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Sets of asymptotic values of positive linear measure

It will be shown that certain sets of asymptotic values contain sets of
positive linear measure, whereas heretofore they were either known merely
to contain sets of positive harmonic measure or not discussed at all. This
is accomplished by generalizing a result given by Collingwood and Cart-
wright [3, p. 103, Lemma 4].

Let C Dbe the unit circle, D be the open unit disk, and 2 be the
Riemann sphere. Consider a meromorphic function f(z) in D . The set
of asymptotic values of f will be denoted by A(f). If I' is a closed
subarc of C, then A(f, ') represents the set of asymptotic values of
f approached along paths whose ends are contained in  I", A,(f,I) is
the set of asymptotic values of f approached along paths terminating in
single points of 1", and A.(f.I") denotes the set of asymptotic values of
f approached along paths whose ends are subarcs of I', so that we have

A(f’F):An(f:F)UAL'(f3F)

If ¢€C, then A(f,{) means the set of asymptotic values of f ap-
proached along paths terminating in . The set of Fatou points of f
on I' is denoted by F(f,I), and Ag(f,I) represents the set of
angular limits that f has at points of I".

By an arc at a point (€C we mean a simple continuous curve
A:z=2z2() (0=t<1) such that [2(f)) <1 for 0=t<1 and
lim z(t) =¢. If 0=t <1 and z(t) = {,, thenthearc A":z=z(f)

t—>1
%

(ty = ¢t < 1) is called the terminal subarc of A determined by ¢, .
We shall be concerned with the following
Hypothesis . (1) f(z) is a meromorphic function in D ;
(i) I' is a closed subarc of C with distinct end points & and & ;
(iii) J is aJordan arc lying, except for its end points &, and &y, in D ;
(iv) G s the subregion of D whose frontier is J U I';
(v) there exist distinct finite values o, and w, such that

lim f(z) = o, lim f(z) = w,;
3> 2>,
z € .} z€ .;

(vi) f has no asymptotic path in G on which f tendsto oo .
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Our basic result is

Theorem 1. Assume $ and that f is holomorphic in G . Then
Ay(f, I') contains a set of positive linear measure.

Proof: The arc J minus its end points will be called J,. Take a
point z, on Jy; z, divides J; into an arc A; at ; and an are
A, at . Denote by L the open rectilinear segment joining «, and
®,. Choose an arbitrary point u € L and consider the straight line 2/
perpendicular to L and containing u. Let ¢ be a positive number
smaller than the distance between M and the set {w,,w,}. Then therc
exist terminal subares A;, A, of A;,A,, respectively, such that

f) —o =0 (€A, Ifx) —oy =0 (z€4y).

Since the set of zeros of f'(z) in @ isisolated, we can find a circular
arc K with center at the origin and lying in ¢, with one end point
2, on /; and the other end point 2, on Ay, such that f'(z) 0
on K. Since f is also holomorphicon K, K ismapped by w = f(2)
onto a bounded simple analytic arc 7, and 7 intersects M at least
once, but only a finite number of times. Thus either (a) 7'N J consists
of a single point p, orelse (b) there are distinct points p, , p, in 7N M
such that any other point in 7N 3/ lieson M between p, and p,.
Let G, be the subregion of ¢ whose frontier consists of /7, K, the
terminal subarc A; of A, determined by 2,, and the terminal
subarc A, of A, determined by 7, .

There is an ordinary element of the inverse f~l(w) of the function
f(z) in case (a) at p andin case (b) at p, and at p,. In case (a) this
element can be continued towards oo in either direction along M without
encountering another point of 7, and in case (b) the elements at p;
and p, can be continued towards oo in suitable directions so as not to
encounter another point of 7'. In case (a), a direction of continuation
can be chosen, and in case (b) one of the two points p,, p, can be chosen,
so that the curve m on which the appropriate path of continuation along
M is mapped lies in G, . The continuation in question cannot be made
to the point oo because oo is neither an assumed value nor an asymp-
totic value of f(z) in @,. Consequently there is a finite point ¢ on
M such that either the continuation has a boundary element (see [3, p.
100]) at ¢ or the continuation is terminated by a transcendental singular-
ity at ¢. The curve m is consequently an asymptotic path of f(z)
which either terminates in a point of I' or has its end on /', and on
which f(z)—q as |z2]—1. Hence gq€A(f,I).

Now consider f(z) restricted to G,. According to Kierst [8], A(f,
I'U AU K U A}) is an analytic subset of Q. Evidently A(f, 4] UK U 43)
= A,(f, A]UKU 4j) isan F,. Now A,(f, I') contains at most enumer-
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ably many finite values, because otherwise, as was pointed out to me by
J. E. McMillan, there would exist two such values with corresponding
asymptotic paths which meet on 1", and this is readily seen to contradict
(vi); let us assume that u was chosensothat ¢ € A (f, I). Then Af,
I'U 4] U K U A43) is also an analytic set. Consequently [5, p. 370, 42 - 1 - 3]
the set

BE=A(f,TUAUKU A;) — A(f, A{UK U A

is an analytic set; it is clearly a subset of A,(f,I) and contains ¢ .
The set K is Carathéodory linearly measurable [6, p. 83, 7. 1. 211 and
p. 84, Bibliography; p. 105, 8. 5. 1]. Since x was an arbitrary point of
L with at most enumerably many exceptions, the orthogonal projection
of E onto L contains almost all of L, and hence [13,p.533] E is
of positive linear measure. This completes the proof.

In Theorem 1 we may not drop the hypothesis that f be holomorphic
in (. This is evident from

Theorem 2. Under the assumption § , it is possible to have A(f) = {w; , w,} .

Proof: ~ We take ¢ =41, =—1; I' to be the semicircle
2 =1,830k) =0;J to be the segment — 1 =<2z < +1; and finally
wy =+ 1,0y = — 1. Define B, to be the arc 1 =<z<1 and B,
to be thearc —1<z= —1; andfor n=1,2,3,..., let
L
J, = lz = o
We put

and call S the skeleton.
We now define a continuous function g(z) on S. Let

g) =+ 1 (2 €8y, gkz)=—1 (z€B)).

Define (' (C-) to be the subarc of €' on which I () =0 (¥ () = 0),
and for every n, let J (J;) be the subarc of J, on which J (z) =0
B =0). For n=2k—1 (k=1,2,3,...), define g(z) on J,
as follows: g(z) is a homeomorphism of J; onto C- and a homeo-
morphism of J onto C-. For n=2k (k=1,2,3,...), define
g(z) to be a homeomorphism of J, onto C* and a homeomorphism of
Ji onto C+. Clearly g¢(z) is defined and continuous on S .

According to [1], there exists a meromorphic function f(z) in D such
that
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lim [f(z) — g(z)] = 0.

|z]—>1

€S

It is evident from this and the definition of g¢(z) that $ is satisfied but
A(.f):{—i_l’_l} =4

Theorem 3. Let f(z) be holomorphic and not constant in D . Suppose
that B is a subarc of C,E 1is a subset of B of positive measure, and f
has an angular limit at every point of E, but oo € A(f,B). Then
A,(f,B) contains a set of positive linear measure.

Proof: A theorem of Priwalow [12, p. 210] implies that there exist
points &, in E and finite values w;,w, such that f has the
angular limit o,,w, at &, {,, respectively. Let [ be the subarc
of B with end points ;,C,, and let .J be the union of the radii at
& and ¢{,. Then the hypothesis of Theorem 1 is satisfied, and the con-
clusion of Theorem 3 follows from that of Theorem 1.

Remark. The assumption oo € A(f, B) is necessary in Theorem 3
even if f is of bounded characteristic and the measure of £ equals the
length of B: see [4, p. 98].

Theorem 4. Assume © and that f is holomorphic and normal in G .
Then Ag(f,I') is of positive linear measure.

Proof: The set F(f,I) is a Borel set [7, p. 275], so that Ag(f, I)
is an analytic set [7, p. 269] and hence is linearly measurable. Moreover,
by [2, p. 15, Theorem 3], F(f,I') is of positive measure because of (vi).
According to [9, p. 53, Theorem 2], A(f, I') = Ap(f, I') . The conclusion
of Theorem 4 now follows from that of Theorem 3.

Corollary. Let f(z) be a nonconstant normal holomorphic function in
D . Suppose that B is a subarc of C  for which oo € A(f, B). Then
Ag(f, B) s of positive linear measure.

MacLane [10] has defined </ to be the class of nonconstant holomorphic
functions in D having asymptotic values at each point of an everywhere
dense set of points on C'.

Theorem 5. Let f€ A . Supposethat B is a subarc of C for which
o €A,(f,B). Then A(f,B) contains a set of positive linear measure.

Proof: According to [10, p. 28, Corollary], A(f, B) contains a closed
set H of positive harmonic measure. If o, and o, are distinct finite
values in H, then [10, p. 18, Theorem 4] {w;, w,} € A,(f, B). The
conclusion now follows from Theorem 1.

Theorem 6. Let f(z) be a nonconstant holomorphic function in D .
Suppose that f has only finitely many asymptotic tracts for oo, and the
ends of the arc tracts of f for oo do not cover C. Then A,(f) is of
positive linear measure.

Proof: The references to [8] and [6] in the proof of Theorem 1 show



F. BaceEMIHL, Sets of asymptotic values of positive linear measure 7

that the set A(f) is linearly measurable. McMillan has shown [11, Theo-
rem 2] that there exists a subset E of C of positive measure such that
f has a finite asymptotic value at each point of K, and [11, Theorem 4]
the set of these asymptotic values contains a closed set of positive harmonic
measure. It is readily seen that § is satisfied for a suitable I', and
application of Theorem 1 completes the proof.
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