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A §eneralization of Laplace's Transformation

In this pa,per we seek to deal with a question regarding elementary
solutions of second-order partial differential equations in two independent
variables, namely that of solutions of the form

z - A(*,A ,V@) ,V'@) ,p"(r),.. ,V@)@)),

v'here g is an arbitrary function.
The term «elementary solution» is here used, not with reference to any

particular class of functions called elementary functions, but simply to mean
a solution involving one or more arbitrary functions and expressed in terms
of them by means of particular functions (not necessarily elementary) and
the operations of differentiation and indefinite integration.

In place of (l), our results will apply in part also to solutions of the
somewhat more general form

(1)

(2)

(3)

z - A(* t U t V@), Vt@), vz@), . . ., V*(x)),

where g is an arbitrary function, and gr, p2, . . . , pn are functions that
depend on the function g in any way at all, subject to the restriction that
no relation of the form

shall holri lbr arbitrary choice of the function g.
The forms of solution (I) and (2) are of course special, both in restricting

tbe argument o{ the arbitrary function g to be r and in the restriction
that, no relation of the form (3) shall hold, i{ not also otherwise, and in a
concluding section u,e shall give some indications in regard to the possibility
of extending our methods so as to remove the two restrictions named.

Following conventions of notation that are standard we shall use z as
dependent variable and r and y as independent variables. And then the
letters p and q are used to stand for the two first-order partial derivatives
(of z withrespectto r andto y respectively),andtheletters r,s, and. f

Fcr support of the work representel by this paper the ar-rthor is inclebtef to
the National Science Foundation of the Unite.i States.
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are used to stand for the three second-order partial d.erivatives. Similarly,
if new variables Z , X , and Y ate introduced by a transformat'ion, we

shall use P and @ to stand for the two first-order partial derivatives (of

Z withrespect to X and to I), and A , § , and ? to stand for t'he three

second.-order partial derivatives. And if new variables c , E , vl are int'ro-

duced, we shall use w , Q for the two first-order partial derivatives, and

Q , o , r for the three second-order partial derivatives.

We shall also employ in connection with n-ary fwctions a notation,

analogous to the standard use oI the prime in connection with singulary

functions, by which the derived functions are denoted by placing a numerical

subscript after the function letter. For example, if the letter / denotes a

ternary function, then /, , f, , f, denote the three derived functions ohtained

by taking the partial derivative with respect to the first argument, the

second argument, and the third argument respectively. And t'hus, e'g',

fr@ , A , z) expresses what would more usually be expressed by

a

Ef@,Y ,z)

or by f,(r,U,z), while /r(z ,fr,U) coresponds rat'her to

J@ , n ,y)

or Lo fr(z , n , A). Similarly /r, denotes the function obtained from / by
taking the second partial derivative, with respect to the first argument, and

then with respect to the second argument; and. f* denotes the function

obtained from / by taking the second partial derivative, with respect to
the second argument, twice.

Properly the standard notations such as

aaa2
A*' W ' AUA,

I
.),
JI

a

^\oa

(4)

are applicable to forms or to letters which stand for forms, while the

numerical-subscript notation is applicable rather to letters that denote

functions. The distinction is important in principle and must be maintained,

although it will be somewhat, obscured in the present paper by our practice

of omitting the arguments after a function letter, purely as an abbreviation,

when it is clear from the context what the arguments are, or when (as

frequently happens in the treatment, of differential equations) the arguments

of a particular function letter remain the same throughout some one context'.

This use of, for example, the letter / alone as an abbreviation of

f@ , A, a) must of course also be distinguished from the more proper use of
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the letter /, to denote the function itself as an abstract entity. The use of
the abbreviation is justified only so far as it does not engender real confusion.

The numerical-subscript notatron for the derived functions of an n-ary
function has some inconveniences, among them that subscripts used for
ot'her purposes must sometimes be enclosed in parentheses to avoid con-
fusing them with subscripts referring to partial derivatives.

However, the numerical-subscript notation avoids the well-known
equivocacy of the standard notation (4) - which fails to indicate, when
the partial derivative is taken with respect to a particular variable, what
the other variables are that are being held constant. This makes the
numerical-subscript notation a substantial aid to thought when there are
distinctions to be made in this regard, and for this reason we shall tend to
use it in preference to the notation (4) whenever it seems to be easily and
conveniently possible to do so.

In the statement of results in the following sections there are certain more
or less evident conditions which will generally be left tacit. These include
the existence of derivatives which are used, the existence of solutions of
certain differential equations (as shown by the context to be required), the
existence of certain implicit functions, and the restriction of results to an
appropriate neighborhood as may be necessary to secure the foregoing. In
general these are conditions which we expect could be secured by imposing
appropriate ordinary conditions of regularity on the coefficients of the
differential equation for rvhich solutions are sought, and a more thorough
account than is attempted in the present paper should speli this out in detail.

l. Preliminary cases

1.1. If cc portial cliJJerent'ial equat'ion

J@ t?l tz,P,Q,r,s,t)-0

has a solution of the form (L) or of the Jorm (2), then thi,s solution must satisfy
the partial d,ifferenti,al equati,on (5) identically in r.

By satisfying (5) «identically in r» it is rneant that the solution in fact
satisfies

(5)

(6) J@,A,
u'here 1L is a nel ,' independent,
course it follows as a corollary
must, be a solution also of the

z,f)r8,u,s,t)-0
variable (independent of n and y). And of
that a:ny solution of (5) of the form (1) or (2)
differential equation
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(7)

These
ull

Vr , Vz

X'or a solution of the form (1), theorem Ll becomes immediately evident
if we substitute the assumed solution in the differential equation (5). In fact
substitution of (l) in (5) ;.'ields

(8) f@,y,A,Arl Asg'*A*g" +...+ An+t7(ql\ ,A2,A1* 2ABg'

+ ... I A,+tr@-tz) ,Arr* Az g' * Arng" + ... I Arpar,lv(n+r) , Azz):0

And since this must hold for an arbitrary function g, it must hold identically
irt r,A,g,g',g" r,.,,q('"+z) as n15 independent variables. We may
of course assume that the function .4 is not independent of its last argu-
ment, and hence t'hat' A,*, does not vanish identically. Theorem Ll then
follows because, in (8), f("+21 occurs in the sixth argument of / brrt
nowhere else.

On substituting (2) in (5), we see that the condition that no relatton of
the form (3) shall hold is dispensable as far as 1.1 is concerned. For we may
argue that not all of g", q"r, g"r., . .,, g'f, can be expressed each as a function
of firg,gt,gz,...,go,g',vi,ql ,.'.,V'^, as this rrould not be

compatible with the arbitrariness of the function g. Then if a solution of
the form (2) should satisfy (5) otherwise than identically in r, we v'ould
have an equation of the form

Arg" * Anql* Auq'i*...+ A*+rg".:
(9) o(*,y,g,gr,gz,...,gn,g',qi.,E'r,...,go)

holding identically. I-rom this equation by taking z times in succession the
partial derivative with respect to y we get' the n equations:

A6 V" + Arn V', * Ars V', + .

Arru V" + Arrn V", * Arrb cp'; +
* Ar@#') v: : aZ

. + Arrqn*r\ gt:: - 0r,

'n 1- I equations, regarded as linear algebraic equations in ,{" ,

. . . , V'1,, mrlst not be all inclependent, i.e., the determina,nt

A3

4,,
4,,,

A4

Ar*

Arrn

A5

Aru

Arru

A nrr

AzqnqtT

Arr1,-r11

Arr. . . 23 Arr...24 Arr. . .25 Arr...z(n-i-B)

Arr...%V' + Azz...z4V'L + Azz...zsV'z * . . . + Arr,..z{nj-t1 V'1, 
:



AI,oNzo Crruncu, A generalizahion of Laplace's transforrnation

must vanish identically. tr'rom this it follows that there must be a linear
relabion

(10) ooAs * ofrlA4 + aolAs * * a(.n)An+t '=- 0

which holds identically and whose coelricients ao,a61 ,a121 t...,e(n) are
functions o{ x., E, gt, gz, . . ., pn. Bytreating (10) as apartial differential
equation to be solved for A and considering the form of its solution, we
see that it must be possible to rewrite the solution (2) of (5) in such a, way
that the number z is reduced by r. This can evidently be iterated until n
is reduced to 0, at which point the solution (2) has been reduced to a special
case of (l).

This completes the proof of 1.1.

Now for present purposes the problem of finding all the solutions of the
form (l) or the form (2) for a given second-order partial differential equation
will be dismissed as solved if we have found at least one additional partial
differential equation in the same dependent and independent variables that
has to be satisfied - provided that the additional partial differential
equation is independent ofthe first one and is ofnot higher than the second
order. This dismissal might be thought too summary, in the absence of a
definitive treatment of the question of simultaneous solutions of two second.-
order partial differential equations in one dependent variable a and. the
same independent variables r and y. But it will serve to separate this
rather different question from t'he main topic of the present paper. And there
is moreover no real difficultv over the matter in the present context,, because
when simultaneous partial differential equations arise we are concerned,
not with all their common solutions, but only with their common solutions
of the form (1) or (2), and the theorems of the present section, especialy I.2,
may therefore be used to make further reductions.

we shall therefore regard the problem of finding all solutions of the form
(l) or (2) for a partial differential equation (5) as solved by l.r, except in the
case in which fu vanishes identically, i.e., the case in which (S) is
independent of r. rn fact we shall think of l.l as meaning that, although
there do exist cases in which a differential equation (5) not independent of
r has a solution of the form (1) or (2), such solutions are in a sense ex-
ceptional, and the main case we have to consider is that of a differential
equation

(1 1)

However, we go on immediately to a number of theorems analogous to l.l,
which we regard as showing that (lf) is still too general, and that, in a
certain sense which we do not attempt to make definite, the main case has
to be regarded as consisting only of certain subcases of the case (11).
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1.2. If a partial, differential, equation

(12) f(*,y ,z,p ,l,t):0
has a solution of the form (l) or oJ the form (2), then thi,s sol,ution must sati,sfy

the parti,al, d,i,fferenti,al, equation (12) id,entical,l,y irt p.
The proof of L.2 is exactly analogous to that of 1.t.

1.3. If a parti,al d,i,fferenti,al equat'i,on

(13) s:f(r,!l,z,g,l,t)
has a solut'ion of the Jorm (l), or a soluti,on of the form (2) such that no relat'ion

(3) hold,s for arbitrary q, then thi,s soluti,on must satisfy

(14) lun(r,U,z,p,g,t):0
identi,callg in p.

For if we substitute in (13) an assumed solution of the form (1), we get

Arr* Azsg' * Arng" +.' . * Ar6arlr(n+r) -
t t5t\--l f@,y,A,Ar* Asg'* A+g" +... * A.+rr("*7) ,Ar,Arr)

This must hold identically in fi,A,g,g',V",...,gb*') as n+4
independent variables. We may assume that A*+s does not, vanish
identically, and hence by taking in (15) t'he second partial derivative with
respect to ,("+t),

(16) f*(*,y,A,Ar* Asg'* Ang" +... * An+sv(n+r),A2,A22):0

Equation (16) means that (f ) satisfies (14), and from 1.2 it then follows that
(l) satisfies (ra) identically in p.

The argument is analogous in the case of a solution of the form (2), but
the condition that there is no relation of the form (3) holding for arbitrary
g is evidently essential.

At this point it remains to consider differential equations of the two forms

( 17)

(18)

as being the only ones not yet covered. That is, for a second-order differential
equation ofany form other than (f7) or (18), theorems 1.1 - 1.3 provide the
means to find all solutions of the form (t), and at, least all those solutions of
the form (2)which obey the condition that no relation (3)holds for arbitrary 9.

We shall ignore (f 7) as being properly an ordinary rather than a partial
differential equation, and our main concern will therefore be with t'he case

of differential equations of the form (18). This is the case to which the
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generalization of Laplace's transformation applies, and we might now turn
immediate§ to consideration of this transformation. But since the method
of finding a second differential equation which the required solution must
satisfy can as a matter of fact be pressed somewhat further, at least in the
case in which the required solution is ofthe lorm (t), we proceed to develop
this first.

In connection with (18) we shall need to use functions x and I deter-
mined as follows:

( 1e)

( 21)

1(r tU tz,Q,t): ps* p*u - Fu*- !1

+ (r, * usQ * u+t * vz)ps - 0r, * psQ * tt+t * frv)ru

t): 1r* Aau - lrn+ 0r* vsT * u+t * Yz)ls

(1r* lel * lot * 2)'a)ag
(20) '(*'u'z'8'

Å * A^z g' * Aro g"(21) '-72\ / 
*u(r,U,A,Ar,Arr)

If we assume for (18) a solution of the form (1), we get, by substituting
the assumed solution in the differential equation (18),

+ . . . + Arp*r) v(tu+r') - p(r, Y, A, Ar, Arr)

lA, * As g' * Anv" + . . . + An+t r("+r)1

hold identicatly in fr , U, g, g', g",. .,, V(n+L) as independent
and hence we must have separately the two followirrg equations

theargumentsof p and v are fr,A,A,ArrArr),

Arr* AzsV'+ ...+ Ar(n*\g@-') + Az,yz\V@) -
p + vlAt* Arv',+ . . .+ An+rv@-') a An+zgtu))

Azqnl-t) : uAn+t

From equation (22), by taking the partial derivative with respect' to y,
and also wrth respect to g("), we get the two equations:

Arrr* Arr,v'+ . . .+ Arrln*tyg("-r) a Arrlniqv("):
pz* psAz* paAzz* psAzzr* @r* usAz* vtArz* ruArrr)

lAr* Asg' +...+ An+tr@-t) + A*+zV("))

*vlA1z+ AzsV' +...+ Arlnar)g("-r) * Artn*z)V("\)

Arrln*B) + Arrln*B)V'+ . .. + Arp4r) (,*B) f(n-t) * Artnr2)(ntr)V@)

* Artn*z): psA,+s * PlA2(nrB) * psAzz@a\ * (,rA,+s * vaAzlnaty

* ysAzz@_yt))lAr* Asg' +. . . + An+Lrtu-t\* A*+2g|")f * vlAl(nra)

* Artnl3)V + ... + A(,*1)(,,+-3) ,@-r) + A(n*2)(,,+3) V(") + A,fi7

This must'
variables,
(in lrhich

rr,\

(2 3)

( 25)
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From equation (23), by applying the operator

aaa
an+ r'ar+v" av,+.

ancl by takirg the partial derivative with
V("-t), we get the three equations:

Arz1,1t1 * Azt61z1 E' + . . - 1- Arb+r)(,+B) 9("-r) :

,6\ larl ur(Arl Asq'+ ... * A^irE("-')) * v+(arr* Arrrp' * ...
* Azgarlq@-')) * vs(Anz* Azzsq' + ... * Arr@+r1v("-\JA^0,

* ylAr@+t) * Ar67e.1g' + .. . * 114ry1"1a; ?("-t)1

(27) Arr6qr.1: @r l yaA, * yaAzz * y$zz)4,+t * aArppl

(28) Azp1z11^aty: (r"A^+, * vAz@+z) * vaAzz@+z))A.+, * aApar',11*1r'1

Now we mulbiply equations (24) - (28) by -y54,$, *1, -L, Fs*
yslAr* AsV' *...+ A^+zV(")f, g(") 

""*r""tively, 
and add. Then use (22)

toreplace Arr*Azrp'*...+ A161119(") by p*rlAr* Asg' +...+
A^+zq(")f, and (23) to replace Azp1t1 by aA.*u. The result is

Arqn4r) : uAn+z * 1(*, U, A, Ar, Azz)An+t

.. + r@-t) :---=.
Og("-z)

respect to y and with respect to

(2s)

We need to look separately at the special case in which n is 0, i.e., the
case in which the solution (l) reduces to

(30) z:A(r,y,g@))
In this special case equations (22) - (25) become:

Atz:p*yAr, Arr-yAg
Arzz: pz * psAz * paAzz * psAzzz * b', * ysAz * yflrz * asA2rr)4, * rA9

Arzs: lbAs * paArs * FsAzrt i O,sAa * vqAzs ! auArrr)4, * vAB

X'or (26) and (27) we use the two equations obtained from Azg: aA, by
taking the partial derivative with respect to r and with respect to yi

Atzs: @1{ arA, * vEAp I uuArrr)4, * vAg

Azzs: @, | ry4, * vtAzz { aA2rr)4, * vAzs

There is no equation (28) in the special case. If we multiply the four last
equations, corr'esponding fo Q\-P7), by -auAr,fl, -l ,ps*vsAr
respectively and add, and then replace Ar, lry p I aA1 and A6 by uA, ,

we get in place of (29):

0 - )'(* , U , A , A, , Arr)Au
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Äs the intentiorr of (30) is of course that A, does not vanish identically, i.e.,
that we actually have a solution depending on an arbitrary function, it
follows for any solution of (IS) of the form (30) that

(31) l(r,A,A,Ar,Arr):A
Now by taking in (29) the partial derivative with respect to y and with

respect to q("), we get the two equations:

(82) azt1n1z1 : 0, I vsAz I vqAzz * vsAzrz * vz)a.+z

+ u.2 + 1rA, * lnAr, * luArr, * 21a)A^*,

Azqnazy(,*3) : @rA,?+3 + v+A2(nf 3) * vsA22(n+3)) A n+z

* uA@iz)(,*3) + (LuA*o, + luAz1*ar; *
lrArr1ar1) A,p * 1A6at11n-yt1

And upon multiplying equations (27), (28), (32), (33) by auA,*r* LaA.+t,

-L, -auAo1e, f I respectively and adding, and then using (23) and (2g)
to replace Azpazl by vA^*, and Ar,^*r, by aA,n, * 1A,+r, we get

(34) ),(r,y, A, Ar, Arr)A61r11,_pa1 * x(r,U, A, Ar, A22)A2,*n:0

From (34), by taking the partial derivative with respect to y and using (23),
there results

(35) LAz1n1ty1,1t1 + Q'z + 1rA, I )nAr, * lsAzzz)A61-s11^at1

I @z I xzAz * xEAzz I %sAzzz l- 2xa)A2,*, : g

Also from (23), by taking the partial derivative with respect to E@), we get

(36) Azpatyl,atl: (usA^nt * aaAz4arl * vtAzz(n-rt))A"n, * vA6az11n1t1

Then multiply equations (27), (34) - (36) by ),\rAn*, , lz * 1rA, I
lrArri lrAr*I ),a, -)",,12 respectively, and add. Use (23) to replace
Az6at1 hy aA^*r, then divide oui A2,*, (since v'e mav assume that A^*3
does not yanish identically). The result is

A'r, + )Paao ! @, { arA, I ycAzz * yaAzzz { a2)),2ag

(37) * ilo, + Nzl - x).2I (xr)' - il"r)Ar l QtA - x)"n)A2

* (xu)t - xlu)Arrr: g

Hence the theorems:

11

(33)

1.4. Il o partial
this solut'ion must

(38)

di,fJerent'ial eguat'ion (18) ha,s a solution, of the Jorm (30),
sat'isfy also the di,Jferenti,al equ,at,ion

)'(*tU,z,lrt):0
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or must sati,sfu a relation q,rnong fr,U,z,q,t for wh'i,ch one of p, Pz, Ps,

F+ , fis , | ,9! ,'12 1lg » l'4,lg 'i8 s'ingular'

1.5. If a partial d,iJferenti,al, equation (18) has a solution of the form (l),
this sol,ution must satisfy also the d,i,fferential equation

1'rr+ )\aanl @r* rrq * v+t * a'1l'ru|- il.u * xzl

(39) at\'"t 
- xlz * @ul - xla)l * @El - xln)t * (1'r', + ?451 - %A) Ay: O

or mtcst satisfy a relation onxong fr,A,z,q,t for which one of P,pz,Pg,
|iq, fis r'lt,!1 t!2 1l,.gt14 1'ugt 1rr 1r, )'4, )rgrN2tzlgtN42%g 'i's si'n'gu'lar'

The alternative which enters in f .4 and 1.5 - that at z: A,8: Az,
t : Azz either p at y or one (or more) of the partial derivatives which are

listed has a singularity - arises because the argument above has tacitly
assumed that they are non-singular. The necessity of including this alter-
native may be shown by examples. I'or instance the differential equation

s: I f 31otå

has a solut,ion z:(r*c)y *q(r) which,since l: _31.*, corresponds

to a singularity of vu rather than a zero of i. Again the differential equation

(z * Ails : (z + Ailz + 2pq. * ypt

has a solution z : y-rq(t) which, since ). : -L, corresponds to a,

singtrlarity of v rather than a zeto of )".

As a consequence of I.4 and I.5, we may expect generally that if a partial
differential equation (I8) has a two-arbitrary-function solution which in-
volves, besides E(r) , one other arbitrary function y and which, for all or
almost ail particular choices of rp, reduces to the form (30), or the form (I),
then 1(r,y,z,l,t) will vanish identically, or

(40)

(41)

A'r, * ),Luun{ (r, * vzQ * v+t * az))'za, { xLtt

+ %zl - %12 * @rl - %Lr)q * @nh - %11)t

),'r? + %sA - %As

will both vanish identically. But it seems to be difficult to find an exact

statement of such a result without imposing some undesirable restrictron on

the form of the two-arbitrary-function solution (as e.g. that it shall be elemen-

tary). And it may be better instead to seek related results about the existence

of intermediate integrals of the sort which is illustrated by theorem 2.2 below.

As a special case we notice that (a0) and (41) both vanish identically
when the differential equation (18) is linear.
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2. §eneralization of Laplace,s transformation, first case

Treating (23) as a partial differential equation to be sorved for A, we
find that it has an intermediate integral involving an arbitrary function.
In fact if we assume an intermediate integral

(42) Az:0(r,U,g,g',g",...,f@-r),A)
rr.e get as condibion on 0

(43) ?o+t: v(t,y, A,0,02+ 00,#)

And solution of the first-order differential equation (43) for 0 yields the
intermediate integral. rn this section we deal with the special case in which
the function , is of not higher than first degree in its last argument,

(44) y(x,y ,z,Q,t): §(",!,2,q) I ö@,A,z,Q)t

- the intermediate integral of (28) being in this case of the Monge form.
When l has the form (44), lhe condition (48) becomes

(15) 0,+3 : fr@,A,A,0) * ö(r,U,A,0)l0z+ 00^#1

The general solution of the differential equation (4b) may be written as

(46) G(*,A, A,0) : @(r, ?(r,U, A,0),9,g,,V,,,.. .,E@-r)1

where @ is an arbitrary function and -F and G are particular functions
satis{ving the conditions

(47) Gs: _ §Gn I öl?z + |Gsl

(48) ?s: _ §En * öV2 + lPsl

- as (47), (48) are in fact the conditions for G(r , A , A ,0): constant,
F(r , y , A ,0) : consta,nt to be solutions of (45), and where of course we
must so choose -F' and G t]nat these are independent, solutions of (45), if
(a6) is to be the general solution of (a5).

The partial differential equation (ls) has in the present case the special
form

(49) s: p(r,A,z,q,t) + §(r,y,z,q)p * ä(r ,U,z,QWt

Generally, for solutions of (49) of the form (t), it folrows from (42) and (46)
that

(50) G(n,y, A, Ar) : @(r, I(x,U, A, Ar),V,g,,g,,,...,g@*\1
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must hold identically it r,A,g,g',g',,..,g(") for some choiceof the

function @. Hence if we make a transformation of the differential equation

(ae) by letting

(5r)

the
the

(52)

X: r, Y : X(r,y,z,Q), Z: G(x,y,z,Q)

solution of the transformed differential equation which corresponds to

solution z: A of (a9) may be expected to be

Z - @(X,Y ,V(X),g'(X) ,V"(X),.. .,V("-l)(X))

Ive may work out details cf the transformation (51) as follows:

(F, + F r,p + F ns)(G, * Gsy * Gnt)

P- Fr*lsQ*Fut

That is, the effect of the transformation will be to replace a,ny solution of
(ag) of the form (t) by a solution which, in terms of the new variables x ,

Y , Z , has the same form with the number z decreased by at least' l'
To find the transformation (5I) when the differential equation (a9) is

given, we have the differential equations (a7) and (4s) to solve fot P and G.

As (a7) and (a8) are cond.itions on the functions ]7 and G, not on their
arguments, we may rewrite (a7) and (a8) with n , U ,? , Q as the arguments,

in place of r , U , A ,0 . The subsidiary equations then are

d,r d,y dz dq
tuÖ/ 0 - ö(r,U,z,q)- qö(r,a,z,q)- | §(t,Y,z,Q)

And we must, find three independent integrals, tr: constant, I(r,y,z,
g): constanl, G(r,U,2,4): constant, of the subsidiary equations (53)'

Using (a7) and (a8) in the forms

G, * §Ga: öG, * Gril , ?u * §?+: ö(F, * IsA)(51)

a@,Y) laY
a@,il I w

- Gt * GsP + GnQ, * §P + öPt)

G, * Gqp * öP(G, * Gs7 * Gnt) -

(55)

(56)

1 öPln \9'! 9v!" !?ut\
Fz*FsQ*F*t

lF,-r lnp Lgpt?,t ?,qt AU§:_tG:q !$tl\
ltz* FsQ* ?nt

Gr* Gs7 * Gnt
P - G,, * G+F - (/, * F+F) p, *7rn 4 qt

AZ IAY Gr*GrQ*Gut
{l I 

-
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(57) t-

(58) P-GL-FrQ + (Gu

Then letting

Gr*Grt-(Er*?rilQ
luQ

,2 r8,
Gr* Gst - (Ir* I*Q)Q\

ha-G^ I- luQ

G4

)r(* , v

(59) Å(*,U,z,q): E*Gz- FrG-* q(FuGs- IrGn)

\ire get,:

TnG, - FrGn

-ö

/1

- InQ G4

EuQ - G+

Å

(FnQ Gu)q

?,ilQ
A

Z,P,Q)
""^

(60)

(61)

(62 )

aq_ _u, I(63) ay Oat

tlnless the Jacobia

(61)

Fr*FaI*Fnt-

0y laY E,1"* -4
AY ,IOY

0z 0zlAY (
t-

aY aal 0y

aY @uQ Gn)t:::ova
n

r ur!-''
o(y ,z

vanishes identically, the five equations (51), (55), (56) can be solved to
express fr,A,z,q,t each asafunctionof X,Y,Z,P,Q. Thenthe
transformed differential equation (that results from (+9) by the trans-
formation (51)) can be obtained by taking the partial derivative with
respect t'o y in (58), using the expressions (61) - (63) for the partial
derivatives of U , a , and q with respect to I, and finally replacing r
by X and y ,z , Q by the expressions just found for them as functions of
X,Y,Z,P,Q.

The transformed differential equation will evidently be of the second
order and in fact will have the form

(65) § D(X, Y,Z,P,Q) + E(X,Y,Z,P,Q)T

It witl be possible to iterate the transformation, i.e., to apply the generalized
Laplace's transformation again to (65), only if D and E are both of the
first degree in P . But, if there exist solutions of (+9) that are of the form (l),
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it, must be possible to iterate the transformation often enough to find them
in accordance with theorem 2.3 below.

By , straightforward computation, expanding the determinant and
making use of (54), we find the following expression for the Jacobian, in
v'hich )" and A are of course the .1 arrd / of equations (19) and (59)
respectively:

1Å3
(66) J- (Ir*fs7*lnt)'

That neither / nor Iz * ?sl * Int can vanish identically follorvs
from the condition that ,,: constant', .FI: constant, G: constant
are independent integrals of (53). Hence "I vanishes identically if and onl5r

if å vanishes identically.
lf J, or ,1, vanishes identically, a relation of the form

( 67)

(68)

f(x,Y,z,P,Q)--=o
must hold as an identity in r ,!,2,Q,t. We may regard (67) as a first-
order differential equation to be solved for Z; and if in its general solution
we replace X by n,Y by F(*,y,?,Q), and Z by G(*,y,?,g),
in accordance 'with (51), the result will be an intermediate integral of (49).
We rely on the methods of Lagrange and Charpit, not so much as a means of
finding an expression of the general solution of (67) in particular cases, but,
for a proof of the existence of the general solution of (67), in one or other of
two forms involving an arbitrary function, according to rrhether or not (67)
is of the first, degree in P and" Q. And hence u'e have:

2.1. If ). aanishes identically, the d,i,fferential, equation (19) has ct, Jirst-
ord,erintermediate i,ntegrul, which'inuolues an arb'itrary function y and, whi,ch
has e'i,ther the forn't

H(*,U,2, 8, ?p(4r,U, z, q))) -- 0

or the pa,ra,nletri,c form:

H(* tU tz,g,%,V@)) - 0

Hu@ t U t z, I t % t V(u)) + rp' (u)Ha(r, U, z, e, tt, y(u,)) - 0

,J the param,etric form u)e mll.st adcl sepero.tely the i,n,terrnecli«te

(6e)

(70)

(In tlt e cr,se

'integral

( 71)
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obtained, from the comgilete integral, of (67), a and, b bei,ng arbi,trary constants

and, H the same funct'ion as i,n (69).)

The converse of 2.1 is:

2.2. If the d,ifferenti,al, equation $9) has a Jirst-ord'er intermed,iate i,ntegral,

which irursohses' an arbitrary functi,on tp and, has one of the forms (68) or
(69) - (70), th,en, A uanishes i,ilenti,oal,ly.

X'or the proof of 2.2 we notice that, for any particular choice of y, the
general solution of the intermediate integral (68) or (69) - (70) will ordina-
rily be of the form (30), so that 1.4 applies. This fails only for those choices

of lt for which (68) or the equation obtained by eliminat-g u between
(69) and (70) is independent of q, and we shall exclude such choices of rp

sirnply as «exceptional».
If the intermediate integral is (68), the exceptional g's are only those,

if any, which satisfy Ha* qH*p' : 0 identically in fr ,A, z, 4. And the
possibility that, Hu and tqHr might be both identically 0 independently
of q is excluded by the hypothesis that (68) is of first ordor. If the inter-
mediate integral is (69) - (70), the exceptional rp's are only those, if any,
whichsatisfy Ha,:0, identicallyin r,A,z,Q when u ist'reatedas a

function of r,y,z,q determined by (70). Andin this case thepossibility
Lhat Hn is identically 0, independently of g, is again excluded by the
h5,pothesis that the intermediate integral is of first order.

Thus the exceptional rp's can be at most only those which satisfy a
fixed first-order differential equation.

Now by T-4,if. there are no singularities of &,v , and their first partial
derivatives (other than pr), and if ,t is not identically 0, the relation
)'(r,y,z,g, r) :0 holds for all solutions of the intermediate integral for
all non-exceptional tp. That I is not identically 0 implies lhat' J is not
identically 0. Hence the expressions for fr,A,z,q,t as functions of
X,Y,Z,P,Q exist, and we may use them to express )'(r,y,2,4,t)
as a funct'ion of X,Y,Z,P,Q. Thus we get an equation

(72)

lVhere .1 does not, vanish it follows that A does not, vanish. Hence A
does not vanish identically. Also J can be expressed as a function of
X, y, Z, P, 0 . For any solution of the transformed differential equation
(65) that does not correspond t'o a zero of A or a zero or singularity of J
we can argue from (72) that l, is non-vanishing for the corresponding
solution of (49), and hence that the solution must be one that is obtained
from an exceptional rp. The solutions of (49) arising from exceptional rp's

can evidently be covered by an equation

17
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u(r,U,z,c):0
obtained from either (68) or (69) - (70) and involving at most one arbitrary
constant c. From this by eliminating c we get a first-order differential
equation, involving say fi ,U,2, q, which can be reexpressed in terms of
x,y,zrPrQz

( 73)

(7 4)

(76)

T(x,Y,z,P,Q)-o
fn a suitably restricted neighborhood within which both A and ..I (as

functions of the five variables X,Y,Z,P,Q) are non-zero and non-
singular, the solutions of the definitely second-order differential equation
(65) are thus included among those of the fixed first-order differential
equation (74) - which is impossible.

In the case in which there exist solutions of (a9) ofthe form (30) corre-
sponding to singularities of p , y , and their first partial derivatives, the
above argument may be modified as follows. In addition to the relation
1(r,A ,2,9,1) :0 we have also a number of relations

(7 5)

which represent the relevant singularities of pr , a , and their first partial
derivatives. These may be reexpressed in terms of X,Y,Z,P,Q as

A<,1(X, Y,Z,P,Q)- o

And we then consider a neighborhood within which A , Ag,,f are non-
zero and non-singular.

Now returning to the point which was made above in connection with
equation (50), that the transformation (51) can be expected to transform
a solution of the differential equation (a9) of the form (1) into a solution
which has the same form with the number n, decreased by at least, l, we
remark that our proof of this is not yet conclusive, because of the possibility
that equation (46) may not include quite all of the solutions of (a5). Indeed
one class of solutions of (a5) which is definitely not included in (a6) is given
by the equation

(77) I(r,y,A,0): Q(x,g,g' ,g" ,...,q("-t))
where J2 is an arbitrary function. And correspondingly equation (50) must
be supplemented by the equation

To repair the defect we proceed by finding the following Jacobian,
where -f,'standsfor X(r,U,A,Ar) and G standsfor G(r,y,A,Ar):

( 78)
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a@,G) : (,Iz * IÅz + F4Azz)(GsA*+t * GEAz(.+q)
o(Y , q\")) \

- (G, * GaA, * GAÅ(IrA.+z * nuArl^1r1\

: vrG, - IrG, * (FnG, - IrG4)A22lA^+3

- vnG, - rrGn * (FnG, - IsG4)42)42,+3)

: L(0@, U, A, Ar) * ö(*,y, A, Az)Azz)A^+l

- Ar<**rl)/(x,g , A, Ar)

In this the factor (P + öAzz)A*1t - Azloarl vanishes by (23); and the
Jacobian O(l , G)lO(y , q{")) therefore vanishes, with a possible exception
if / is singular for z : A, ll :r4z. With this exception we do have, as a
consequence of the vanishing of the Jacobian, that either equation (50) must
hold for some function @ or equation (78) must hold for some function 0.

The exceptional case in which (78) holds is the case in which I(r,A,
A , Ar) is independent of y, and hence, taking n , U , z, g as the arguments
of .n', we may describe it also as the case in which Iz * Fse I ?ot vanishes
for z: A.

The foregoing a,rgument applies as well to the case n: 0, i.e., the case

of a solution of the form (30), as it does to larger values of z. Thus if the
transformation (5f) is applied to a differential equation (a9) that has a
solution z:A(x,U,v@)), andif / isnotsingular and ?'ri. Fsel F+t

does not vanish for z : A(* , y , V@)), the corresponding solution of the
transformed differential equation has the form Z : Q(X, I), no longer
depending on an arbitrary function q(r) (or E6)). Generally, and within
an appropriately restricted region, the transformation (51) effects a one-to-
one correspondence bet'vyeen particular solutions of (a9) and particular
solutions of the transformed differential equation, as is clear from the fact
which we found above, that there exist not only the equations (51) expressing
X , Y , Z as functions of r,A ,z,Q but also inverse equations expressing
fr,U,2 as functions of X,Y,Z,P,Q. If this fails in aparticular case,

as in the reduction of a solutiorr z: A(*,y,V@)) to a solution not in-
volving an arbitrary function, it follows that the Jacobian J has a zero or
a singularity.

This suggests as a me&ns of finding solutions of the differential equation
(a9) of the form (1) that we use iterated application of the transformation
(51), examining at each stage the zeros and singularities of the Jacobian.
However, we must, take into account the exceptional cases that w'e found,
lbat Å is singular and that Ez * Isg * Int vanishes. (For exarnple if
wetransform s:ztt lty X:r, Y:q, Z:U, wefind J:1, and
the obvious solution z : cU i q@) comesponds not to ar.y zero or singular-

19
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ity of J but to a zero of I, { Isl * Fuf.) Hence in view of the expression
(66) for "/ it wilt be better not to use "I itself at all but to examine at each

stage the zeros and singularities of )' , /, and Iz * IrQ I Xnt separately.
To find all the solutions of the form (30) at each stage we might as an

alternative, by 1.4, just examine at each stage the zeros of ,1 and the
singularities of p, , a , and their partial derivatives. But this will not do as

a general procedure because there is a possibility that a transformation (5f )

of a differential equation (a9) might transform away not only all the solutions
of the form (30) but also a solution of the form (1) wit'h n: l. To illustrate
this 'we may cite the differential equation

Zzs:-2q-tQ-y)t*4pq
which has a solution

xlv@)
z: , a E\r)

This soiution is transformed a,rva,y - there is in fact no coffesponding
solution at all of the transformed differential equation - if we apply the
transformation X : n, Y : zzl7, Z : A. Tobe sure this accident might
have been avoided if we had made a different choice of I and G in
applying the transformation (51); but this does not destroy the force of the
example.

Ifence we state our result in the following form:

2.3. In ord,er to fi,nd, all solut'ions of the d,iJferential equation (49) that are

of the forru (l), for all, n not greater than a Jiued, no , it is sufJicient to proceed

as Jollous. Apply the transformation (5L) to the giuen d,ifferential, equati,on

(49), ei,ther no t'imes in succession i,f this is Ttossible, or el,se until, no further
'i,terat'i,on of the transformatiorL i,s possi,ble (either because )" aan'i,shes id,entically

or because the final transformed, difJerential eqtm,tion 'i,s no longer of the fornt'
(49)). At each stage i,n the 'iteration of the trans.formatiom erami,ne the zeros

and, singulari,ti,es of 1, /, and, I, * neQ I Int,'in the sense of wri,ti,ng the

d,iJferenti,al equations tahich represent these zeros anil singul,ari,ties and, d,eter-

mindng the solut'ions which they haue'i,n com,m,on with the d,ifferential equat'ion

u:hi,ch, at that stage, has been obta'i,ned' by transformation o! the ori,ginally gi,aen

d,i,fferential, equation (19). Then erunxine the fi,nal, transformed, d,ifferential,

equat'ion whi,ch has resulted, at the end, of the process of iterated, apTilication of
(51), i,n the following way. If i,t i,s of the fornt, @9) and, )' aatui,shes id,entically,

solae the correspond,ing d,ifferenti,al equat'ion (67) to fi'nd, an intermediate
,i,ntegral. If it i,s of the form $9) and, ). d,oes not uanith id,enti'cally, make use of
t.4 to fi,nd,'i,ts solut'i,ons of the form (30). I,f i,t is not of the form (49), make use of
1.3 to Ji,ncl 'its solutions o! the form (l).
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This theorem solves the problem of finding all solutions of a given

differential equation (a9) that are ofthe form (l), for all n noi" greater than
a given nr, ir the sense that the problem is reduced to the problem of
solving certain ordinary (as opposed to partial) differential equations. As

indicated above our interest is primarily in existence questions rather than
in practical solution processes. And the advantage of ordinary differential
equations from this point of view is that the elementary solutions (elemen-

tary in the sense of the present, paper) are known to exist. Nevertheless the
method of theorem 2.3 does work out as a practical solution process in some

c&ses.

Parent'hetically it should be added that the known existence of elemen-

tary solutions of ordinary differential equations applies only to a fixed
differential equation, not to an equation-form containing an arbitrary
function. X'or this reason, even if a partial differential equation has an

intermediate integral of the form (68) or the form (69) - (70), and hence

has almost all its solutions of the elementary form (30), it does not follow
that it therefore necessarily has a two-arbitrary-function elementary
solution.

In the special case in which the differential equation (a9) is linear it is

true that if any solution of the form (f ) exists, it must be possible to find a

two-arbitrary-function elementary solution by iterations of the transfor-
mation (51) - which in this case of course reduces to Laplace's trans-
formation.

In connection with 2.3, it is believed that substantial auxiliary theorems

can be found by means of 1.5. In particular, in at least, the case in which p

is independent of t, the equations obtained by setting (a0) and (41) equal
to 0 can be solved explicitly v'hen regarded as simult'aneous differential
equations for p and z; and this results in great simplificationintheappli-
cation of 2.3 \o a particular differential equation in this case' But this is a
topic which we leave to a possible future paper.

3. Generalization of Laplace's transformation, second case

Now we return to (43), to deal with the case in which v(r,U,z,g,t)
does not have the form (44). In this case (43) is a partial differential equation
of first order and not of the first degree, and we rely on Charpit's method
for the existence of a complete integral. With an appropriate understanding
as to what is meant, we may rewrite (43) as

2L

(n1 oqloq
a-'Y\''a'z'q'ay

aq\
+q ar)
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Let a complete integral be

(78) G(*,y,z,Q,ct): c

The complete integral of (a3) as originally written is then

(79) G(*,A,4,0,cr):c
And the corresponding general solution is

(80) G(r,y, A, 0,u) : Q(r,u,g,(p',g",. ..,q("-r)1

(Sl) Gu@,A, A, 0,%) : @r(x,u,g,g',g",. . .,V@-r\)

We therefore expect that a solution of the form (l), of the differential
equation (18), will satisfy one or other of the two following conditions. Either
there exist functions Eo and @, such that

(82) G(*,y,A,Ar,Eo(x,g,g',g",...,g("-1);; :
@o(r, 9, 9', 9",''', E@-'))

or there exist functions .& and @ such that

(83) G(*,A,A,Ar,E(r,A,A,Az,g,g',g",...,g("-t);; -
@(r, E(r, A, A, Az, g, g', g", . . ., E@-r)1, g, g', g", . . ., q("-'))

(84) Gu@,y,A,Ar,E(*,A,A,A2,p,g',g",...,g("-r))) -
(Dr(*, E(*,A, A, Ar, g, g', g",. . ., E@-r)), g, g', g", .. ., g("-t);

In either case, by considering r and y as the independent variables, and
taking the partial derivative with respect y, we get

(85) G2 + GsAz I GnArr: g

Then by solving (85) for .&' or Eo we get

(86) E : F(r,!,A,Ar,Arr) or Er: I(r,U,A,Ar,Arr)
(the same function -F in either case). This suggests that if we make a trans -

formation of the differential equation (t8) by letting

(87) X : *, Y : l(r,g,z,e,t), Z :G(r,U,z,q.,E(r,U,2,8,t))

the solution of the transformed differential equation which corresponds to
the solution z: A of (18) will be

(88) Z : @o(X,E(X),V'(X),V"(X),...,r("-r)(X))

or

(89) Z : @(X, Y,V(X),V'(X),p"(X),. . ., g("-')(X))
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That is, the effect of the transformation will be to replace any solution of
(18) of the form (t) by a solution which, in terms of the new variables
X , Y , Z , has the same form with the number z decreased by at least l.

To find the transformation (87) when the differential equation (18) is
given, we must find a complete integral (78) of the differential equation (77).
This supplies the function G. And I(r , A , z , Q ,l) is then found by solving

(90) Gr(*,y,z,Q,I) | qGr(r,U,z,q,I) + tGn(x,A,z,9,-E'):0
The condition that (78) shall be a complete integral of (77) assures that G4

is not identically 0 and that (G, t qG)lGn is not independent of 7. Hence
(90) can be solved for X, and .F so obtained will not be independent of l.

The condition that (78) is an integral of (77) can be expressed by the
equation

(e 1)
I

Gr*Ga,y(r,U,z,q,

where G stands for G(ru, A, z, Q, cr). Hence in consequence of (90) we
have the equation

Gr(* t U t z , I , F(* t U t z , I , t)) +

computation analogous to that by u.hich equations (55) and (56)
found, and using equations (90) and (91), wo find

where of course the arguments of G are fi ,U,2, g, E. Then unless the
Jacobian

(e2)

3r,."
(e3)

(e4)

(e5)

vanishes identically, the five equations (87), (93) can be solved to express
fr ,U,2, q,t eachas afunction of X, Y, Z, P, Q. Then the transformed
differential equation (that results from (tS) by the transformation (87))
can be obtained hy taking the partial derivative with respect to y in equa-
tions (87), (93), and eliminating AYIAy and 0tl0y. The result is

rq-Gru*FG+s*ps + (Gru- T)IF,* pF,* tr?,
G4

?,

*7u( #z* pst*

wherein ffi,Urz,cl ,t aretobe
functions of X , Y , Z , P ,8.

fi+t)-fis(Fz+FsQ*Fnt)]
replaced by the expressions for them as
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By expanding the determinant and making use of (90) and (91) we find
for J the expression

J - AG,^

Ilence J vanishes identically if arrd only if 1 vanishes identicallrr.
If J, or ),, vanishes idenbically, a relation

"f(x,Y,2,P,8)-:o

( e6)

(e7)

(e8)

must hold identically in r,U,z,Q,t. ff we solve (97) as a first-order
differential equation it X , Y , Z as the variables, and if in the result, we
replace X by n, y by I(*,A,z,e,t), and Z by G(*,y,2,e,
X(r,y,2,8, f)), in accordance with (87), the result will be a seconil-ord,er

'intermed'iate integral of (18). We understand the italicized phrase as im-
plying that the general solution of (f8) is to be found by considering the
common solutions of (18) and the intermediate integral. However, if we
consider also the equations itr u,U,z,Q,t which result from any extra
solutions (special or singular) that (97) may possess, we c&n say more
strongly that the disjunction of these equations and the second-order
intermediate integral is a consequence of the differential equation (18).

3.1. If y d,oes not haue the form (44), and, i,f ). aani,shes id,enti,cally, the
d,ifferential, equati,on (18) has a second,-ord,er intermed,iate,i,ntegral wluich,inuolues
an arb'itrary functi,on y and, whiah has either th,e form

H(* t U t z , Q , t , ,lU@ t U t z , I , t))) - 0

or the parametric form:

(99) H(r,A,z,g,t,u,y(u)):0
(100) Hu(* ,U ,z,l,t ,u,rp(u)) -t y'(u)Hr(r,U ,z,Q,t ,u,r!(u)) :0

(In the case of the parametric form we rnust add, segtarately the ,i,ntermed,iate

integral

(l0l) H(r,y,z,Q,t,a,b): Q

obtai,ned, Jrom the complete 'integral of (97), a and, b being arb,itrary constants
and, H the same function as in (99).)

Now returning to the differential equation (77), we observe that the
argument which led us from this equation to the transformation (87),
although it was presented heuristically, is as a matter of fact substantially
complete. Any solutions of (77) that are not covered by the complete
integral (78) and the corresponding general integral can only be one or more
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singular integrals. These will be equations that may involve n , A , ? , g
but do not involve any arbitrary constants or arbitrary functions, and
therefore they can lead only to solutions of (18) of the form (30). The con-
clusion above - that solutions of (18) of the form (I) are transformed by
(87) to solutions of the same form with the number z decreased by at least r
- can therefore be escaped only at most by some exceptional solutions of
the form (30). And in consequence we have:

3.2. In the case of a d,iJferential, equation which i,s of the form (IB), i,f u
,i,s not of the form (44), it i,s sufficient to proceed, as follous, in ord,er to find the
sol,utions of the form (l). If ). aanishes id,enti,call,y, fi,nd, a second,-ord,er inter-
rned,i,ate ,i,ntegral, by solui,ng the d,ifferenti,al, equation (97). Otherw,ise use t.4 to

find the solutions of the form (30), and, then appty the transformati,on, (87).
The zeros and, si,ngul,ariti,es of the Jacobi,an J as gi,uen by (96) must also be.

eram,ined, for possible add,iti,onal solutions that mi,ght be transformed, away.
The transformed, d,ifJerential equation i,s then of a form to whi,ch either t.J or
2.3 wil,l, be appl,icable to find the solutions of the form (t).

4. Quasi-substitutions

we turn now to a class of transformations which are closely associated.
with the generalized Laplace's transformations and which we shal call
quasi-substitutions.

some of these are obtained as resultants of a transformation (5I) and
the inverse of a transformation (51). For example, if the differential equation

qs:qs-pt
is transformed by letting

€:*, T:{1, e :z-ZAq
the transformed differential equation is

o{rfr:0
If on the other hand the linear differential equation

s+yzr-zyQ+22:0
is transformed by letting

€:X, T:Y, e :Q
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the result is the same differential equation o I qzr : 0. Both trans-
formations are instances of (5f ). The resultant of the first and the inverse

of the second is represented by the equations

X:r, Y:e, Z:ze-yqz

And this last transformation is an example of a quasi-substitution.
Generally, a quasi-substitution is represented by a triple of equations,

expressing the new variables X,y,Z as functions of n,A'z,P,g.
And from these equations alone, independently of any particular differential
equation to which the transformation is applied, there follow equations
expressing P and Q as functions of fi,A ,2,?,e, and equations ex-
pressing n,A,2,?,e asfunctions of X, Y, Z, P,Q. Thus the quasi-

substitutions share with ordinary substitutions the important property that
they may be applied to any arbitrary differential equation of first or higher
older, without raising the order of the differential equation. This contrasts
with the situation in regard to Laplace's transformation, and its present
generalizations, that a particular transformation, represented by a particular
triple of equations, is adapted to a particular differential equation and in
general cannot, be applied to a dilferent differential equation without raising
the order, and without destroying the feature that inverse equations exist
expressing fi,U,2,?,1 as functions of X , Y ,Z ,P ,Q.

(In some cases it may happen, as in the example given above, that a

quasi-substitution is also a birational transformation in the five-dimensional
space v'hose coordinates are fr , U,z, p, q.)

One class of quasi-substitutions is represented by equations of the form

(102) X: r, Y : I(*,A,2,!l), Z: G(r,A,z,I(u,y,z,q))

where F is to be found from the equation

(103) Gr(r,y,z,I) * qGt@,A,2, .F') :0

and where G rrr.ay be chosen arbitrarily, subject to the condition that (I03)
is a, non-trivial equation which has a solutionfor F, and that .[' so found is
not independent of q. As a consequence of (102) and (103) there follow the
equations

(104)

( 105)

P - Gr(*,U,z,F) * pGr(*,U,z,F)

A:Gn@,U,z,I)
The resultant of a transformation (102) and an ordinary substitution is

of course also a quasi-substitution. These are the only quasi-substitutions
that are applicable to ordinary differential equat'ions - in the sense that
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when they are applied to a partial differential equation that has the property
that all derivatives occurring are derivatives with respect to y, the trans-
formed differential equation has the same property.

ft can be shown that, besides the foregoing, the only remaining quasi-
substitutions are those represented by equations of the form

(106) X - E(* tU tz,p,Q), Y - ?(x,U,z,p,q) 
?

Z G(*,'U,z,E,?)
where E and F are to be found from the equations

(r07) Gr(* , Y

(108) Gz(r , ?/

(10e)

and where G may be chosen arbitrarily, subject to the condition that (107)
and (108), regarded as equations to be solved for E and .F, are inde-
pendent, and that D and -F, as found from (107) and (108) are such that
EnFu -,O/, does not vanish identically. From (106) - (108) it follows that

In order to find a quasi-substitution (106) when the function .F' is given,
not independent, of both of its last two arguments, v'e may treat

(1 10)
Gr(*,U,z,ct,c)\
G.(-,aJ,r"A) :=rc

Gr(*,?/,z,q,c)
Gr(*,U,z,cL,c)' Gr(*,A,2,c1 t c)

as a partial differential equation to be solved for G. We must, find a solut'ion
of (lI0) such that GrfG, and GrlG, arc not both independent of cr, and we
may then expect that (107) and (108) will be compatible and will have a
common solution for E.

To find a quasi-substitution (102) when the function .n' is given, not
independent of its last argument, we ma,y express q as a function of
n,y,z,I , and then treat (I03) as a partial differential equation to be
solyed for G.

The significance of quasi-substitutions in the present context is that,
when the methods of the preceding sections lead to an intermediate integral,
it may often happen that the argument of the arbit'rary function involves
derivatives. In this case the best way to treat the intermediate integral may
be to use a quasi-substitution to reduce the argument of the arbitrary
function to Y. We may expect to be able to do this whenever the argument
of the arbitrary function is a function of r 7 ! t z t p , q. And it may some-
times be possible even when derivatives of higher order are involved.

Some other applications of quasi-substitutions suggest themselves, 'r'hich
we must leave unexplored in the present pa,per.
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One of these is that it may happen that a given differential equation
can be transformed to one that is linear by means of either a generalized
Laplace's transformation or a quasi-substitution, even when this is not
possible by an ordinary suhstitution. The example cited at the beginning
of this section illustrates this point. fn this example the linear differential
equation obtained is one that has an elementary genera,l solution. But
evidently it may also be that the linear differential equation is not ele-
mentarily solvable. And even in this case it seems that the treatment of the
given differential equation might be facilitated by the knowledge that, it is
in a certain sense essentially linear.

Another possible application is to the treatment of the Monge-Ampöre
equations. It is not immediately clear how substantial this may be. But one
example is included in the next section as an indication.

5. Examples

We add some further examples illustrating various points in connection
with the preceding sections.

(E*. 1) (r*A)s*p't-p*x'q-0
Theorem 1.3 is applicable, and ån is - 6ptl@ + A). To make this 0 identi-
callyin p wemust,have f :0 andhence z:AV@)*X@). Substituting
this in the differential equation yields the condition X,'(r) : ry)'@) +
r'rp(*). Thus we have what may be described as a solution of the form (2),

with the condition not satisfied that there is no relation of the form (3).

It may, however be reexpressed as a solution of the form (1) by letting

We then have

This is the only solution of the differential equation of the form (1). That it
is quite special compared to the general solution is indicated by the fact that
we would still get the same solution if we replaced the t'erm pst in the
differential equation lry tl(d, / being chosen as any function not of the
first degree or 0 degree.

(E*. 2) s+Ugt:0
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This has the intermediate integral

- nq. + logY : log.P(q)

By the quasi-substitution

X:r, Y:9, Z:z-AQ
this becomes

A : - "*'rp(Y)
By integration of this with respect to Y

Z-- [r*",p(Y)d,Y]-eor)J '\
Hence the general solution of (Ex. 2) rl;,ay be written in the following para-
metric form, with q as the parameter:

a : e* ,p(q)

I
? : Qs*tt V{d - J 

e., y,(q)dq * V@)

To this we must add separately the solution

z: cA * V@)

which was lost by the form in which the intermediate integral was written
above.

In this case more familiar methods would suffice for the integration of
the intermediate integral, but there is an advantage of uniformity in always
using a quasi-substitution when the argument of the arbitrary function
contains p or q,

(Ex.3) s:(rp*yq-z)t
By the same quasi-substitution as was used for (Ex. 2) wo get

S:XP-Z
This can be solved by Laplace's transformation, with the result

Z : XI(X , Y) - L(X , Y) | xy(Y) -,p'(Y)

where I(X , y) : [ "*" p@)d,X. Hence we get for (Ex. 3) the parametric
J

solution:

g: - rlr(r,q) I lzr@,q) - rrlt'(q) *',p"(q.)

z: nl(r,q) - (rq I t)Ir(r,q) + elrr(x,q.)

* rrp(q) - (rq * r)rp'(q) * W"(q)
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To this we must add separately the solution

z: ca * v@)

which was lost by the quasi-substitution.
rn the former solution we may of course take g@) to be 0 and so find for

(Ex. 3) the more special solution

y--Mp'(q)*v"@)
z: mlt(q) - (rq * r)V'@) * qV',@)

we shall think of this last as a solution of a form that is analogous to the
form (r) except with q instead of r as argument of the arbitrary function.
For although we must regard q as an unspecified parameter in order to
give the pair of equations as solution of the differential equation, it will then
follow from these equations that q is in fact OzlOy.

@x. a) qs:qs-pt
X'ollowing the method of 2.8 we get from ,1, : 0 the solution

z-- 4=*p(r)n+c
Then the remaining solutions are found by the transformation t : m ,
ll : q, C: z - 2yq, which, aswe have alreadyseenin section 4, leads to
o * ,l't: 0. For this we get the intermecLiate integral

? - v(e +;)
and hence the solution

Thus as parametric

v- I

wv'@)

<- f I 1\
e - J,/(§+ i)0, + vG)

solution for (E*. 4) rve have:

I I / 1\
zq, 

1,,(* , q) - i *\* * A) -

qzr-s
zC - "pl

where I(r , q) : I y,(". ;) d,q

(E*. 5) rt - §2 -
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If we use the quasi-substitution

X:p, 1':g, Z-z-frp-yq

we get the transformed differential equation

§+Yzr-zYg+22-o
This is a linear differential equation for which, as rve have already seen in
section 4, Laplace's transformation is § : X, T : Y, C - @, reducing
it to o + rfr: 0. Using for this last the solution which was just obtained
above, we find

I
i I'(X 

'

[,(** Hence for (trr. 5) we find the para-
t\
T)ar'

z_7r(X,Y)

rnetric solution: 
't

n - - sr,(p,tl + f, r,,(p, o) * + r,r,b. ;) - qq,(p) + | v,wl

y - - I(p,q) - q(p)

I t\ r t / r\
? : -\ro + i) rrto,il +, ptrr(p,d - ; o'v\r + ;)

r / r\ I t\ r+ ,r*v'\r ua) - (ra + i)v'@l-- ,nv"@)

rn addition to this parametric solution we must also look into the question
of solutions satisfying either q : fjt) or p : constant, as there is a
possibility that such solutions might be lost by tire particular quasi-substitu-
tion which was used. fn fact we find in this u'ay (c - p)q: L , Q : 0 ,

?: c. These first-order differential equations are to be solved by farniliar
methods, and the resulting solutions rnust, be adjoined to the parametric
solut'ion above, for the full general soiution of (Ex. 5).

(Ex. 6) s2 : a2p2t

To avoid carrying the double sign, let a stand ambiguously for either one
of the trvo square root's cf n2, and so vT i1,e the differential equation as

I : atr)t+
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X'ollowing the method of 3.2 we find

G(r,A ,2,9, cr) : log (q * cr) - a'(z * ctY)

I(r,y,z,Q,t):a-tti -q
From (93) we find P : 0. Hence .Å must, vanish identically (as is also

easily verified directly). The equation P :0 is the equation (97). n'rom
it, we get Z : @(y), and hence the second-order intermediate integral is

Ir.
,togt - aytlt - a'(z - A8) : @(a-t t-' - q) | log a

fn order to solve this without first specializing the arbitrary function O
we proceed by taking the partial derivative with respect' t'o y, obtaining

Ir ,il ll . I
l-- a-Lt- i' - - tl lclt-i - azu - (D'(a-r ri - r/)l : 0Lz " 

:: - ,)l*-; - aza - @'1a-r tl - il) :

n'rom this the differential equation obtained. by setting the first factor equal
to 0 is easily solved, and its common solutions with (Ex. 6) are found to be:

t : - q,-zlog (y * E@)) * ba * c

z - - a-zlog (y 1- b) * (A -t b)q(w) t c

z: by _t v@)

Evidently the general solution is to be obtaineC from the second. factor in
the equation above. The differential equation obbained by setting it equal
to 0 may be rewritten as

a-Ltt -g: e(a-tt-i -y)
(since no new solutions of (Ex. 6) are obtained by taking @' equal to a

constant). Then we t'reat q as the dependent variable and on this basis
make the quasi-substitution

t : r, tl : o-t;l - y, C : a-ttt' + q

This yields
4?:-a,zlc+A(q))'

If we let

o(rt)

we may solve this as a

:= u-zllffi)'n, 2a-2ffi

Riccati equatioh, obtainitg

+ llffil'0,:mo9.
Qr'L
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Hence inverting the quasi-substitution we get the parametric equations:

u:ffi-n
q - 2a-2

at'(rt)

@(rt) + v@)

We omit the remainder of the work, which is
purpose of illustration. ft is necessary to find
of n and rl by using

And
must

(Ex.

(E*"

We omit details of these last two examples. (.8x. 7) is a very simple case in
which a (generalized) intermediate integral, containing an arbitrary function,
results by two successive applications of a generalized Laplace's transforma-
tion. (Ex. 8) has only a one-arbitrary-function elementary solution, obtained
by one application of a generalized Laplace's transformation.

6. Conclusion

The writer has urged elseu,here (Remarks on the elementary theory oJ d,if-

ferential equations a,s area, of research, in Information and prediction in
science, New York, 1965) the problem of characterizing the class of partial
di{ferential equations that have elementary or elementary-parametric
general solutions. It seems quite certain that there are negative results to
be obtained, both for this problem and for the problem of elementary and
elementary-parametric solutions that involve one arbitrary function, and
that the negative results ma;r be expected to begin'rvith differential equa-
tions of the second order in two independent variables. But the present paper
is directed entirely towards the positive side of these questions.

It is not immediately clear whether the methods of this paper may suffice
to treat the positive aspect completely, or how far in this direction they may
be expected to reach. But substantial extensions of these methods lrould
seem to be possible, and we conclude by giving some brief indications in this
regard.

3

-., 
al" ('?)

-ril;' -- 
crl'(rt)

_ n-2 [ lt"'n\12-w J l-'?,)) drt

length)r and serYes no further
an expression for z in terms

f

J

as three arbitr ary functions are then involved, a relation among them
be found by substituting in the differential equatior, i.e., in (E*. 6).

7) s-zq*qz
8) (r+yz)s-t2+2yp-Aq
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n'irst, while still keeping to the case inwhich the argument of the arbitrary
function is r, we may seek to use the same or similar methods to treat the

question ofsolutions ofthe form (2) for which a relation ofthe form (3) does

hold. Or instead of a single relation (3) we may suppose that' there are two

or more such relations, i.e., relations having the following forms:

vl,@) - Bt,) (r , v@) , vt@) , vz(n) ,

Vn_L(*) - B1E@ , v@) ,vr@) , vz@)

,.. .tgn(*) ,v'@),vi@), vz@), " ' ,v'--r@))

, . . ., v*(x), g' @), vi@), v;@),. . ., v*-r@))

v|-ar@,):Bg"/u,E(r),Er@),vr@),...,v"(n),q'(n),Ei@),E'r@),...,E'^-u@))

A somewhat, hasty preliminary §urvey suggests that such an extension of
the methods will indeed be possible, and that it may be expected to lead to a

second kind (or kinds) of generalization of Laplace',s transformation.
Then a different extension is to allow the argument of the arbitrary

function, in the elementary or elementary-parametric solution, to be other
than r. Here we must consider not, only the case that the argument of the

arbitrar;r function is a function of r,U,?, but also the casethatthe
argument of the arbitrary function involves derivatives of z. (x'or an

illustration of the latter possibility see (Ex. 3) above, where there is an

example of an elementary-parametric solution in which the argument of the

arbitrary function is q.)

At least, if the argument of the arbitrary function involves derivatives of
no higher than first, order, the expectation is that a substitution or trans-

formation can be used to reduce to the case in which the argument of the

arbitrary function is r (or x). Ind.eed it is clear that if the argument of
the arbitrary function is r,(x ,y ,z), tlne required reduction is accomplished

by a substitution in which X : t(r , U , ?)) and if the argument' of the

arbitrary function is r(n,A,2,P,4), the required reduct'ion is accom-

plishecl by a quasi-substitutioninwhich X : 4r, A, z, p, q). The problem

which remains is to find the requisite substitution or quasi-subst'itution

when only the differential equation is given, and not the argument of the

arbitrary function.
A large part, but not the whole, of the problem of reducing t'o the case

in which the argument of the arbitrary function is r (or X), is included

in the problem of red.ucing a given differential equation, by an appropriate
substitntion or transformation, to a differential equation in rrhich r (or R)

is not present. The latter problem is treated in the peper by the present,

writer v'hich is referred to above, but the treatment there is inadequate

because it fails to take into account the existence of quasi-substitutions.

Princeton University
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