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A minimum prineiple for positive harmonic funetions

Let D be a simply-connected region in the plane z = x 4 iy, {CO a
given boundary point of D and S = {z,} €D a sequence of points
tending to {, as n— . Let ¢ denote a Martin harmonic function
corresponding to {,, i.e. ¢ is positivein D and vanishes at each boundary
point £ ;. The object of this article is to characterize the sequences S
which possess the property that for each positive harmonic # in D, the
inequalities

(1) wz,) > 2gz), n=12...,A>0,
imply
(2) u@)>2Aelk),2€D.

If the implication (2) is true we shall call S an equivalence sequence
for ,, therewith and henceforth allowing this paper some freedom from
orthodox notions and terminologies.

Theorem 1. S is an equivalence sequence for {, if and only if it contains
a subset {z, }2, with the properties

(3) SUp G2, > 2,) < ©

(4) Zlg(z %)@ (2n) = 0, 2€D,

where g is the Green function for D .

It is convenient to restate and to prove the theorem for the upper half-
plane 2,z =a +iy,y > 0, letting {, be the infinite boundary point
and ¢ =y. When z=r¢® tends to coin Q2 we have

2 sin @

r

g(i,z)N

g(i,2) ¢pz) ~2sin20 .

By virtue of these relations the theorem can be reformulated as follows:
»The points
i0

2o =&, + 1y, =r, e n=12.
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form an equivalence sequence for the infinite boundary point of the upper
half-plane if and only if they contain a subset {z. } satisfying the separation
condition

. {Z"u - z"v}
(5) inf ——— />0,
wuFv! n{,l - Zn,,i
and such that
oC
(6) V' sin? 0, = ©.»

The necessity of the conditions is easily established. To each 2z, € 2
and to each ¢,0 <& <1, we assign the circular disc
- A | iz — |

=yz: ——
(7) e =7 g <
and we recall that Harnack’s inequalities for positive harmonic functions
in £ can be written
1 —¢ U (2) 1-+e¢

8 < < Z€4 ).
) 1 b e Su(y) S1=0 G 8

If (5) and (6) were not necessary conditions there would exist an equivalence
sequence S such that each of its subsets satisfying the separation condition
would make the series (6) convergent. However, from any given S it is
always possible to select a subsequence {z,} such that, & being given,
.
oo
the union U A (z, ,&) covers S, whereaseach z, iscontained in the
» v

r=1

sole dise 4 (2, €) . The separation condition is therefore satisfied. If (6)

were convergent the same would be true of the series

1

(9) u(z) = *'——:—2 )
y=1 ( F— ‘l‘ny)- + Yy

and » would represent a positive harmonic function in Q with the properties
(10) U (zny) > Yn, 5 V= 1,2,...
(11) w(iy) = oly) , y—+ .
On applying (8) both to » and to ¢ = y we find that in each Az, 5 €),

1 —¢
1-+e¢

2
(12) u(z)>< >y:/‘»y.
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This inequality would therefore remain valid on S, but viclated at other
points of £, in view of (11). This proves the necessity of the stated con-
ditions. The sufficiency will be derived from this more precise result:

Lemma I. Let w be positive and harmonic in Q and let E (1) denote
the set

(13) E(A)==ao+iy :y>0, ukz =>2y}.
Then the divergence of the integral
dx dy
(14 TT
E(3)

implies E (1) = Q.

The particular value of 1 is immaterial and we may therefore assume
/=1 and set E(1)= E. As a consequence of Harnack’s inequalities
we have

ou ~ u 0

oy =y VT
where the sign of equality is excluded unless u = ay, in which case the
lemma is trivially true. We may therefore assume that the upper sign holds
throughout Q. This implies that w(x + ty)/y for fixed z is strictly
decreasing with increasing y . If not void the open set ©2 — K has thus a
boundary which meets vertical lines in at most one finite point. Each com-
ponent of £ — K is therefore an unbounded simply-connected region.
Let D be a component and I" its boundary. Without loss of generality
we assume that D contains a point z = iy, on the imaginary axis. The
function »(z) =y — u(z) is by assumption harmonic and strictly positive
in D, vanishes at all finite boundary points and is thus a Martin function
for D. We shall prove that this implies that (14) converges.

In the sequel we shall denote by C,, r> 1 -y, , the region

Co={=x-+iy:y>0, z+1i <r}

and by y, the largest open arc of the circle z - i| = contained in D
and containing the point ¢ (r — 1). Together with I’ the arc y, forms
the boundary of a well defined simply-connected subregion D, of C,.

In the continuation of the proof we shall use the fruitful notion of har-
monic measure which plays such a prominent role in the work of Rolf Nevan-
linna. The harmonic measure, %(z,,y,), of ¥, is by definition the value
at z, of the bounded harmonic function in D, which equals 1 on y, and
vanishes elsewhere on the boundary. By the minimum principle for har-
monic functions,
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(15) v (2) < I (7o) max v(z) <hlzg,y,) 7.
z€yr
In order to estimate A we recall this result ([1], p. 10).
Lemma II. Let D be simply-connected, z, a pointin D and y a bound-
ary continuum. Let v be harmonic in D and have the properties: y (z) = 0,
p()>L>0 on y,

A :/|grad1pi2dxdy < ®
D

Then
—alL?
(16) h(z,y) <e .
For the region D, the chcice
z 4+
v =g |S0

yield
L =1log r—log (1 + ¥, -
Define E, = ENC,, let m(r) be determined by the relation

7T m(r) = /{grad p2dedy = / :L_!‘"“Z?‘_z ,

o/ i i

r r

and observe that

Hence,
A <z (log r — m(r))

and

al? (log r —log (1 4+ y,) )? -

A = log » — m(r)
>log r — 21log (1 + ¥,) + m(r) {l + 0 (%)}
ogr
If (14) diverges, then m(r) will increase to co with r and we would have
h=o0 (7> , and consequently v(z) = 0, contradictory to the assumption

v(zy) > 0. This proves Lemma I.
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We can now continue the proof of the sufficiency of the conditions in
Theorem I. In order to simplify the notations we let {z,} denote the subs-
equence of S satisfying (5) and (6). By virtue of the separation condition
(5) the dises 4(z,,¢) are disjoint if ¢ is small enough, and they are con-
tained, according to (12), in the set KE(A') if

., (1*8>21
A SR

/

The divergence of
Z sin? 6,
1

therefore implies that the integral (14) for E(2’) diverges, the radius of
A(z,,¢) being > 2ey,. Lemma I asserts that everywhere in 0,
uw(z) > Ay, and this concludes the proof since 1’ can be taken arbitrary
close to 4.

We want to point out that Lemma I remains true also for positive super-
harmonic functions. The proof is the same except for one important differ-
ence. The region replacing D, will be multiply-connected and Lemma II
not valid. The proof can however be carried through by means of the follow-
ing more general but still unpublished result.

Let D be limited by a finite number of Jordan curves {I'}", and
let » be a closed boundary set carried by one and the same boundary com-
ponent, say I;. Let x be an arc joining the given point z, with some
point belonging to the set Ij — y. Then

max h(z,y) < 5e ™

z€Q

where 1 stands for the extremal length of the family of curves joining «
and y within D.
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