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On basic groups for the set of functions over a finite domain

1. Results. Let G, be the set of functions whose variables, finite in
number, range over a fixed finite set

N={1,2,...,n},n=2

and whose values are elements of N. If § c @, we denote by § the

closure of % under composition. § is said to be complete if 5 = E..1)

Every complete set contains a function satisfying Slupecki conditions,
Le. depending essentially on at least two variables and assuming all »
values. We say that a subset § of €, is a basic set for @, if & is not
complete but the addition to & of any function satisfying Stupecki con-
ditions yields a complete set. If a basic set is a group with respect to com-
position it is termed a basic group for @,.

It is shown in [1, pp. 72—76] that all 1-place functions belonging to &,
form a basic set §F; for G, provided n = 3. This result has been
strengthened to concern various subsets of J, which are closed under
composition. It is shown in [1] that the subset of §, consisting of all 1-place
functions other than permutations is a basic set for ,, provided n = 3.

On the other hand, it is shown in [2] that the symmetric group of degree
n is a basic group for ¢..2) Furthermore, according to [3], the alternating
group of degree n is a basic group for G,. (Obviously, the latter result
implies the former.) These results are valid for all values of 7 = 5. Counter-
examples presented in [2] show that they are not valid for 7 — 2,3, 4.

In this paper, we shall study the problem whether it is still possible to
reduce basic groups, i.e. whether the alternating group can be replaced by a
smaller group of degree n, provided n = 5. In proofs of completeness
criteria for subsets of §,, the essential fact concerning groups is the degree
of transitivity. Therefore, it is natural to ask whether the alternating group
can be replaced by an arbitrary group of degree n with some lower limita-
tion on the degree of transitivity.

1) For a detailed discussion, cf. [1, pp. 56— 58]. Throughout this paper, n means
the number of elements in the set N.

?) In fact, a slight modification in the proof of the theorem in [2] will yield this
result.
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It is clear that an arbitrary doubly transitive group is not basic for G
Counter-examples are found, for instance, by considering prime values of n
and linear groups. A triply transitive group is basic for €. if n is not a
power of 2. A quadruply transitive group is always basic for . (provided
the condition n =5 is satisfied). These results are due to the following
theorem which we shall prove in section 2.

Theorem. Every quadruply transitive group of degree n is a basic group for
Gn, provided n =5. If, in addition, n == 2" then every triply transitive
group of degree n is a basic group for Cn.

It is a consequence of this theorem that if a quadruply transitive group
of degree n is contained in the closure of a function f € €, (i.e.if f gener-
ates a quadruply transitive group) then the unit set of f is complete.)
The same statement holds true for triply transitive groups of degree n,
provided n = 27, r = 3. Tt is very likely that the statement holds true for
arbitrary triply transitive groups, perhaps even for arbitrary doubly
transitive groups if n = 3.

In section 3, we consider the exceptional cases in our theorem: n = 27,
r = 3. We construct a triply transitive group of degree 2" which is not a
basic group for €. Such a counter-example is provided by the holomorph
of an Abelian group of order 27 and type (1, 1,...,1).

2. Proofs. To prove our theorem, we shall first establish several lemmas.
We shall use the terms genus and type (of 1-place functions belonging to €,)

as defined in [3]. Assume that G;, i =1, ..., k, are non-empty subsets of
N. Then, for any function f(z, , ..., %) € E,, we denote by f(Gy,...,G))
the set of values assumed by f when, for ¢ =1,...,k, the variable a;

is restricted to the set G..
Lemmas 1 and 2 are the same as lemmas 1.1 and 1.3 in [3]. Therefore,
we omit their proofs.

Lemma 1. Assume that n =3 and f(x,.....x,) satisfies Stupeckt
condivions. Then for any j.3 =j = n. there are sets Gy i=1,...,k,
each consisting of a most j — 1 elements such that f(Gy ... .. G,) contains
at least j elements.

Lemma 2. The set of functions of type [by, by, by, ....0] where
1 < t<mn generates every function of type [by -+ by, by, ..., bl

Lemma 3. Assume that n =4 and F C G, contains a triply transitive
group © (of degree m) and a function f(x,, ..., ) satisfying Slupecki

conditions. Then 5 generates a function of genus 2 and all functions of genus 1.

1) This means that f is a so-called Sheffer function. The result is valid for n >4
because, according to [3], it is valid for n = 4.
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Proof. 1. We shall first prove that § generates a function g(x) whose
genus y satisfies 1 <y <n.

By lemma 1, there are numbers «, , ..., a, such that
(1) fGrs.. ., G) =N
where Gy =N — {a;}, for i=1,...,k By (1), there are numbers
a,,i=1,...,k, such that

flay, o @) =flay, ..., &)

and a, =a;, for i=1,..., k. We choose from & £k permutations
pix), i =1,...,k such that pi(1) = a; and pi(2) = «;. The choice is
possible because & is doubly transitive. Then the function
(2) f(@y(@) .., pi())

is of genus smaller than n. If it is of genus greater than 1 we have found a
function g¢(z) as required.

We, therefore, assume that the function (2) is of genus 1. Hence,
generates all functions of genus 1, i.e. all constants. Using lemma 1, we
choose sets H; ¢ =1,...,k% such that each H; consists of two (not
necessarily distinct) elements b, and b, and f(H,,...,H,) contains at
least three distinct elements 5,5’ and b”. By a suitable renumbering of
the variables, this choice can be made in such a way that

(3) f(blab:Z*"'abk):b’
(4) fby by b)) =0
and

(5) SOy, by b)) ="

Consider the 1-place function
gl(x) =f(x1b2: o ’bk)

which is generated by &. If g¢;(xz) does not assume the value " we may
choose ¢(x) = gy(x). Suppose

(6) gi(c) = 0" .

Then necessarily ¢, = b,, b;. Choose numbers ¢, and ¢;,,t=2,....k,
such that ¢, 40y, by, ¢, and ¢y, +b,b; if b, =b, but c,, =05, if

b, =b;. The choice is possible because n = 4.
Assume that

(7) f(02 > 63,2 3 ey C3,k) = b” .
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Let ¢i(x),7 =1,...,k, beconstantsin 5 or permutations in &, defined
as follows. The function g¢;(x) is a permutation such that ¢ (1) = c,,
@(2) =0, and ¢3)=10b;. Let 2=i=<%k and b,=b,. Then ¢, )
is a permutation such that g¢(1) =c¢;, ¢(2) =05, and ¢i3) =b;. Let
2=<i=<k and b,=0b;. Then ¢(x) =5, By (3), (5) and (7), we may
choose

Assume that
(8) f(c2 ’ 63,2 3 e e s 03.;;) = b” .

Let ¢y(x) be a permutation in & such that g¢;(1) = ¢,. ¢,(2) = ¢, and
¢:(3) = by. By (5), (6) and (8), we may choose

g(x) = flq1(x) . (@) . . . .. q(2))

Thus, in all cases, §F generates a function g(x) whose genus y satisfies
1<y <m.

II. Assume that » > 2. We shall now prove that 3 generates a
function Z(x) whose genus y, satisfies 2 <y, <. By repeating the
argument, we may conclude that & generates a function of genus 2.

Let w be a value assumed by g¢(x) at least twice and let » and w be
any other distinct values of g(x). Hence, there are distinct numbers wu,,
u, and v»; such that

g(uy) = g(up) = u and g(v) =v.

Choose from & a permutation p(x) such that p(u) = u;. p(w) = u, and
p(v) = v;. Then the function

h(zx) = gpg(x)

is of genus y; where 2 =y, <y.

We have, thus, shown that 7§ generates a function #A;(x) of genus 2.
Let hy(dy) = hy(dy) = d. dy =d,. and hy(d;) = d’, d" =d. To complete the
proof of lemma 3, we choose from & a permutation g(x) such that ¢(d)=d,
and ¢(d') =d, Then hqh(x) = d. Thus, §F generates the constant d.
Because § contains a transitive group, we may conclude that § generates
all constants. Hence, lemma 3 follows.

Lemma 4. Assume that n = 3') and F C . contains a triply transitive
group & (of degree n), a function f(x,....,x,) satisfying Stupecki con-

o

ditions and a function g(x) of type [n — 1, 1]. Then § is complete.
1) For the proof of our theorem, it obviously suffices to consider the cases n > 4.
A sharper formulation is given to some of the lemmas because their proofs remain

unaltered. On the other hand, lemmas 4 and 5 may be considered as completeness
criteria for subsets of E,, n > 3.
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Proof. Obviously, any function of type [n — 1,1] may be expressed in
the form p,gp,(x) where p,(x) and p,(x) are permutations belonging to &.
In fact, p, may be chosen from any transitive subgroup of & and p,
may be chosen from any doubly transitive subgroup of &. Thus, &
generates all functions of type [ — L,1].

We shall now make the following hypothesis of induction: § generates
all functions of type
(9) m—i,1,...,1]

———
7 terms

(o

where 1 < i < n — 2. We shall prove that this implies that § generates

all functions of type

(10) m—(@G-+1),1,...,1].
i—i—_l terms
We choose numbers b; and b,-' ,i=1,...,k asinthe proof of lemma

3 such that the equations (3) — (5) hold, for some distinct numbers b, b’
and b".

Let h(x) be an arbitrary function of type (10). We have to show that
h(x) € %

The function k(x) assumes i + 2 distinet values. Let «; be the value
assumed by A(x) n — (i 1) times and let U consist of all numbers y
such that A(y) = «,. Hence, the cardinality of U (denoted by card(U))
is at least 2. Finally, let the other values assumed by A(x) be «,, ...,
and let %, be numbers such that h(u,) =«,, for v=2,...,7 4 2.

We choose from & a permutation p(x) such that p(b’) = &;, p(b) = x,
and p(b") = «; and denote

(11) fl(x17"'>xk)zp(f(xla'-"xk))-
Clearly, fi(x;,...,x,) satisfies Shupecki conditions. Therefore, it is
possible to choose numbers &/, y =1,...,¢—1,v=1,...,k, suchthat

f, applied to the u™ row vector of the matrix

| ?z
‘oci"l ocffl
yields the value «, .4, for any p=1,...,7— L
We now consider auxiliary functions Ai(x),i =1,...,k, defined by

the following table:
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M) | ho) |0 hylw)
x€U b by b
X = U3 ; bl \ bg bk
X = U3 i bl ‘ bz bk
1 1 1
[T = Uy ! o] ‘ oy o,
| | i—1 i—1 | i—1
s P %k

It follows from our inductive assumption concerning functions of type (9)
and lemma 2 that every function assuming some value at least n — ¢
times is generated by 3. Because the functions A;(x) satisfy this con-
dition, we may conclude that A;(z) € %, for v=1,...,k

It is a consequence of (11) and the choice of the functions #hs(x) that

h(z) = filly(x) , . .., k().

Thus, we have shown that all functions of type (10) are generated by 3.
We conclude, by induction, that all functions of type

(12) [2,1,...,1]
n—2 terms
are generated by . By lemma 2, the set of functions of type (12) generates
the subset of €, consisting of all 1-place functions other than permutations.
By the criterion mentioned in section 1, we may conclude that & is com-
plete.
Lemma 5. Assume that n = 3 and ¥ C C. contains a (riply transitive
group & (of degree n), a funcrion f(x,....,x,) saisfying Stupecki con-

i
ditions and a function g(x) of type [n — a, a] where a = . Then F is

complete.

Proof. If n =3 or n =4 the assumptions of lemmas 4 and 5 are
equivalent. Therefore, we assume that n = 5. We shall show that
generates a function of type [# — 1, 1]. This implies, by lemma 4, that &
is complete.

By the hypothesis, n — a == a. We assume that the notation is chosen
in such a way that » —a > a. If a =1 the proof is completed. We,
therefore, assume that ¢ = 2. We shall show that § generates a function
g1(x) of type [» — ay, a;] where 1 < a; << a. By repeating the argument,
we conclude that §§ generates a function of type [n — 1, 1].
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Let E, and E, be disjoint subsets of N such that card(#,) = n — a,
card(#,) = @ =2 and g¢(x) assumes a constant value both in E; and
in E, Because § contains a doubly transitive group it generates every
function assuming a constant value both in #, and in E,.

We choose from & a permutation p(xr) mapping some element of E,
into itself and some other element of K, into K,. Consider the sets

Vi=E Np&,), V,=E,NpE),

(13)
Vo= E;Np(Ey), Vy= E NpE,).

The union of the sets (13) equals N. On the other hand, by the choice of the
permutation p,

(14) 1 < card (V,) <card (F,) =a, for i =2,3,4.

Furthermore, 1 < card (V). The sets (13) are not of the same cardinality.
For if card (V;) = card (V,) and card (V,) = card (V,) we obtain

(
card (V;) = % card (#,) > 3} card (#,) = card (V) .

Let b, and b;,i = 1,...,k be the same numbers as in the proof of
lemma 3. Thus, equations (3) — (5) hold, for some distinct numbers b, b’
and b”. Choose arbitrary elements v; € V;, 7 = 1, 2, 3, and a permutation
p'(x) €@ such that p'(h) = vy, p'(b’) = v, and p'(b") = v,.

The following auxiliary functions A;(x) are generated by :

h(Ey) = {b} . W(Ey) = {b}. i=1,... k.

(Some of the functions Ai(x) may be constants which are generated by 3,
according to lemma 3.) Let

g@) = p'(f(hy(x) , hop™ () , . . ., lyp ™ (2))) .
It follows from the definitions of the functions involved that
(15) gx)y=wv;, for z€V;, i=1,2,3.

Furthermore, §(x) assumes a constant value o', for z € V,.

Suppose v’ € V,. Then §*(z) is a function of genus 3 and type [t,, t,, t5]
where at least one of the numbers ¢, say t,, satisfies 1 < #; < a. This is
due to (14) and the fact that o" € VV; UV, U V,. Let the values assumed
by §*(x) be wuy, u, and w, where u, is assumed at least twice and u,
exactly #; times. Choose numbers wu}, ] and wuj such that g*(ul) =
§*(u3) = u; and §*(u}) = u;. Furthermore, choose a permutation p,(z) € &
mapping the ordered triple (u,, uy, u;) into the ordered triple (u!, u3, u}).
Then we may choose

7(x) = §'p:g’ () ©
Clearly g,(x) is of type [n — #;,t;] where 1 < 1t; < a.
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Thus, we may assume that o' = v, € V,. The equations (15) may be
written in the form

(16) gx) =wv;, for x€V;, 1=1,2,3,4.

We say that a quadruple (&, . G5, &) is a permissible set of representatives
for the numbers w; if there is a permutation in & mapping »; into
i =1,2, 3, 4. Assume that the elements of some permissible set of repre-
sentatives are contained in exactly three sets 1/, and let p.(x) be the
corresponding permutation. Then the function ¢p.g(z) is of type [ty. ty, t5]
where 1 <t, < a. Proceeding as above. we obtain a function g,(z) as
required. We may, therefore, assume that there is no permissible set of
representatives whose elements are contained in exactly three sets T

We shall now make use of the fact establiched above that the sets (13)
are not of the same cardinality. If «(i/) is a permutation of the numbers
1. 2, 3, 4 such that

card (V) = card (V) = card (V) = card (V)
then necessarily
(17) card (V) => card (Vyy) -

Furthermore, by (14),

(18) 1 =< card (V) < card (Hy) =a, for i =2,3 4.
Let Vyy = {vsa)>---> vf,)}. Consider the numbers »; in the equations
(16). Choose from & B permutations g¢i(x), ¢ =1,....p. such that

qi(%(n) = Uy » Qi(va(Z)) = fo(n ) qi('va(ii)) = Va@3) +

Then, for all i, g,(v,y) € I"mw because. otherwise., we would obtain a
permissible set of representatives whose elements are contained in exactly
three sets V..

By (17), this implies that, for some u and ». u =7,

qﬂ(@’a(u) = Qv(va(4)) = Z’;'f(:,) € I’Ya(.»;) .

We have, thus, constructed the following two permissible sets of repre-
sentatives which differ by one element only

(19) (Ya) > Y1) 5 Yags) » v:@)) 5 (V) > Vaq) > Yags) > v:@)) .
We now choose from & a permutation ¢’(x) such that

q/(vZ(I)) = Uy » ‘I'(U;m) = Uy3) » q'(”a(3)) = Uy -
Consider the values

(20) q' (V) and q'(tv;"(4)).
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Because the sets (19) are permissible and ¢’ obviously maps a permissible
set into a permissible set, the values (20) are both contained in the set V).
Otherwise, we would obtain a permissible set of representatives whose
elements are contained in exactly three sets V..

We may now choose

7:1(®) = §q'q,g(x) .

The function gy(x) assumes the value v,,, for x € I, and the value
Uy, Otherwise. By (18), it is of type [n — @, a;] where 1=¢a, <a.
This completes the proof of lemma 5.

Proof of the theorem. We assume first that n = 5,7 =27 and & is a
triply transitive group of degree =». Let f(x,,...,z,) be an arbitrary
function satisfying Stupecki conditions. To show that & is basic for E,,
we prove that the set F consisting of & and f is complete.

By lemma 3, § generates a function g(x) of genus 2. This implies, by
lemma 5, that & is complete, provided g(z) is not of type

(21) [3n, 3n] .

We assume that g(x) is of type (21) and that E; and E, are disjoint sub-
sets of N such that card (£;) = card (£,) = in and g¢g(z) assumes a
constant value both in £, andin E,. We shall now proceed as in the proof
of lemma 5.

We form the sets V,,7 = 1.2.3. 4, and obtain a function §(x) satis-
fying the equations (16). (Otherwise. we would obtain a function of genus 2
and not of type (21) which would complete the proof.) Furthermore, we may
assume that the sets V, are of the same cardinality because, otherwise,
we could use the inequality (17) as in the proof of lemma 5. Thus, the set N
is divided into subsets as follows:

We now form a new partition of N into V-sets by choosing from & a
permutation H(x) which maps some element of J; into itself and some
other element of V; into V,; and denoting

M=ENHE), V;=ENHE).Vi=E,NpE,),V,=E NHE,).

Again, we may conclude that the sets V]! are of the same cardinality.
Furthermore, we may assume that the following equations hold:
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(22) card (V, N VY = card (V, N V}) = card (V, N V}) = card (V, N V})
= card (V,N V1) = card (V,N V}) = card (V, N V})
= card (V; N V}) = & card (V,) = % card (E))
= tcard (N)=%n.

For if the equations (22) do not hold we may argue as follows. Assume that,
for instance,

(23) card (V, N V}) > card (1, N T}).
Let V,NVi={5,,...,7,}. We choose from & permutations m(z),
i=1,...,y, such that z(v,) = ¥, 7(rs) equals some fixed element in

V,N V! and m,(v;) equals some fixed element in 17, N 175, If, for some i,
7 (vy)) € Vi NV we obtain a function of genus 2 and not of type (21). If.
for all 4, m(v,) € V,NV we obtain, by (23), two permissible sets of
representatives differing by one element only. Then we may argue as in the
proof of lemma 5.

Equations (22) express the fact that N is divided into subsets as follows:

-1

E, B
l

1 ! ~ |
TR T N T I S I A T

We continue the process by forming a new partition of N into sets V7,
1 =1,2, 3,4, If we do not obtain a function of genus 2 and of some type
other than (21) we obtain equations corresponding to (22). The common

cardinality of the sets involved equals 6"

By repeating the argument for new partitions of .N'. we conclude that
we either obtain a function of genus 2 and not of type (21) or n = 2. Thus,
the part of our theorem concerning triply transitive groups follows.

Assume that » =5 and ® is a quadruply transitive group of degree
n. Let § be as above. The completeness of § follows because we may
choose from @& a permutation mapping the numbers v, i =1, 2, 3, 4,
into exactly three of the sets ¥, We, thus, obtain a permissible set of
representatives whose elements are contained in exactly three sets V.

Therefore, we have established our theorem. We note, finally, that the
main difficulties in the proof are due to the fact that no analogues of
lemma 1.2 in [3] are available.
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3. Special cases. We shall now show that the condition n == 2" in the
statement of our theorem is essential. If n = 2" (r = 2) there is a triply
transitive group of degree n which is not a basic group for €.. In what
follows, we shall discuss the case n = 8 in detail.

Let g be the holomorph of an Abelian group of order 8 and type
(1, 1, 1), expressed in the usual way as a permutation group of degree 8.
®g is generated by the two permutations (1376528) and (17)(46). It is of
order 1344 and consists of 384 7-cycles, 224 permutations of cyclic structure
3 x 3, 224 permutations of cyclic structure 6 X 2, 252 permutations of cyclic
structure 4x4, 49 permutations of cyclic structure 2x2x2x2, 42 per-
mutations of eyclic structure 2 X 2, 168 permutations of cyclic structure 4 x 2
and the identity. The group &, can also be characterized by the following
six defining relations:

X7=1,72=1,(YX3)P*=1(YX)P=1,
(YX3YX2YX)2 =1, VX3 YXPY XY X5V X6V X5 =1.

Obviously, the holomorph of an Abelian group of order 25 and type
(1,1,...,1) (i.e. the holomorph of a so-called generalized Klein group) is
triply transitive. In particular, ®&; is triply transitive.

However, 3 is not a basic group for €. Consider the following
function f(z,y) which satisfies Stupecki conditions:

fRr—1.y)=y.[Rv.y)=9—y.

Then the set § consisting of &g and f(z, y) is not complete.

To prove this, we quote some terminology and notations, from section 2.
We let E, ={1,2,3,4}, E,=1{5,6,7,8}, V,={12}, V,={3,4},
Vy={5,6} and V,= {7,8}. The following (unordered) quadruples are
called permissible sets of representatives:

1234, 1256, 1278, 1357, 1368, 1458, 1467,
2358, 2367, 2457, 2468, 3456, 3478, 5678.

The permutations in &g always map a permissible set of representatives
into a permissible set. Furthermore, they preserve the subset structure (24)
of N.

Let s C G be the set consisting of the following 1-place functions:

1) Permutations in ®.

2) Constants.

3) Those functions of type [2, 2, 2, 2] whose values form a permissible set
of representatives and which, furthermore, assume a constant value in the
sets Vi, Vi, Vi and Vi, for some ¢ =1,...,7, where
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Vi={1.2}, V;={3.4, Vi=1{5,6}, Vi={7,8};
Vi={1,3}, Vi=1{2,4}, Vi={5,7}, Vi=1{6,8};
Vi={1,4}, Vi={2,3}, Vi=1{5,8}, Vi={6,7};
Vi={1,5}, Vi={2,6}, V;=1{3,7}, Vi={4,8};
Vi=1{1,6}, Vi=1{4,7}, Vi={2,5)}, Vi=1{3,8};
V$=1{1,7}, Vi={3.,5}, Vi=1{2,8}, Vi={4,6};
Vi={1,8}, Vi=1{4,5}, Vi={2,7}, Vi=1{3,6}.

4) Those functions of type [4, 4] which, for some 7, assume a constant
value in one of the sets ViU V,, ViUVi or ViUV

The set g is closed under composition. In classes 1)—4) there are,
respectively, 1344, 8, 2352 and 392 functions. Thus, card () = 4096.
This number can be computed more directly as follows. g consists of all
functions which map every permissible set of representatives into a per-
missible set, a quadruple of type [2, 2] or of type [4]. (In what follows,
quadruples of these three forms are called permissible images.) Thus, we may
choose arbitrarily the values h(1), A(2), 2(3) of a function A(x) € Fs. They
determine uniquely the value A(4). Again, A(5) may be chosen arbitrarily
but then the values %(6), h(7), h(8) are uniquely determined. Hence,

card (&) = 8* = 4096 .

Our function f(z, y) forms a closure in the set Fg, i.e.if ¢;(2). go(x) € T
then also f(g;(%), go(x)) € Fs. To prove this, it suffices to show that if
(ty, gy U3, ©g) and  (Jy, Jo, Jg» Ju) are two permissible images then also

(f(il sjl) >f(i2 :j2) sf(i3 aj3) af({zl 9j4))

is a permissible image. This can be readily verified by considering the matrix
of f(,y).

Thus, ¥ generates no 1-place functions other than the functions in .
This proves that ¥ is not complete. Clearly, instead of the function f(z, y),
we may choose any function which satisfies Stupecki conditions and forms a
closure in the set .

Consider the general case!) n = 2", r = 3. Let &, be the holomorph
of an Abelian group of order 2" and type (1,1, ..., 1). The order of this
triply transitive group @, equals

(27— 1)(20 — 2)(27 — 2°) - - (27— 27Y),

1) We have regarded the case n = 8 as the first exceptional case. In fact, also the
case n = 4 may be considered as exceptional, the exceptional group being the holo-
morph of the four-group (which equals the symmetric group of degree 4). Our theorem
is not valid for n = 3 because lemma 3 is not valid in this case.
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Define a function ¢(x, y) € €y as follows:

p2x — 1,y) =y, ¢2z,y)=2"+1—y.

The function ¢@(z,y) forms a closure in a set Fy consisting of 27¢+Y
1-place functions. This implies that the set & consisting of &, and
@(x, y) is not complete. Hence, the group &, is not a basic group for €.
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