connected domain can in most
cases be reduced to the investigation of the behavior of the function f in
the disc. The situation changes completely if we pass to the case of several
complex variables. Two domains of the z;,2,-space, 2z, = 4 i yi,
k =1,2, cannot, in general, be mapped onto each other by a pair of
analytic functions ¢u(z,,2,), & =1,2, of two complex variables;
various domains can exhibit completely different behavior of analytic
functions f(z ,2,) defined in these domains. For instance, in the case
of the hypersphere!) § = [ |52+ |22 <1] to every point (20,2

of the (three-dimensional) boundary § = [ |2+ |z,2 =1] a fune-
tion f exists having the property that
(1) FEL2) > fE 2, (az) €9 — 6,2,

while in the case of the bicylinder € =[ |z] < 1, |z,] < 1] every f(z;,2,)
holomorphic in €, continuous in €, assumes the maximum of its
absolute value already on the two-dimensional subset [ || =1, |z,] =1]
of the boundary. It arises the problem to study the »functional theoretical
structure» of domains, i. e., to investigate the behavior of analytic functions
in different types of domains and to classify them. A method to carry
out such a study (followed in the present paper) is to introduce some special
domains, namely analytic polyhedra, i.e., domains bounded by finitely
many analytic hypersurfaces 2).

* The paper has been done under the grant of the National Science Foundation
No. 21344 and Nonr 225(11).

1) German characters are used for manifolds. The superscript »» indicates the
dimension of the manifold for n =1,2,3.

%) In the following, analytic hypersurfaces will stand for segments of analytic
hypersurfaces and analytic surfaces for segments of analytic surfaces.
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(A polyhedron B similar to the bicylinder has the property that

the analytic function f(z;, 2,) , continuousin %, assumes the maximum
of its absolute value on the (two-dimensional) distinguished boundary
of % . Concerning various investigations of functions f in polyhedra,
see [2]—[9].)

An analytic hypersurface §® is a one-parameter family of analytic
surfaces 32(4), i.e., § = UJ%4), 4 real. We assume that a second

analytic surface 32 intersects U 3(4) (or a combination of a finite

A
number of §? ) in a closed curve which forms the boundary of the segment
2. Since in every J%A) andin T2, f(z,2,) is an analytic function
of one complex variable, one can obtain theorems of functions of two com-
plex variables by applying the results in one variable twice. In particular,
in this way one derives a generalized Poisson—Jensen formula (see [6]—
[8]) expressing log |f(0,0)| in terms of the values of log |f| on the
(two-dimensional) surface &2 = [Ji(A) and in terms of certain func-

2

tionals connected with the pole and zero surfaces of f. Here i'(4) is

the boundary curve of J*(A). Suppose that we have a one-parameter

family F%(s) = U il(s, 1), 0 <s =s < o, of surfaces where il(s, 1)
A

is the boundary curve of s, 1) (see above). The previous consider-
ations yield relations for the growth of |f| on a three-dimensional mani-

fold UJ2(s) = ¥ and certain functionals connected with the zero and

pole surfaces of f. In this way, we obtain an analogue of the first
Nevanlinna theorem.

Remark. We note that our approach yields relations for the rate of
growth of |[f| on the three-dimensional manifold § and not in the
whole four-dimensional space.

Results of this type are discussed in [7]—[8], and in § 3 of the present
paper. In § 4 we show that, using a similar approach, an analogue of
Nevanlinna’s second theorem can also be derived.

While in §§ 2—4 we consider analytic hypersurfaces §* = U J*(4) ,
where $2(4) N S%(4y) = 0 for 2 # 4,, we introduce analytic hyper-
surfaces in § 5 where all J?(4), 0 =4 =1, have a common intersection
point, O . In this case we consider in an analytic hypersurface a function
f(z ,2) which in every lamina J%*Z) omits two values. Using the
Schottky theorem, one obtains bounds for |[f| in terms of its value at
the point O in a domain bounded by §* and another analytic hyper-
surface.

Finally, in § 6 we discuss the connection between the coefficients of the
series development of f and the regularity domain of f. In addition
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to the classical methods the use of the theory of orthogonal functions for
this purpose is discussed.

The methods used in the present paper can be generalized to the case
of n variables, n» > 2. The author will discuss the generalizations
in another paper.

2. A class of domains in the space of two complex variables
2.1. A segment of an analytic hypersurface. Let 3)

(1) h(s:Z,,t,,8) = h(s;2,,t), x=1,2...,m, k=12,

t, =s, €% . R (s;0,t) =0,

be a family of single-valued, continuously differentiable functions of complex
variables 2;‘, t,, t, and continuous in s, 0<s,<s< o, which
are defined in a sufficiently large domain (1a) [hypothesis 1a]. For every
fixed ¢, the functions #,(s; 2}‘ ,t,) are holomorphic in [ﬁx} =r and
hy(s;0,t,) is an entire function of the complex variables ¢, ,%, (1p).
For every fixed f,, (1)is a one-to-one mapping of {Zx} =< r onto the
analytic surface

@) 2t) = [z =h(s:Z, 6, E)=h(s:2,,t)], =—=12...,m,

(1e). The boundary curve i f) of J2(t,) is the image of ]2,4[ =r
(1d). The positive direction on il(¢,) corresponds to the direction for
which |Z,| <r lies on the left-hand side of [Z,| =r if argZ, in-
creases (1e).

Let ¢ =s, %, where s, is a fixed value. For a given x the
family

(3) \0/5;2*(8;: eilz) ’ X1 g X g X2

has the following properties:
(4) '\C}i(s,« eilm’) n ‘\C}i (Sz eizz‘l) = g b X1 g y < x»:y < Ko o

%) In this section and in the first part of § 3 the quantities s, s, and r are
constants. In the second part of § 3 (see p. 9) and in § 4, we assume that s, and
r are monotone functions of s and we investigate the behavior of certain funec-
tionals (described in the following) for s—co. We indicate in some cases that
various sets and functionals depend on s, s, and #, but to avoid to cumber-
some a notation, often we omit to do this.
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There are two possibilities:

(5a) S%(s, 1) () S(s, €72) = O
or
(5b) S¥(s, 1) = (s, €2) .
In case (5b) the sense of direction of lim il(s, ex) is the same as that
of (s, e"). Yo o2

Definition.
© ¢ = 6232(82 ei1x)

X=Xl

is called a segment of an analytic hypersurface. Ji(s,e*<) is called a
lamina of ¢} .

Remark 1. In addition to hypersurfaces satisfying the condition (4)
there exist hypersurfaces such that different laminas have intersection
points. See § 5 and § 6.

2.2. The boundary of the domain %B(s). Let B =B(s) denote a
bounded domain in the z;, z, -plane.

We assume that the boundary of the domain ®B(s) consists of finitely
many segments ei , x=12,...,m, and of a segment of a hypersur-
face B3. B3 is a connected manifold which consists of finitely many
continuously differentiable (three-dimensional) submanifolds (2a).

Let
(7) %Zﬂzeinei, xFEp, x=12...,m,

(2b). Further we assume that

(8) & =U3LUENK = N i
u=1 Ll S 25 S 252
uFn
(2¢) where
:1 i) — ! iz, 1 iz,
(9) I/(Sy € J(K) - L=J11zlu(8x € /') U tz(sz € l')
i;#;:

is the boundary curve of (s, €*<) ; here

(10) (s, %) = Qs =) Ney, = #p,
(11) (s, €)= Jils, €™) N 0

(24d).
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2.3. The intersection T%*s) = BW(s) N[z =0]. Let
(12) Ts) = [z, =0, 2, =p(s,0)] =B6)N[2 =0]

be a one-to-one image of [{| =<s onto T2s), p(s, ) is analyticin ¢,
and O € ¥%(s) (3a). Its boundary j', the image of || = s, lies wholly in

bl = Uel (3h).
x=1

We assume that the intersection ¢ N[z =0] consists of one line
segment

Xed

13)  §s) =€) N[z =01 = U [ e Nlz =011,

X = Xx3
Tl = Yoz = Xos = Xz s

(8c). Here g, and yx, are chosen so that

Zx4
U s, e™)
X3 = Xx3
is the part of e} consisting of those laminas which include the points
(0,2,) of 2.
We assume that a lamina J2(s, ex) contains at most one point

(0,2) (3d). Let
(14 i) = U i)

be ‘an oriented differentiable curve in the z, -plane (3¢). jl(s) consists
of points (0, zy =s,€%), 7,.= 7. = fu -
By
dw(s ; z,)
w(s ;zy) , w(s;0) =0, ——— > 0
d22 |z,=0

we shall denote the function which maps T2(s) onto the disc [{] < s
(i.e., w(s;z,) is the inverse of z, =p(s; ¢)).

3. An integral formula for the value of |[f(0,0)] of a
meromorphie funetion f(z; , z,)

Let f(z,2,) be a meromorphic function in [ |z < o, k =1,2],
which is holomorphic at the origin. According to (8b), ¢ =w(s;z,)
maps T3*s) onto [{|<s.
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By the Jensen formula
(1) log |f(0,0)] =
1 & 2 s
— Z f log |f(0, s, €%)| dQ(s ; 5, €%=) + >’ (—1) V log | !
27 <=1 ’ ' k=1 Aku( s)| -
%(8)
Here A4,,(s) are the images of the zeros of f(0,z,) in [{|<s, and
4,,(s) are the images of the poles, Q(s;2,) = arg[w(s;z,)].
By (2.1)%)
(2) f[O 2 w(s ; sz eiXk)] = f[hr:(s ; 0 2 87. eily_)] M
Thus
(3) log |f[h,(s50 s, €)] =
1 2.7 .
log |f[k(s ;7 €7, s, €%)]| d (—1)F > lo .
5, | log Ik Ndg + 2 (1" 2 g)aku i)
=0
The a,,(s, ¢*) are the zeros (k£ =1) and poles (k =2) of
fllus s 2, , sce™)] in L] <r.
Combining (1), (2) and (3), we obtain ?)
(4) log [f(0,0)] =
x4 27
/ / 1 h( Ly A2(s s, e dy d
zq i, - ~ >
m?,l og [flh(s s r(s) €7, 5, €7)]] iy, XA
%x3 ®=0
Xl
I n 7(s) dQ(s ; s, ')
=N gy .
T 27 kél L) ; ;1 / log ey, (s, €%)| dy, 1.

Xx3

2 S
+ _‘, (_...l)kz log Tk(s): N

k=1 w 1

Following the Nevanlinna procedure [21]—[22], we write (4) in the form

log |f(0, 0)] + m(F*(s) . [7) + N(F*s), ™) + Pls. [

= m(F26) . f) + NG2s), /) + Pls, /) = TEs) . /),

we shall write f[h,(s; Z , 8, exp (7 z,))]

(5)

4) For brevity’s sake instead of
f[hln('s H Z 5 8, OXP (7’ Zy)) s h2x(8 5 Z » S, €XP (" X/))] .
) It should be noted that in the formulas (4.2) and (4.3), p. 33, of [12] the factors

1/(4 %) and 1/(2=xn), respectively, are missing.
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where

(6) m(F( S) f

dQ(s ; s, e'*x)
4 7'[2 Z log ?f[k S 7' "I 8 e"‘)][ dx-mﬁ-ﬁ dxx d(p >

o R / 5

7(s) 'd.Q(s ; 8, ex)
S dy,. .
am s, €x) | dy ‘

%

S I
— \ ‘4:
(8) Pla.f) = Ylog| 7
Remark 2. Tt should be noted that
X3
x2 =3 _/' h(s 2 7 dQ(s ; s, ex) d
O W@ ) =5 X[l Sl Do, ) = g
X362
X3

dQ(s ; s, e'"x)

= 3 | N s 2 s e o T

_S'Z?l 3
X2

(11) P(s, f) = Ns:f(0,u(s; 0)].

Repeating the usual considerations one obtains the analogue of the first
main inequality.

Theorem 3.1. Let f(z,,2,) be a meromorphic function of two complex
variables which is regular at the origin. Then

(10) N(F¥s)

) w5 )+ Wl ) Ee ) = @0 400,

f(0,0) # «,
where

.‘.
(13) (r,s) = log x| + log 2.

If f(0,0) —« = 0, the formula (12) has to be slightly modified.

Smce the proof is exactly the same as in the case of one variable, we
do not repeat it.

Until present s, S$,, » =1,2,...,m, and r have been some

fixed quantities. From now on we shall assume that

R(s \
(14) s, =sk(s),r:R(s)(lim§ — A< oo, 0<p<on, d>0
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are continuous, increasing functions of s; the domains %B(s),
Sy = s < oo, have the property that B(sy) D W(s;) for s, > s, . Further
we assume that the distinguished boundary surfaces ${*(s) change
continuously, forming a three-dimensional manifold

(15) P = U)
m(J%(s) ,f) is a functional which represents a measure for the growth of

+
log |[f| on { for s— .

(16) € =U Ue
s=sq #=0
is a four-dimensional domain in the z ,z, -space. If we assume that
(17) (Ues) N (Uesy)) =9 for s #s,,
x=1 x=1

N(§2(s) ,f) can be considered as a functional »measuring» the density of
pole-surfaces in €.

Finally, P(s,f) is a functional connected with the number of poles
in the domain

(16) 72 =0, 0<|zp <.

Repeating the usual considerations, we obtain the relation

(17) (f—a)t +N s) . f—a + Pl (f—a)
= ),f) a),

T(3%s),f) = $),.[) +N°2 8).f)+ P(s.f),
(18) h(r(s) ,a)] = oga—l—logQ

an analogue of the first Nevanlinna theorem.

Remark 3. It should be noted that in the case m =1 it is possible
to show that the growth of N(J(s) ,f) is essentially the same as the growth
of a functional which measures the density of lines

(19) [fz,2) =alN Ej S2(0) , a = complex constant .

In Section 4 an analogue of the second Nevanlinna theorem will be
considered.
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4. An analogue of the second Nevanlinna theorem

In this section we assume that m =1. We set s =s, x5 =yx.
In addition of considering the functional m(JF*(s),f) (a »measure» of
the growth of |f] on T =U §%s)) and N(F%s),f) which meas-
ures the density of pole surfaces in the domain € (bounded by ),
we can consider the analogous measure in three-dimensional sets lying
inside €. A set of this kind will be introduced in the following:

Let hy(s;Z,,s €% be again the function pair (2.1) and J(s ¢%) be
the lamina (2.2). By Ri(se*) we denote a subdomain of Ji(se”),
which lies inside of Ji(se*) and is bounded by

(1) Ti(s€*) = [z, =h,(s;7(se*) e, se¢?), 0<p=<2a], O0=y=2am,
(2) 7(se) = 7(s;s€r),

(3) r(ser) < r.

£51

Fig. 1
The intersection of §* and ¢° with the hyperplane y, = 0
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Definition. The integral

27

* 1 dQ(s ; s e'*)
1
) / o8 [r(s e'r) — r(s €'%) dy dx

=0

will be called the pseudo-distance between 1ii(se™) and T}(se”*) and
is denoted by

(4a) P(Fi(s) , Ri(s)) -
Here
) Ri) = U Tils o).

Concerning $i(s), see (2.8).
Let f(2;.,2,) be a meromorphic function of two complex variables
in [|z] <o, k=1,2], which has the following property: The

function f[A(s ; / ,s e7)], see (2.1), has the development
(6) Sflh(s; Z,sen] = Co(s €7) + cy(s €'%) Z+ ..., [Zi =r.

Except in an at most denumerable set of points (s, %), co(se™) # 0
and ¢ (s e%) have the following properties:

2
+ . iy
(7) / log 1, dQ(S’Se)dnglogs, 0<sy=s<< ®.
[e(s €7)] dy
=0

where A << oo is a positive constant (4a).
Let x,,v=1,2,...,q, be ¢ constants different from each other and let

1
[ iy — —— R
®) Fals o) = max [ ools ) — a} '
co(s €%) = flhy(s;0,s¢€%)].
We assume that

27

+ iy
(9) / log Ry(s €%) d'Q((; ) dy = Alogs, s =s< o
X

x=0

(4b). We assume that for f(z, , 2,)
(10)  T[r, fl(s; Z s8]l = Tlr, flhn(s; Z s S €%) hys(s Z , 8 €7)]]
< Arhsh
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holds for 0 A, < 0o, A < o, where
(11) s = 8(r),

and S(r) is the function inverse to R(s), see (3.14) (4c).
Theorem 4.1. Let

(12) ® = URis)

$=8g

where  Ri(s) s the surface given by (5). Let
(13) P(Fi(s), Ri(s) = Alogs, 4 < o.

Let «,, v=1,2,...,q, beq constants different from each other.,

We assume further that f(z,,z,) S a meromorphic function of two
complex variables regular at the origin, with the development (6) in the lamina
S2(s ') . Here the coefficients co(s €%) and ci(s €%) satisfy the ine-
qualities (7) and (9).

In addition, let the characteristic functions T[r , flh(s; 7, e”)]] satisfy
the inequality (10). Then

(14) (g—2) T(RIG).f) =

v

NRIs), (f—x,)) + Alogs, A< .

M»n

I

Proof. We consider f[hl(s;il,se"")] for fixed s, y as a func-
tion of the complex variable 21. By (IT"), p. 69, and (20), p. 68, of [21]
it holds

(15)  (q—2) T[7(s €7) , flhy(s ; Zy , 5 €7)]]
< 3 Nl ), [flinlo s By 5 9] — 2]

+ 1 + i +  +
+ 56+10gW—{— 6 g log Ry(s ) + 4 log log R

2q + 1 N .
+2qlog7+4log m-{—SlOg Ir(s ; s )]
1

(s;8€*) — r(s; s e

+
+610gr

+ .
+ 8log Tr(s ; s €%) , flhy(s 5 Zy , s €%)]] .

Here

R = max (|l«,]) and 6 = min (1, jx,—«,]) .

r=1,2,...sq v;lég
vy u=1,2,..q
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We apply the operation

1 Qs ;s e"‘)
_ d;
2 [ ’

to (15). In accordance with our hypotheses this operation is admissible for
sg=s<<oo. Using (3.9) and (3.10), we obtain that the left-hand side
becomes the left-hand side of (16); further, the first term becomes the first
term of the right-hand side of (16). Thus,

(16)  (¢—2) [T(Ri(s).f) — P(s. f

)
27 .
L, ~ _}_/1 1 d_!?d
= %N(m‘(s) Va3

9 de + + R
; log Ry (s e'%) £ dy + — log log R dy dy
2=0 0

+( . q) dQ f 1 d.Qd
56+—q g 5 dy + log s s o) dy U

2=0

1 aQ
+ log [r(s;s 6”‘)' dl + - 1 g r(s;se*) — (s ;se*) d,{d

11—0

4 [+ ,- L dQ
_I_;; OlogT[r(s;sez),f[hl(s;zl’sel)]];i—xdx,
i
an d.Q(s ; 8 e'r)
dy = dy

According to hypothesis (3a), the function { =w(s;z,) maps the (simply
connected domain) F3(s) onto the disc [{} << s,see 2.3 p. 7. According
to our assumptions argl =0 . If ( wvaries along the circle in the
{ -plane, its image in the 2z, =0 plane varies along the boundary of
F2(s) . Since T?(s) contains the origin and the mapping is one-to-one,
it follows that

27
dQ(s ; s %)

(17) 7

dx = 2x.

=0
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Therefore, the fourth and fifth terms are constant. By (7) and (9) the
second and third terms, respectively, are majorized by Alogs. By (3),
(3.14) and (17) the sixth term is majorized by a constant, while the seventh
term is smaller than A4 logs. By (4) and (13) the eight term is smaller
than A4 logs. Finally, by (10) the same holds for the last term of the
right-hand side of (16).

5. Bounds for holomorphic functions of special classes

The present section will deal with the second approach in the study of
functions of two complex variables, especially the application of the Schottky
inequality and certain theorems on schlicht functions in the theory of
functions of one complex variable.

Through every point of the z;,z, -space, except the origin, passes one
and only one plane

Poa) = [29 =02 ], P0) =[2 =0].

Remark 1. Through every point 2, 2, 4, 2 >0, of [2? + a2
+ys=1,2 >0,y =0] passes one straight line R2(x) N[y, =017,
a = (@ + iy) /2. The intersection of every plane P2(x), x # 0,
with g, =y] # 0, is a straight line, 2, = & — 6 ¥}, ¥y = gy +
XYy, & = og ki, o

Let 02 be a simply connected domain in the plane, O €02, « ¢ 02,
and let q', the boundary of £2, be a differentiable curve of
finite length.

Let

M 2 = UL, =], Bsen) = [z =sein].

The domain

@) D=[U TIN[la=r],

lxl=s

to be considered here, is bounded by the segments of analytic hypersurfaces
9 and

27
3) B =Ulz=reIN[lnl =sr],
=0
see Fig. 26), pp. 16 and 17.
6) The straight lines marked by 1, 2, 3, 4, 5, and 6 correspond to the inter-

sections of [ Ra) , |z] < 7] with y, — 0 for « = ¢, 1, (4—4)/A/17 , —i, —1,
(—4-47) / '\/ 17 , respectively. In Fig. 2b they are intersections with y, = 1/4 .
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R3]

Fig. 2a
The intersection of ® with the hyperplane ¥, = 0

Theorem 5.1. Let f(z,,2,) be an analytic function of two complex
variables, z,z,, holomorphic in ®D; f(z,2,) omits in every [P(s ™),

1z, =<r] the values Ay(y) and A,(x), Ay(x) # Ax(x), and has the
development

(4) f(21,25) = Qg+ a9z + A 25 + ...
at the origin. Then the inequality
(8 212 — n,(2)) 2
) log [f(ey, 29| + Nlog| [t Y
27
! r+[21[l:+}a’ — A,(7) C
< — log| %~ + 7| + log Ay(x) — A4(2)]
‘mo/ {r— = ‘Az(x)“Al(x)' : '

(8 2, * — |2*) dy
s 2,[* 4 [22[* — 2 8 |5 23] cos (x — arg z,)

+
+ log [4,(x)| + log 2}
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£t

i

Fig. 2b
The intersection of @ with the hyperplane y, = 1

holds for f(z;,2,), when (21,2,) €D . Here n/z) are the zero points

of flz,z0) in 2] sz
Proof. We consider first the function f(z, , z,) in the lamina [ R2(s e*) ,
[zl =r], 1i.e., the function

(6) F () = f(z1,8€%2) = ag+ (@9 + s€%ay) 2 + ...

in the disc |2,/ =7 . Since F (2,) omits the values A;(y) and A,(y)
in Izli é r s

_ Fz(zl) — Ay(%)
 Ay(xn) — A’
omits the values 0 and 1 in |3 =r.

Applying the Schottky theorem and using the Ahlfors inequality [1],
[18] p. 294, we have

9

(7) G (z) (0 = 14a(2)],
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A

(8) log |FZ(Z1) — Ay(2)]
7+ [2]

r— 2]

+
{log |G (0) + 7} + log |ds(x) — ()], |l <7

Consequently,

r+ 7| +
(9 1F,e)] = o) — Au(z)l exp | —— ™ (log |G (0)| + T)| + [41(x)] -

Since
rtlal t
e Qog 16,0 +7) > 1,
it holds
+ . +
(10) log |f(z . s €*2)| = log |F,(2)]
T |z F + +
= o og 10,0)] + 71+ log [4x() — Ai(x)] + log |41()| + log 2.

The intersection

(11) DNz =ner], ner =2, n<r,

is the disc 62 = [ |z5] =7 s8]. In @? the function f(z,2,) becomes
(12) H(z) = f(ri €7 ,2), 2] =183

it holds

(13) H(r,se*) = f(r, €7, rs€%) = F (r;€9).

The function H(z,) is a holomorphic function of a complex variable
which, at the boundary point z, = 7;se€%, assumes values for which
we obtained the upper bound (10). Applying the inequality of Poisson—
Jensen yields

(5 |24 — ) =

s [21] (22 — m,(21)) |

(14) log |f(21, z5)| + D log

1 r4 2]+ - +
=5, ——— log |G(0) + 7| + log [4,(x) — 41(x)| + log [4,(2)]
0

r— |z

(s* |21 — |zo*) dy

+ |2P— 2 |21 25| cos (y — arg zp)

1
+log 2 1 man

Replacing 2] by 2z, and G, by the right-hand side of (7) yields (5).



S. BErGMAN, Functions of two complex variables 19

Remark 2. D+ N, N =[|a <e], e>0 sufficiently small, is
a nonexistence domain. By the Hartogs theorem [20] every function
regular in D + N must be regular in [ || <r, [z <sr].

The upper bound for [f(r €7, 8,7 €7)|, 0 = =27, ry <71, 8 <S$,
which one obtains using (5) holds in [ |z] <7y, [2] <s; 7 ]. On the
other hand, one can construct functions 1/ (2 — k(2,)), e.g., h(zy) =0
which are infinite at (0,0) and regular in @.

Remark 3. For simplicity sake we consider here 3 which is a sum
of segments of analytic planes $%R2%(x). One can generalize our results
replacing 3 by = 9] 5,]~32(oc), where PB(x) are segments of analytic

i
surfaces z; =p(x, z,) , ;illd P, 2,) satisfy certain conditions. In this
case %2(00 can have several intersection points.

We proceed now to the investigation of functions f(z; , z,) in a domain

(15) B = UDHy), O €D r), QHx)c PBHx),

a€H?

where $? is a simply connected region situated in the part

Q10
x + —

A

(16) 0<d < < &1

of the « -plane, see (6).

Definition. A function f(z;,2,) which has the property that in
every Q2x) of the domain B, see (15), it assumes every value not
more than once will be called a function of the class S@), f€8(8).

If f(z;,2,) has the above indicated property only in those Q3(«),
which constitute the part 9 = [J Q%x) of the boundary of 9,

a€qt
we shall write: f€ S(®3).
We assume that $D2(x) is simply connected and that the boundary
curve of its 2, -projection 7) lies in the ring
1

< .

IA

(17) 0 <e= Iyl

Further let 2z, =w(x;), w(x;0) =0, be the function which maps
the disc |{] <1 onto the projection of £0*«) onto the z; -plane.
Theorem 5.2. Let f(z,%), f€SW),

(18) f(21:2) = ayozy + a2+ ..., (21, 25) €NR(OO),
be holomorphic in the (closed) domain gs). Then the inequality

7) 2z, -projection = projection on the plane z, = const.
8) 9(0) the neighborhood of the origin.
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N [Z(oc 521)]
(19) /e 0) (o + o o) | (52 7 e
‘E(zx §z1)i

= Wl 2| = ('l 0) (@ + &) (T 7
dw(x ;z)|
oczi_:, wi(x;0) = w:l;z —0

N o +xay # 0,

where T(x ;z) s the inverse of the function w(x ;) and z #0.
Proof. In accordance with our assumptions every intersection Q%«)
can be mapped onto the unit circle. Let

(20) wx; ) = w(x;0)¢+ ...

be the function element of the mapping function. The development of
flwle; 8 aw(w; )] in [=1 is

(21) Slwlx 5 8) s xw(o 5 O)] = (age + v agy) w5 0) T+ .o

According to our assumptions a;p + xay # 0 and 0 < |w'(x;0)| < o©.
Since f[z(w) , x z(w)] is a schlicht function, it holds

i
(32) ol O) (o 4 o ) (e = el 0, vt s £
|l
< kz(J'(O¢;()) (“10'*‘“%1);(1_—?2.

See [15] p. 88. Setting & =2z,/2,,  =C(2/2,2), we obtain the
inequality (19).

Theorem 5.3. Let f(z,2), f(0,0) =0, be regular in the domain
D, see (2). If fE€S®) and f has the development (18) at the origin,
then the inequality

(23) log |f(21, 22)] =
! —'l—lL 12 a4+ s € ag | |z (82 122 — [22B) dy
2a) 8T = ® Pt 22— 28 2] 2 cos (y —argz,)
x=0
s = x|,
holds.

Proof. The function f(z,,se*z;) is schlicht in the disc [z =7
and has the development

(24) flzss e z) = 7 (a0 + g 8 e”) + zf (o) + -

at z; =0.
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According to the known results about schlict functions of one variable,
it holds

(ayg + gy s €%) 7% 2|

(r — Ja)?

(25) fle,serz)| =

see [15] p. 89. Let (21,2)) be a point in the disc |z,] < s |2}/,
intersection of ® and z; ==z]. At every point z, =s [2}|e* of the
boundary, the inequality (25) holds. Therefore, by Poisson—dJensen
formula and replacing 2}, zy hy =z, 2,, we obtain the inequality (23).

6. Some properties of the funetion f(z,,%,) (given by its function element)
in a bounded domain

The generalization to the case of two variables of relations between
the coefficients a, of the series development of

and the location of the poles of f (Hadamard’s theory) is discussed in
[13]9). In the following we continue these considerations.

We assume that the origin in every plane (5.1) coincides with
2y =2, =0. Let f(?,%2,) be a meromorphic function regular at the
origin. In the plane R2%(«), sce (5.1), the function

feel

(1 f = w2
m,n=0
becomes F,(z;) = f(;,x2) a function of one complex variable
© N ©
¢ V P N
(2) F. () = Z 211\ (Z ANy & ) = Z 21 an(x) -
N=0 »=0 N=0

Following Hadamard’s procedure in one variable, we introduce the functions

(3) L(x) = lim lim [DE(B)IY,

f—~>a N—>ow

9) The results in this direction can be generalized to the case of harmonic functions
and solutions of differential equations and systems of equations in three and more
variables (see [13]).
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ay(p) ay1(B) e ayg(B)

an1(B)  anio(B) v Oypa(P)
Ga) DB =

aN+,4(18) aN+H+1(/3) <. aN+2,4(/3)

With a meromorphic function F,(z;) of one complex variable 2z,
one associates pairs of numbers and integers (on,kn), 7 =1,2,...,kn,
where . are radii of those circles on which the poles of ¥, are located,
and k. is the number of poles (counted with appropriate multiplicity)
which lies on the circle |z,] = ¢» (Hadamard [19] p. 120).

In order to apply Hadamard’s approach, we introduce the sets I
to be described below.

For every « the intersection of singularity surfaces of f with P¥«x)
forms at most a denumerable set of points which lie on the circle

@) = (JaP+ 2P = ola), o) <euiil®), (21,2) € Bix).

To every o.(x) corresponds a finite number kn(x), the number of
poles (counted with corresponding multiplicity) lying on the circle
r = ga(x) in the plane PB3(«) .

Let « vary. We denote by . the set of singular points of
f(z1,2,) which lie on the boundary of the circular domain (|z® + |2, [2)s
= 0a(2y/7,) - (In general, T. consists of a number of disconnected sets.)

Using the previously mentioned results, we obtain information about
the three-dimensional manifolds on which the T are located.

An example of the application of Hadamard’s results to the case of two
variables will be discussed in the following. (Also comp. [13] § 3.)

Let £2 be a simply connected domain in the « -plane and let
(5.6) be the development of the function f, see (5.4), in the plane
2y =x2z, a=se’. We determine the corresponding [ (x), see (3),
and let

(5) on(x) = l(x) [T, _a(%)

Theorem 6.1. Suppose that the on(x)., x €L2%, can be subdivided
into denumerably many subsequences

(6) [an(“) s an%—l(o‘) PR QnP_H—l(O‘)] ’ p = L2...,
such that
M B =0 (0) =00 a®) = =, a3 < 0y () -
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If n, (x) — ny(x) = kp, = const for « €02, then in the three-dimensional
segment of circular domains

| A /22 22
®) el —o,(2), Zes,
\%1 %
lie k, (two-dimensional) segments of singular sets T.. Here k, =
an+1(“) — gnp(a). These I are the only singularity surfaces for
252, €02

Obviously, proceeding in a similar manner, many theorems of Hada-
mard’s theory in one variable lead to the theorems about functions of two
complex variables.

The theory of orthogonal functions is an effective tool for the study of
the properties of an analytic function of one complex variable given by its
series development. In the following we shall describe two different cri-
teria for the function element

(9) m)=EM$

to have an analytic continuation into a given simply connected domain
B?  which inc’udes the origin.

We begin with a description of two sets of orthogonal functions.

1. Let &%, %, 2c B, be two simply connected domains in
the z-plane.i There exists a set of orthogonal functions, complete in
@2, such that

(10) //m%%mMﬂmw //mmwa=%-
\B‘Z 632

Here do =dxdy, 6, =0 for »#4pu and 6, =1. [9] p. 41, [10]
p. 14. i

2. Let the origin O be the interior point of 82. There exists a
complete set of functions w.(z), orthonormal in %2 and possessing
the property that

(1n) pe) = a7

[9] p- 28.

Using the set { ¢, (2)}, one proves the following:

Theorem 6.2. Let B2 be a bounded simply connected domain containing
the circle 'z| < r. There exists a sequence of Hermitian forms

AWz F

v v Yu
0

(12) H(z,,&,) =

s
s

-
Il
=3
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with the following property: Let f(z), given by (9), be regular in
[lz] <r]. If f(z) is regular in B* and

Tolf) = / / fdo < o,

B2
then

‘b, b 1 [v+1 e
13 i - K —
(13) hmH,,(dy ’du) , d, = r”‘”( ) ,

n-— o

exists. Comwersely, if (13) ewxists, f(z) may be continued analytically
throughout B* and the inequality

| 11 ‘ /bj, Z\) A 5
(14) f(z)] = ﬁ_—(hmH"(d_, ’?l; ) ) z €9B2,

r(z) \n —> 0 R 4

holds, where 1(z) s the distance of z to the boundary of B%. [10]p. 18.
From the above follows:
Theorem 6.3. Let

(15) f(71,2) = oo+ A2 + Agp 25 + - -«
be a function regular in the (closed) hypersphere
6 =[5+ [P =r].
Further, let B be a domain containing & . We assume that
(16) BN PAx) = Sx)

is simply conmected and that ©(x) depends continuously on « . There
exists a sequence of Hermitian form
AM(x) x, &

Vi v Yu
0

(17) Hu(x;2,,2,) =

v 2 u
0

s
s

with the following property: If f(z,2) is regular in C*x) and
Jory(F (2) < o, see (5.6), then

/ » _#—____\
Z a"—‘”’zaz Z a’.lt—z,zocz)
(18)  H() = lm H, | 635, AT < o.

n-—> v “w

Conwversely, if (18) holds for o« belonging to the neighborhood a—og| < &,
e>0, then f(z,2) can be continued to &*x,) and the function
f(z1, %0 2) is square integrable in S2(cx) .
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Let £? be the domain in the « -plane introduced on p. 15 and let
q* be its boundary curve. We assume that in every P*«), « €02,
lies a domain D*x), O €D*«x). The boundaries bdl(x) of D(x) are
supposed to be differentiable curves which vary continuously in «.
Finally let

(19) @ =Ud), D =UD.

a€q? a€L?
1 + 8, where
(20) g1 = UDAx), g;: = U d(x),

a€q? a€Q?
is the boundary of @ and let
& =g1N 4.

Definition. Suppose that through every point (2P, 2(P)) of a
subdomain B of D passes an analytic surface

21) T =la=aEP. P50 =], k=12 [|=Zs,
whose boundary curve
(22) tf = [Zk =gk(3 e“") ) 0 é p é 2 7'[]

lies in ¢} —@®&2. Then we shall call ¥ subordinated to 2. We
assume that 2 intersects every lamina D%«) in one and only one
point, and that
dx(y)
(23) 0 < —d’/)_‘ <
Theorem 6.4. Let the point (z) = (2P ,2P) of B, (a subdomain
of D subordinated to &?) lie in the analytic surface T2, see (21).

t, =N G = [z =hi(se”), s fived, 0 < y <27

is the boundary of T2. Let f(z,2,) be an analytic function reqular in
D. Then

(24) log /()] = log |f(g(0))|
2 +
1 /log (H(x(p)'": 2 — [EP .
= 2a o(x(y) S+ |EF — 25 & cos(p—yg) "
du s — £ ¢&

— ) log
=1

y=

s (§=¢,)
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Here o(x) s the distance of T2 P2Ax) from &%, H(x) 1is the ex-
pression (18), where H. are the Hermitian forms, see (17), which were
associated with D(x), x €q'; sev, 0=y = 2n, is the image of {
in the ¢ plane, and C,, v =12,..., are the vmages of the zero
points of [ in T2.

Proof. According to our assumptions at every point of B%(a) M} T2
= (zl » & 21)

/ ” ! \ \ e
25 = = —— \lim Hy\a; = = '
(23) fsam)l = oy \ im o ===\ ——/ ]

n-—> o N

To every point (h(se%)) corresponds a point (2(x)) €t and vice
versa and the function y = y(x) is differentiable. We consider now
the function f(g(&)). At every boundary point

(26) fler, az) = flg(s 7))

satisfies the inequality (25). By the Poisson—Jensen formula (24) follows.

Using the results of [14] p. 240, Schiffer and Siciak [23] gave a con-
structive criterium which yields the necessary and sufficient conditions in
order that a function p(), given by its function element, can be ana-
lytically continued into a larger prescribed domain.

Using these results, one obtains instead of (18) different necessary
and sufficient conditions in order that a function given by (15) is square
integrable in Q%) (see Theorem 6.2).

Remark 1. In § 5 we consider the case of functions which are schlicht
or omit two values in every lamina. Instead of these functions, one
obviously can use other families of functions, e.g., p -valent functions.
functions which map the unit circle on star or convex domains, etc.

Stanford University
California, U.S.A.
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