ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

377

A GENERALIZATION OF LAPLACE’S
TRANSFORMATION

BY

ALONZO CHURCH

To RoLF NEVANLINNA on his 70th birthday

HELSINKI 1966
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1966.377


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1966.377


Communicated 14 May 1965 by G. JARNEFELT and Oiva KETONEN

KESKUSKIRJAPAINO
HELSINKI 1966



A Generalization of Laplace’s Transformation

In this paper we seek to deal with a question regarding elementary
solutions of second-order partial differential equations in two independent
variables, namely that of solutions of the form

(1) 2= Az, Y, px), (Pl(x) s ‘P”(x) e (P(n)(x)) s

where ¢ is an arbitrary function.

The term «elementary solution» is here used, not with 1eference to any
particular class of functions called elementary functions, but simply to mean
a solution involving one or more arbitrary functions and expressed in terms
of them by means of particular functions (not necessarily elementary) and
the operations of differentiation and indefinite integration.

In place of (1), our results will apply in part also to solutions of the
somewhat more general form

(2) = A(Q“ 'Y 99(35) s (Fl(x) s (]72(.76) FEEIE) ‘pn(x)) s

where ¢ is an arbitrary function, and ¢, ¢,, ..., ¢, are functions that
depend on the function ¢ in any way at all, subject to the restriction that
no relation of the form

’

‘Pn(x) = B(Q’,‘ s ¢(x) > (pl(‘l) s ¢2(x) I ‘f"(‘T) > ‘P’(l’) ’ (}";(J(’) 5

(3) o@) s s poa(@)

shall hold for arbitrary choice of the function ¢.

The forms of solution (1) and (2) are of course special, both in restricting
the argument of the arbitrary function ¢ to be x and in the restriction
that no relation of the form (3) shall hold, if not also otherwise, and in a
concluding section we shall give some indications in regard to the possibility
of extending our methods so as to remove the two restrictions named.

Following conventions of notation that are standard we shall use z as
dependent variable and « and y as independent variables. And then the
letters p and ¢ are used to stand for the two first-order partial derivatives
(of z with respect to = and to y respectively), and the letters », s, and ¢

Fer support of the work representel by this paper the author is indebtel to
the National Science Foundation of the Unitel States.
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are used to stand for the three second-order partial derivatives. Similarly,
if new variables Z, X, and Y are introduced by a transformation, we
shall use P and Q to stand for the two first-order partial derivatives (of
Z with respect to X andto Y), and R, S, and 7 to stand for the three
second-order partial derivatives. And if new variables (,&,n are intro-
duced, we shall use 7,9 for the two first-order partial derivatives, and
0,0,t for the three second-order partial derivatives.

We shall also employ in connection with n-ary functions a notation,
analogous to the standard use of the prime in connection with singulary
functions, by which the derived functions are denoted by placing a numerical
subscript after the function letter. For example, if the letter f denotes a
ternary function, then f, f; , f; denote the three derived functions obtained
by taking the partial derivative with respect to the first argument, the
second argument, and the third argument respectively. And thus, e.g.,
fa(x ,y ,2) expresses what would more usually be expressed by

0
o J@,y.2)

or by fAx,y,z), while fy(z,x,y) corresponds rather to

0
@f(z,x,y)

or to f,(z,x,y). Similarly f;, denotes the function obtained from f by
taking the second partial derivative, with respect to the first argument and
then with respect to the second argument; and f,, denotes the function
obtained from f by taking the second partial derivative, with respect to
the second argument twice.

Properly the standard notations such as

. o o0 0
) oz’ dy’ oyoz

are applicable to forms or to letters which stand for forms, while the
numerical-subscript notation is applicable rather to letters that denote
functions. The distinction is important in principle and must be maintained,
although it will be somewhat obscured in the present paper by our practice
of omitting the arguments after a function letter, purely as an abbreviation,
when it is clear from the context what the arguments are, or when (as
frequently happens in the treatment of differential equations) the arguments
of a particular function letter remain the same throughout some one context.

This use of, for example, the letter f alone as an abbreviation of
f(x,y ,2) must of course also be distinguished from the more proper use of
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the letter f, to denote the function itself as an abstract entity. The use of
the abbreviation is justified only so far as it does not engender real confusion.

The numerical-subscript notation for the derived functions of an n-ary
function has some inconveniences, among them that subscripts used for
other purposes must sometimes be enclosed in parentheses to avoid con-
fusing them with subseripts referring to partial derivatives.

However, the numerical-subscript notation avoids the well-known
equivocacy of the standard notation (4) — which fails to indicate, when
the partial derivative is taken with respect to a particular variable, what
the other variables are that are being held constant. This makes the
numerical-subscript notation a substantial aid to thought when there are
distinctions to be made in this regard, and for this reason we shall tend to
use it in preference to the notation (4) whenever it seems to be easily and
conveniently possible to do so.

In the statement of results in the following sections there are certain more
or less evident conditions which will generally be left tacit. These include
the existence of derivatives which are used, the existence of solutions of
certain differential equations (as shown by the context to be required), the
existence of certain implicit functions, and the restriction of results to an
appropriate neighborhood as may be necessary to secure the foregoing. In
general these are conditions which we expect could be secured by imposing
appropriate ordinary conditions of regularity on the coefficients of the
differential equation for which solutions are sought, and a more thorough
account than is attempted in the present paper should spell this out in detail.

1. Preliminary cases
1.1. If a partial differential equation

(5) f(x>?/,z’p>977"8’t):0

has a solution of the form (1) or of the form (2), then this solution must satisfy
the partial differential equation (5) identically in 7.
By satisfying (5) «identically in it is meant that the solution in fact

satisfies

(6) J@e,y,z.p,q,u,s,t)=0

where % is a new independent variable (independent of = and y). And of
course it follows as a corollary that any solution of (5) of the form (1) or (2)
must be a solution also of the differential equation
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(7) fe(x’y,zsp,q;lrasyt)zo

For a solution of the form (1), theorem 1.1 becomes immediately evident
if we substitute the assumed solution in the differential equation (5). In fact
substitution of (1) in (5) yields

8) fle,y, A, 4+ A3¢" + 439"+ ...+ 4, gt Ay, Ay - 2457
+ ..+ An+3 <P("+2) Ay + Apg " + Ayy¢” + ..+ Az(n+3) ‘P("ﬂ) s Agy) =0

And since this must hold for an arbitrary function ¢, it must hold identically
in x,y,9,¢,¢",...,¢" as n -+ 5 independent variables. We may
of course assume that the function A is not independent of its last argu-
ment, and hence that A4,. ; does not vanish identically. Theorem 1.1 then
follows because, in (8), ¢™*® occurs in the sixth argument of f but
nowhere else.

On substituting (2) in (5), we see that the condition that no relatien of
the form (3) shall hold is dispensable as far as 1.1 is concerned. For we may
argue that not all of ¢” , ¢/, ¢4, ..., ¢, can be expressed each as a function
of @, @, 01, PaseverPns@ @rsPas--->Pn, as this would not be
compatible with the arbitrariness of the function ¢. Then if a solution of
the form (2) should satisfy (5) otherwise than identically in r, we would
have an equation of the form

) A3¢//+A4¢;+A5¢;+"'+‘4n+3¢::
0@, Y s @y PrsPasees Prns @ s PLs Fane s Pr)

holding identically. From this equation by taking » times in succession the
partial derivative with respect to y we get the » equations:

Agy ¢" + Ay ¢‘I1/ + Ay ‘F‘g + ..+ A2(n+3) ‘PZ = 0,
Agos ¢" + Apay ‘Pli + Apos (F; + .4 A22(n+3) (/:: = b,

Azz...23¢‘” + Azz...u‘ﬁq + —422...25(?{.; + ... T Azz...:(n4.3) ‘f: = Gy

These n 4+ 1 equations, regarded as linear algebraic equations in ¢”
@), @5 qn, must not be all independent, i.e., the determinant

A, A, Ay T

Aoy Ay Ay e Az(n+3)

Asoy Ayay Asas R Az?(n.;.s)

A22...‘23 AZZ..‘24 ‘4“2 25 R ‘42‘2...2(:1»-r3)
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must vanish identically. From this it follows that there must be a linear
relation

(10) aOAS —-]— a(l)A4 + a(z)A5 + P + ar(n)A,th =0

which holds identically and whose coefficients a,, ag, a@) s - - - A are
functions of @, ¢, ¢, @, ..., ¢,. By treating (10) as a partial differential
equation to be solved for 4 and considering the form of its solution, we
see that it must be possible to rewrite the solution (2) of (5) in such a way
that the number 7 is reduced by 1. This can evidently be iterated until »
is reduced to 0, at which point the solution (2) has been reduced to a special
case of (1).

This completes the proof of 1.1.

Now for present purposes the problem of finding all the solutions of the
form (1) or the form (2) for a given second-order partial differential equation
will be dismissed as solved if we have found at least one additional partial
differential equation in the same dependent and independent variables that
has to be satisfied — provided that the additional partial differential
equation is independent of the first one and is of not higher than the second
order. This dismissal might be thought too summary, in the absence of a
definitive treatment of the question of simultaneous solutions of two second-
order partial differential equations in one dependent variable z and the
same independent variables # and y. But it will serve to separate this
rather different question from the main topic of the present paper. And there
is moreover no real difficulty over the matter in the present context, because
when simultaneous partial differential equations arise we are concerned,
not with all their common solutions, but only with their common solutions
of the form (1) or (2), and the theorems of the present section, especially 1.2,
may therefore be used to make further reductions.

We shall therefore regard the problem of finding all solutions of the form
(1) or (2) for a partial differential equation (5) as solved by 1.1, except in the
case in which f; vanishes identically, i.e., the case in which (5) is
independent of 7. In fact we shall think of 1.1 as meaning that, although
there do exist cases in which a differential equation (5) not independent of
r has a solution of the form (1) or (2), such solutions are in a sense ex-
ceptional, and the main case we have to consider is that of a differential
equation

(11) f@,y,z2,p,q9,5,6)=0

However, we go on immediately to a number of theorems analogous to 1.1,
which we regard as showing that (11) is still too general, and that, in a
certain sense which we do not attempt to make definite, the main case has
to be regarded as consisting only of certain subcases of the case (11).
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1.2. If a partial differential equation
(12) f(x,y,z,p,q,t):O

has a solution of the form (1) or of the form (2), then this solution must satisfy
the partial differential equation (12) identically in p.
The proof of 1.2 is exactly analogous to that of 1.1.

1.3. If a partial differential equation
(13) s=f,y,2,p,9,1)

has a solution of the form (1), or a solution of the form (2) such that no relation
(3) holds for arbitrary ¢, then this solution must satisfy

(14) f44(x,y,z,p,q,t):0

identically in p.
For if we substitute in (13) an assumed solution of the form (1), we get

A+ Ay ¢ + Aoy " + o .+ Az(n+3) ‘P(n+l) =
f@,y, A, 4+ A3 ¢" + Ay9" + ... +An+3¢(n+l)sA2:A22)
This must hold identically in x,y,¢,¢ ,¢",..., "t as n 44
independent variables. We may assume that A4,,; does not vanish

identically, and hence by taking in (15) the second partial derivative with
respect to @Y,

(16) fu@,y, A, 4+ Ay¢' + A3¢" + ..o+ Ay g Ay, Ay) = 0
Equation (16) means that (1) satisfies (14), and from 1.2 it then follows that
(1) satisfies (14) identically in p.

The argument is analogous in the case of a solution of the form (2), but
the condition that there is no relation of the form (3) holding for arbitrary

¢ is evidently essential.
At this point it remains to consider differential equations of the two forms

(17) f(x’y’z:q,t)::()
(18) S=ﬂ(”«':3/>Z,q,t)‘i—v(x,y»z,qst)}’

(15)

as being the only ones not yet covered. That is, for a second-order differential
equation of any form other than (17) or (18), theorems 1.1 — 1.3 provide the
means to find all solutions of the form (1), and at least all those solutions of
the form (2) which obey the condition that no relation (3) holds for arbitrary ¢.

We shall ignore (17) as being properly an ordinary rather than a partial
differential equation, and our main concern will therefore be with the case
of differential equations of the form (18). This is the case to which the
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generalization of Laplace’s transformation applies, and we might now turn
immediately to consideration of this transformation. But since the method
of finding a second differential equation which the required solution must
satisfy can as a matter of fact be pressed somewhat further, at least in the
case in which the required solution is of the torm (1), we proceed to develop
this first.

In connection with (18) we shall need to use functions » and 1 deter-
mined as follows:

Mr,y,2,9,8) = us+ pgp — vy —
+ (g 4 w3 + vat + )y — (e + psq + pat + wr)vs
#X,y,2,q,8) =2+ Ay — Mg+ (v, + v5q + vt + 9%
— (A + Asq + A + 2Mv)vs

If we assume for (18) a solution of the form (1), we get, by substituting
the assumed solution in the differential equation (18),

Ay + Aps ¢ + Aoy ¢ 4 oo+ Aoy " = p,y, A, 4, As)
o,y A, Ay, Ayp) [A, + Ay ¢ + Ay ¢ + .o+ Ay Y]

(19)

(20)

(21)

This must hold identically in «,y,¢,¢ ,¢",...,¢"") as independent
variables, and hence we must have separately the two following equations
(in which the arguments of u and » are x,y, A4, 4, Ay):

A+ Ay ¢’ + .o+ Aoy "V + Asnya ¢ =
w4+ Ayt L+ A e 4 A4, ¢™]
(23) Az(n+3) = VAn+3

(22)

From equation (22), by taking the partial derivative with respect to y,
and also with respect to ¢™, we get the two equations:

Ao + Aoz ¢ + ... + Azz(n+1) ‘P(n—l) =+ A22(n+2) ‘P(") =
Yo+ psds + pydss + UsAsps + (2 + vady + 4oy + v5A50)

(24) , - 8

(4 + 49" + ... + An+1 ‘P( Y + An+2 ‘P( )]

+ [Ap + Ay’ + ...+ A2(n~|—1) ‘P(n_l) + A2(n+2) ‘P(")]

A12(n+3) =+ 'A23(n+3) o+ ...+ A2(n+l) (n+3) ‘P(n—l) + Az(n+2)(n+3)‘7’(")
(25) + A2(n+2) = N3An+3 + ﬂ4A2(n+3) + H5A22(n+3) + (”3An+3 + ”4A2(n+3)

+ ”5A22(n+3)) (4, + 439" + ...+ 4. 90("_1)"‘ 4,0 ‘P(")] + W[Al(n+3)
+ Ay @ F oo+ Ay g+ Ao sy g™ + 4,,5]
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From equation (23), by applying the operator
4 ’ 4 " 4 (n—1) 0
ax+ % a(p—{—q) a(p1+"'+¢ a¢(n—2)

and by taking the partial derivative with respect to y and with respect to
g™, we get the three equations:

A12(n+3) + A23(n+3) @+ A2(n+l) (n+3) ?’(n_l) =

[y + vs(dy + Ag¢" + ...+ 4, ) F (A + Ay’ -

+ A?(n-H) ‘P(n_l)) + v5(Aips + Aoz ¢ + ..+ A22(n+1) ?7("_1)] A,

+ W[ Ayys T Aspin @ oo+ Ay @ ¢ ]

(27) A22(n+3) = (vy + v3dy + 1oy + v5dppo)A, s + VAz(n+3)

(28) A2(n+2) (n+3) = (1’3An+2 + 1’41‘12@.4.2) + 75A22(n+2))An+3 + VA(n-{—?) (n+3)
Now we multiply equations (24) — (28) by —w;4,.5, +1, —1, us +
vslAy + A’ + ...+ Apps @], ¢ respectively, and add. Then use (22)
to replace Ay + Aoy @’ + ...+ Aoy ¢™ by w4 v[4; + A3¢’ + ..+
A, ¢™], and (23) to replace Ay,,5 by v4,,;. The result is

(29) 'A2(n+2) = 1’An+2 + Mx,y,4,4,, A22)An+3

(26)

We need to look separately at the special case in which = is 0, i.e., the
case in which the solution (1) reduces to

(30) z=Ax,y, P(x))
In this special case equations (22) — (25) become:
Ay = p +v4,, Apy = v 43

Ao = iy 4 pzdy + oy + psAgsy 4 (vy 4 134, + ¥4 dss + V5A500) Ay + Ay,
Aoy = psAs + pgAos + UsAaos + (v345 + v4dps + v5A505)A; + vAss

For (26) and (27) we use the two equations obtained from A4,; = »A; by
taking the partial derivative with respect to = and with respect to y:

A123 = (v, + 934, + V4A12 + ”5A122)A3 + v4;3
Agoy = (v2 + ”3Az + 4oy + vAppp) Ay + vAps

There is no equation (28) in the special case. If we multiply the four last
equations, corresponding to (24) — (27), by —w;A4;, +1, —1, us + v;4,
respectively and add, and then replace A4,, by u + vA4; and A4y by v4; ,
we get in place of (29):

0=ANx,y,4d,4,, 4,)4;
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As the intention of (30) is of course that A; does not vanish identically, i.e.,
that we actually have a solution depending on an arbitrary function, it
follows for any solution of (18) of the form (30) that

(31) Mr,y,A,4,,A4y,)=0
Now by taking in (29) the partial derivative with respect to ¥ and with

respect to @™, we get the two equations:
(32) Azz(n+2) = (vp + v3dy + v, A5 + V5 Az00 4 ”2)An+2
+ (A + Agdy + A4y + A5As + 2)”})An+3
A‘2(n+2) (n+3) = (”3An+3 + 1’4Az(n+3) + 1’5A:z2(n+3))A nt2
(33) + VA(n+2) (n+3) + (Z3A,,+3 + 14A2(rz+3) +
A5A22(n+3)) An+3 _l_ }*A(n—l-:}) (n+3)

And upon multiplying equations (27), (28), (32), (33) by v5d, o 4 A5, s,
—1, —v4,,5, +1 respectively and adding, and then using (23) and (29)
toreplace Ay, 3 by vd,.s and Ay, by v4,.,+ A4,,,, we get

(34) Me,y,A4, 4, A22)A(n+3) mip) T @, y,4,4,, *422)Ai+3 =0

From (34), by taking the partial derivative with respect to y and using (23),

there results
(35) 2A2(n+3) (n+3) T (2 + 234y + 44455 + Z5A222)A(n—i~3) (n+3)
+ (g + 2egdy + 2y Apy 4 #5450 - QHV)AL?) =0

Also from (23), by taking the partial derivative with respect to ¢, we get
(36) Aoy iz = (adnis + vadoig + Vs dasis) duis + 1A s s

Then multiply equations (27), (34) — (36) by A%;4,.5, 4 + 244, +
2yAsy 4= AsAspe + Av, — A, 2% respectively, and add. Use (23) to replace
A3 by 94,5, then divide out Ai+3 (since we may assume that 4, ,
does not vanish identically). The result is

Mg+ 22wy 4 (vy + vgd, + vy Ay + viAss, + 12) 02
(37) d why A g h — 2l = (3h — 1lg) Ay + (44 — xAy)Apy
+ (A — xA5)Agee = 0
Hence the theorems:
1.4. If a partial differential equation (18) has a solution of the form (30),
this solution must satisfy also the differential equation

(38) Me,y,z2,q,t) =0
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or must satisfy a relation among x,y ,z,q,t for which one of w, s, ys,
Uas s Vs, Ve, V3,0,V 1S singular.

1.5. If a partial differential equation (18) has a solution of the form (1),
this solution must satisfy also the differential equation

g+ 2y + vy + vaq + vt + )W + xdv + 2y

(39) N ot
— #hy + (tgh — #h3)q + (gh — x At (A5 4 w54 — #s) a_y =0

or must satisfy a relation among ,y ,z,q,t for which one of w, us, ps,
Uas s>V > Vs Vas Vs ¥ys Vs, Aoy gy s dsy %o, %y s %y s %5 1S Singular.

The alternative which enters in 1.4 and 1.5 — that at z =4 ,9 = 4, ,
t = A,, either u or » or one (or more) of the partial derivatives which are
listed has a singularity — arises because the argument above has tacitly
assumed that they are non-singular. The necessity of including this alter-
native may be shown by examples. For instance the differential equation

s=1+3pt‘15

has a solution z = (x + ¢)y + @(x) which, since 1 = —3t corresponds
to a singularity of »; rather than a zero of A. Again the differential equation

(z 4+ yg)s = (2 + yq9)* + 2pq + ypt

has a solution z = ylg(x) which, since 1= —1, corresponds to a
singularity of » rather than a zero of A.

As a consequence ot 1.4 and 1.5, we may expect generally that if a partial
differential equation (18) has a two-arbitrary-function solution which in-
volves, besides ¢(z), one other arbitrary function y and which, for all or
almost all particular choices of y, reduces to the form (30), or the form (1),
then A(x,y,z,q,t) will vanish identically, or

22vg - Rvvy + (vy + v5q9 + vt + 12225 + 2y
e sgh — #dg + (gh — 2xAg)q + (sgh — %Ay)t
(41) 2% 4 asd — xdy

(40)

will both vanish identically. But it seems to be difficult to find an exact
statement of such a result without imposing some undesirable restriction on
the form of the two-arbitrary-function solution (as e.g. that it shall be elemen-
tary). And it may be better instead to seek related results about the existence
of intermediate integrals of the sort which is illustrated by theorem 2.2 below.

As a special case we notice that (40) and (41) both vanish identically
when the differential equation (18) is linear.
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2. Generalization of Laplace’s transformation, first case

Treating (23) as a partial differential equation to be solved for A4, we
find that it has an intermediate integral involving an arbitrary function.
In fact if we assume an intermediate integral

(42) 442:0('%':3/>(p:‘}7/»¢”’"':‘P(n-l)’A)
we get as condition on 6
(43) Onis =2(x,y,A4,0,0,+ 00,.,)

And solution of the first-order differential equation (43) for 6 yields the
intermediate integral. In this section we deal with the special case in which
the function » is of not higher than first degree in its last argument,

(44) "’(x:?/:zyq’f)Zﬁ(x:?/,%Q)‘i"5(3”',?/»2,?)5

— the intermediate integral of (23) being in this case of the Monge form.
When » has the form (44), the condition (43) becomes

(45) ()n-;—S = ﬂ('l s y ) A ) 0) _f" 6(1' ’ y s A b 0)[02 + 00n+3]
The general solution of the differential equation (45) may be written as
46)  G@,y,4.0)=D,Fla,y,4,0),¢,¢ ,¢",...,¢" D)

where @ is an arbitrary function and F and G are particular functions
satisfying the conditions

(47) G3 = - ﬂG4 + 5[G2 + GG?,]
(48) Fsz_‘ﬂF4+5[F2+0F3]

— as (47), (48) are in fact the conditions for G(v,y, 4 ,6) = constant,
F(x,y,A,0) = constant to be solutions of (45), and where of course we
must so choose F and @ that these are independent solutions of (45), if
(46) is to be the general solution of (45).

The partial differential equaticn (18) has in the present case the special
form

(49} 5:,“(4”’3/:3,%0—f‘ﬁ(x:y,Z’Q)p‘l*‘5(9«',y>3>9)]05

Generally, for solutions of (49) of the form (1), it follows from (42) and (46)
that

(50) G(x,y,A,Az):(D(x,F(x,y,A,A2),<p,(p’,¢”,‘”,(p(n—l))
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must hold identically in «,¥y,¢,¢ ,¢",...,¢"™ for some choice of the
function @. Hence if we make a transformation of the differential equation
(49) by letting

(51) X:x: YZF(W,y,Z,q)» Z:G(x,y,Z,q)

the solution of the transformed differential equation which corresponds to
the solution z = A of (49) may be expected to be

(52) Z=&X,Y,¢X),¢X),¢"X),...,e" X))

That is, the effect of the transformation will be to replace any solution of
(49) of the form (1) by a solution which, in terms of the new variables X ,
Y, Z, has the same form with the number n decreased by at least 1.

To find the transformation (51) when the differential equation (49) is
given, we have the differential equations (47) and (48) to solve for F and G.
As (47) and (48) are conditions on the functions F and &, not on their
arguments, we may rewrite (47) and (48) with @,y .z, ¢ as the arguments,
in place of z,y,A4,0. The subsidiary equations then are

6(x’yﬁz’q) qé(x:?/:ZM])—l__ﬁ(a,y,:,q)

dx d dz dg
(53) - Y q

And we must find three independent integrals, x = constant, F(x,y .z,
q) = constant, G(x,y,z,q) = constant, of the subsidiary equations (53).
Using (47) and (48) in the forms

(54) G3+18G4:6(G2+G3€l), F3+5F426(F2+F39)

we may work out details cf the transformation (51) as follows:

oZ,Y) oY F F.p + Fs)(G, + Goq + Gyt
_ ( )/——:G1+G3p—{—G4s—(l+ 3P 4’)(2'1‘ 37 + Gat)
ox,y) I oy Fy + Fyq + Fyt

[F, + Fap + Fy(u + Bp + opt)] (G5 + G3q + Gy)
= G v opt) — -

\ [F1+F4;“+6P(F2+F3Q+F4t)](G2+G39+G41)
:G1+G4/“+6P(G2+G3QTGJ)_ F, - Fyq - Fyt

Gy + Gyq + Gyt
F,+ Fyq + Fyt

(55) P =G, + Gpu— (F, + Fuu)

Y G, + Gy + Gyt
(56) Q=-|—= "5 "%,
oyl oy Fy+ Fyg+ Fyt
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Gy + G3q — (Fy + F39)@Q
FQ — G,

(57) t =

Gy + Gsg — (Fy + Fyq)Q
(58)P:G’l——F]_Q—{—(G4—F4Q),u<x,y,z,q, 2 3F4Q—2G4 2 )

Then letting

PGy — FyG,
(59) A@x,y,z,q) = F G, — F,G_+ qF,Gy — F3G,) = s
we get:
F F F -
(60) 2 + 3q + 4t = F4Q . G4
0 oY F,Q —@G
(61) _‘Z/_ — 1/_ — iQ.g_“
Y oy A
) 0z 0z [0Y  (F,Q — GY)q
(62) oY :ay oy - A4
63) a_!l_z! a_Y_(F4Q—G'4)tMG2+—G3q—(F2—}—F3q)Q
( oY oyl oy A - Y|
Unless the Jacobian
oY ,Z,P,
(64) J — (—Q)
ay,z,q,¢%)

vanishes identically, the five equations (51), (55), (56) can be solved to
express x,¥y,z,q,t each as a function of X, Y ,Z,P,Q. Then the
transformed differential equation (that results from (49) by the trans-
formation (51)) can be obtained by taking the partial derivative with
respect to 1 in (58), using the expressions (61) — (63) for the partial
derivatives of ¥ ,z, and ¢ with respect to Y, and finally replacing =
by X and y,z,q by the expressions just found for them as functions of
X, Y, Z,P,Q.

The transformed differential equation will evidently be of the second
order and in fact will have the form

(65) S=DX,Y,Z,P,Q)+EX,Y,Z,P,QT
It will be possible to iterate the transformation, i.e., to apply the generalized

Laplace’s transformation again to (65), only if D and E are both of the
first degree in P . But if there exist solutions of (49) that are of the form (1),
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it must be possible to iterate the transformation often enough to find them
in accordance with theorem 2.3 below.

By a straightforward computation, expanding the determinant and
making use of (54), we find the following expression for the Jacobian, in
which 12 and A are of course the 1 and 4 of equations (19) and (59)
respectively:

A3
(Fy + Faq + Fgt)?

That neither A4 nor F, + Fyq + F,t can vanish identically follows
from the condition that x = constant, F = constant, G = constant
are independent integrals of (53). Hence J vanishes identically if and only
if 1 wvanishes identically.

If J, or A, vanishes identically, a relation of the form

(66) J =

(67) X, Y, Z,P,Q) =0

must hold as an identity in «,y,z2,q,t. We may regard (67) as a first-
order differential equation to be solved for Z; and if in its general solution
we replace X by 2,Y by F(x,y,z,q), and Z by Gx,y,z,q),
in accordance with (51), the result will be an intermediate integral of (49).
We rely on the methods of Lagrange and Charpit, not so much as a means of
finding an expression of the general solution of (67) in particular cases, but
for a proof of the existence of the general solution of (67), in one or other of
two forms involving an arbitrary function, according to whether or not (67)
is of the first degree in P and . And hence we have:

2.1. If A wvanishes identically, the differential equation (49) has a first-
order intermediate integral which involves an arbitrary function vy and which
has either the form

(68) H@,y,z, 0. pux,y,2,9)) =0

or the parametric form:

(69) H(x,y,z,q,u,yp@) =0

(70)  Hy@w,y,z,q,u,p() + v @Hex,y,2.q,u,pu) =0

(In the case of the parametric form we must add separately the intermediate
antegral

(71) H,y,z,q,a,b) =0
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obtained from the complete integral of (67), a and b being arbitrary constants
and H the same function as in (69).)
The converse of 2.1 is:

2.2. If the differential equation (49) has a first-order intermediate integral
which involves an arbitrary function vy and has one of the forms (68) or
(69) — (70), then A wvanishes identically.

For the proof of 2.2 we notice that, for any particular choice of y, the
general solution of the intermediate integral (68) or (69) — (70) will ordina-
rily be of the form (30), so that 1.4 applies. This fails only for those choices
of y for which (68) or the equation obtained by eliminating u between
(69) and (70) is independent of ¢, and we shall exclude such choices of o
simply as «exceptionaly.

If the intermediate integral is (68), the exceptional ’s are only those,
if any, which satisfy H, + (,Hzy = 0 identically in 2,y ,z,q. And the
possibility that H, and ¢H; might be both identically 0 independently
of y is excluded by the hypothesis that (68) is of first order. If the inter-
mediate integral is (69) — (70), the exceptional y’s are only those, if any,
which satisfy H, = 0, identically in x,%,z,q when u is treated as a
function of «,¥,z,q determined by (70). And in this case the possibility
that H, is identically 0, independently of u, is again excluded by the
hyvpothesis that the intermediate integral is of first order.

Thus the exceptional ’s can be at most only those which satisfy a
fixed first-order differential equation.

Now by 1.4, if there are no singularities of w,», and their first partial
derivatives (other than u;), and if A is not identically 0, the relation
Mx,y,z,q,t) = 0 holds for all solutions of the intermediate integral for
all non-exceptional w. That 2 is not identically 0 implies that J is not
identically 0. Hence the expressions for «,y,z,q,t as functions of
X,Y,Z,P,Q exist, and we may use them to express A(xr,y,z,q,f)
as a function ot X ,Y ,Z,P,Q. Thus we get an equation

(72) Me,y,z,9,0)=AX,Y,Z,P,Q)

Where A does not vanish it follows that A does not vanish. Hence A
does not vanish identically. Also J can be expressed as a function of
X.Y,Z,P,Q. For any solution of the transformed differential equation
(65) that does not correspond to a zero of A or a zero or singularity of J
we can argue from (72) that 1 is non-vanishing for the corresponding
solution of (49), and hence that the solution must be one that is obtained
from an exceptional . The solutions of (49) arising from exceptional ¥’s
can evidently be covered by an equation

2
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(73) @, y,z,¢) =0

obtained from either (68) or (69) — (70) and involving at most one arbitrary
constant c¢. From this by eliminating ¢ we get a first-order differential
equation, involving say «,y,z,q, which can be reexpressed in terms of

X,Y,Z,P,Q:
(74) TX,Y,Z,P,Q)=0

In a suitably restricted neighborhood within which both A and J (as
functions of the five variables X, Y ,Z, P, ) are non-zero and non-
singular, the solutions of the definitely second-order differential equation
(65) are thus included among those of the fixed first-order differential
equation (74) — which is impossible.

In the case in which there exist solutions of (49) of the form (30) corre-
sponding to singularities of p,», and their first partial derivatives, the
above argument may be modified as follows. In addition to the relation
Mr,y,2,9,t) =0 we have also a number of relations

(75) Apy@,y,2,9,8 =0

which represent the relevant singularities of wx,», and their first partial
derivatives. These may be reexpressed in terms of X, Y ,Z,P,Q as

(76) A(l)(.X,Y,Z,P,Q)ZO

And we then consider a neighborhood within which 4, A(,-) ,J are non-
zero and non-singular.

Now returning to the point which was made above in connection with
equation (50), that the transformation (51) can be expected to transform
a solution of the differential equation (49) of the form (1) into a solution
which has the same form with the number = decreased by at least 1, we
remark that our proof of this is not yet conclusive, because of the possibility
that equation (46) may not include quite all of the solutions of (45). Indeed
one class of solutions of (45) which is definitely not included in (46) is given
by the equation

(77) F(x,y,A,0):,_Q(x’(p’(p”qf,'.',q;(n—l))

where {2 is an arbitrary function. And correspondingly equation (50) must
be supplemented by the equation

(78) Fla,y, A, 4) = 0@, 0, ¢, ¢ ... ¢" )

To repair the defect we proceed by finding the following Jacobian,
where F stands for F(x,y,A,4,) and G stands for Gz ,y, A4, 4,):
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oF , @)
WT) = (Fy + F34, + 'F4A22)(G3An-|—3 + G4A2(n+3))

— (Gy + Gydy + G ) (F3A, s + Fydsy, . s)
= [FyGy — Fy@y + (F,Gy — FyG)AylA, .,

— [F,Gy — FoGy + (FyGy — FyGy)A5] A5,
=[Bla,y, 4,4y +0@,y, A, 4y)45)A, .5
— Aoy A,y A, Ay)

In this the factor (8 -+ 0d4y)A, 3 — Asyuys vanishes by (23); and the
Jacobian 9(F , G)/e(y , ¢™) therefore vanishes, with a possible exception
if A issingular for z = 4,9 = A, . With this exception we do have, as a
consequence of the vanishing of the Jacobian, that either equation (50) must
hold for some function @ or equation (78) must hold for some function Q.

The exceptional case in which (78) holds is the case in which F(x, vy,
A, 4,) isindependent of y, and hence, taking «,y,z,q asthe arguments
of F, we may describe it also as the case in which F, + Fsq + F,t vanishes
for z = A.

The foregoing argument applies as well to the case n = 0, i.e., the case
of a solution of the form (30), as it does to larger values of n. Thus if the
transformation (51) is applied to a differential equation (49) that has a
solution z = A(x,y, ¢(x)), and if 4 is not singular and F, + Faq + Fyt
does not vanish for z = A(x,y, ¢(x)), the corresponding solution of the
transformed differential equation has the form Z = ¢(X , Y), no longer
depending on an arbitrary function ¢(x) (or @(X)). Generally, and within
an appropriately restricted region, the transformation (51) effects a one-to-
one correspondence between particular solutions of (49) and particular
solutions of the transformed differential equation, as is clear from the fact
which we found above, that there exist not only the equations (51) expressing
X ,Y,Z asfunctions of z,y,z,q but also inverse equations expressing
x,y,z as functions of X, Y ,Z, P, . If this fails in a particular case,
as in the reduction of a solution z = A(x, ¥y, ¢(x)) to a solution not in-
volving an arbitrary function, it follows that the Jacobian J has a zero or
a singularity.

This suggests as a means of finding solutions of the differential equation
(49) of the form (1) that we use iterated application of the transformation
(51), examining at each stage the zeros and singularities of the Jacobian.
However, we must take into account the exceptional cases that we found,
that A is singular and that F, 4 Fyq + F,t vanishes. (For example if
we transform s ==z*% by X =2, Y =¢q, Z=y, we find J =1, and
the obvious solution z = ¢y +- ¢(x) corresponds not to any zero or singular-
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ity of J but to a zero of F, 4 Fyq 4 F,t.) Hence in view of the expression
(66) for J it will be better not to use J itself at all but to examine at each
stage the zeros and singularities of 1,4, and F, 4+ Fyq + F,t separately.

To find all the solutions of the form (30) at each stage we might as an
alternative, by 1.4, just examine at each stage the zeros of 1 and the
singularities of w,v, and their partial derivatives. But this will not do as
a general procedure because there is a poscibility that a transformation (51)
of a differential equation (49) might transform away not only all the solutions
of the form (30) but also a solution of the form (1) with » = 1. To illustrate
this we may cite the differential equation

2zs = — 29 + (1 — y)t + 4pq
which has a solution
x + ¢)
2=,
Y+ ¢'@)
This solution is transformed away — there is in fact no corresponding

solution at all of the transformed differential equation — if we apply the
transformation X = a, Y = 2%/q¢, Z = y. To be sure this accident might
have been avoided if we had made a different choice of F and & in
applying the transformation (51); but this does not destroy the force of the
example.

Hence we state our result in the following form:

2.3. In order to find all solutions of the differential equation (49) that are
of the form (1), for all n mnot greater than a fixed n, , it is sufficient to proceed
as follows. Apply the transformation (51) to the given differential equation
(49), either m, times in succession if this is possible, or else until no further
iteration of the transformation is possible (either because 1 vanishes identically
or because the final transformed differential equation is no longer of the form
(49)). At each stage in the iteration of the transformation examine the zeros
and singularities of A, A, and F, + F.q -+ Fyt, in the sense of writing the
differential equations which represent these zeros and singularities and deter-
mining the solutions which they have in common with the differential equation
which, at that stage, has been obtained by transformation of the originally given
differential equation (49). Then examine the final transformed differential
equation which has resulted at the end of the process of iterated application of
(51), in the following way. If it is of the form (49) and A vanishes identically,
solve the corresponding differential equation (67) to find an intermediate
integral. If it is of the form (49) and 2 does not vanish identically, make use of
1.4 to find its solutions of the form (30). If it is not of the form (49), make use of
1.3 to find its solutions of the form (1).
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This theorem solves the problem of finding all solutions of a given
differential equation (49) that are of the form (1), for all n not greater than
a given m,, in the sense that the problem is reduced to the problem of
solving certain ordinary (as opposed to partial) differential equations. As
indicated above our interest is primarily in existence questions rather than
in practical solution processes. And the advantage of ordinary differential
equations from this point of view is that the elementary solutions (elemen-
tary in the sense of the present paper) are known to exist. Nevertheless the
method of theorem 2.3 does work out as a practical solution process in some
cases.

Parenthetically it should be added that the known existence of elemen-
tary solutions of ordinary differential equations applies only to a fixed
differential equation, not to an equation-form containing an arbitrary
function. For this reason, even if a partial differential equation has an
intermediate integral of the form (68) or the form (69) — (70), and hence
has almost all its solutions of the elementary form (30), it does not follow
that it therefore necessarily has a two-arbitrary-function elementary
solution.

In the special case in which the differential equation (49) is linear it is
true that if any solution of the form (1) exists, it must be possible to find a
two-arbitrary-function elementary solution by iterations of the transfor-
mation (51) — which in this case of course reduces to Laplace’s trans-
formation.

In connection with 2.3, it is believed that substantial auxiliary theorems
can be found by means of 1.5. In particular, in at least the case in which »
is independent of ¢, the equations obtained by setting (40) and (41) equal
to 0 can be solved explicitly when regarded as simultaneous differential
equations for x and »; and this results in great simplification in the appli-
cation of 2.3 to a particular differential equation in this case. But this is a
topic which we leave to a possible future paper.

3. Generalization of Laplace’s transformation, second case

Now we return to (43), to deal with the case in which »(x,y,2,q,1)
does not have the form (44). In this case (43) is a partial differential equation
of first order and not of the first degree, and we rely on Charpit’s method
for the existence of a complete integral. With an appropriate understanding
as to what is meant, we may rewrite (43) as

dq ( 9q 3q>
(77) g=v x,y,z,q,@—{—qb—z
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Let a complete integral be
(78) G(x,y>z:q’cl)zc

The complete integral of (43) as originally written is then

(79) Gw,y,A,0,¢)=c
And the corresponding general solution is

(80) Ga,y,A,0,u) =0, u,¢,¢,¢ ,...,¢" D)
(81) Gox,y,A,0,u)= Dyx,u,¢,¢ ¢ ,...,¢" ")

We therefore expect that a solution of the form (1), of the differential
equation (18), will satisfy one or other of the two following conditions. Either
there exist functions E, and @, such that

(82) Ga,y, A, 4, By, 9,0 ,¢",...,¢" ) =
Doz, 0, ¢, ¢ ..., ¢" ")
or there exist functions # and @ such that
(83) G(x,y,A,Az,E(x,y,A,A2,<p,<p’,<p”,...,q;("‘l))):
O, Ex,y, A, 4y, 0,0 ¢ ... d" ), 0, ¢ ¢, ..., ¢" )
(84) G5(95,y,A,A2>E(x,yaA>A2,(P,(}9/:(P”7---,<P(n_l))):
Do, By, A, 4y, 0,0 ,¢" ..., ¢" D)o, ¢, ¢, ....¢" )

In either case, by considering = and ¥y as the independent variables, and
taking the partial derivative with respect y, we get

(85) Gy + G3dy + Gydyy = 0
Then by solving (85) for E or E;, we get
(86) E:F(x7?/’A’A2’A22) or EOZF(x7yaA:A2:A22)

(the same function F in either case). This suggests that if we make a trans-
formation of the differential equation (18) by letting

8" X=u2, Y=Fx,y,z2,q,t), Z=0x,y,z2,q9,F(x,y,z2,q,1))

the solution of the transformed differential equation which corresponds to
the solution z = 4 of (18) will be

(88) Z = @X , ¢(X),¢'X), ¢"(X), ..., ¢" X))
or

(89) Z=0X,Y,pX),¢X),¢"X),...,¢" X))
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That is, the effect of the transformation will be to replace any solution of
(18) of the form (1) by a solution which, in terms of the new variables
X ,Y ,Z, has the same form with the number 7 decreased by at least 1.

To find the transformation (87) when the differential equation (18) is
given, we must find a complete integral (78) of the differential equation (77).
This supplies the function ¢. And F(x,y,z,q,t) isthen found by solving

(90) G2(xay,z,q,F)+9G3(1’,?/:Z,(1,F)+tG4(x,y,zsq,F)=0

The condition that (78) shall be a complete integral of (77) assures that G,
is not identically 0 and that (G, + ¢G;)/(, is not independent of F. Hence
(90) can be solved for F, and F so obtained will not be independent of ¢.

The condition that (78) is an integral of (77) can be expressed by the
equation

G G
(91) G3+G4”(x,?/>2,q,— 2—gq'3>
4

where G stands for G(x,y,z,q,¢). Hence in consequence of (90) we

have the equation
(92) G3(93’Z/;Z>q,F(l',3/,2,q,t))+
G4(x>y,Z,Q,F(x,y:Z,q,t))V(xyy,Z7Qat):0

By a computation analogous to that by which equations (55) and (56)
were found, and using equations (90) and (91), we find

(93) P =G+ Gu, Q=0

where of course the arguments of G are x,y,z,q, F. Then unless the
Jacobian

L AY.Z,P,Q

(94) a(y’z>q’t)

vanishes identically, the five equations (87), (93) can be solved to express
x,Y,2,q,t each as a functionof X , Y ,Z, P, . Then the transformed
differential equation (that results from (18) by the transformation (87))
can be obtained by taking the partial derivative with respect to y in equa-
tions (87), (93), and eliminating 0Y/dy and 0t/dy. The result is

‘ G
(95) S = Gy + plys + s 174 + (G55 — T)[Fy + pFy + poFy

+ Fi(ps + psq + pat) — ps(Fy -+ Faq - Fit)]

wherein x,y,2,q,t are to be replaced by the expressions for them as
functions of X, Y ,Z,P,Q.
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By expanding the determinant and making use of (90) and (91) we find
for J the expression

(96) J = — G}

Hence J vanishes identically if and only if 4 vanishes identically.
If J, or 2, vanishes identically, a relation

(97) f(X7Y7Z5P,Q):-O

must hold identically in 2,y ,z,q,t. If we solve (97) as a first-order
differential equation in X , Y ;Z as the variables, and if in the result we
replace X by =z, Y by Fx,y,z,q,t), and Z by Gx,y,z,q,
Fx,y,z,q,t)), in accordance with (87), the result will be a second-order
intermediate integral of (18). We understand the italicized phrase as im-
plying that the general solution of (18) is to be found by considering the
common solutions of (18) and the intermediate integral. However, if we
consider also the equations in 2,y ,z,q,¢ which result from any extra
solutions (special or singular) that (97) may possess, we can say more
strongly that the disjunction of these equations and the second-order
intermediate integral is a consequence of the differential equation (18).

3.1. If v does not have the form (44), and if 2 wvanishes identically, the
differential equation (18) has a second-order intermediate integral which involves
an arbitrary function vy and which has either the form

(98) H@,y,z,q,t,9p(ux,y,2,¢,1)) =0

or the parametric form:

(99) Hx,y,z,q,t,u,pu) =0

(100)  Hyx,y,z,q,t,u,ypm) + @, y,z,q,t,u,pu) =0

(In the case of the parametric form we must add separately the intermediate
integral

(101) Hx,y,z,q9,t,a,b)=0

obtained from the complete integral of (97), a and b being arbitrary constants
and H the same function as in (99).)

Now returning to the differential equation (77), we observe that the
argument which led us from this equation to the transformation (87),
although it was presented heuristically, is as a matter of fact substantially
complete. Any solutions of (77) that are not covered by the complete
integral (78) and the corresponding general integral can only be one or more
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singular integrals. These will be equations that may involve z,y,z,q
but do not involve any arbitrary constants or arbitrary functions, and
therefore they can lead only to solutions of (18) of the form (30). The con-
clusion above — that solutions of (18) of the form (1) are transformed by
(87) to solutions of the same form with the number 7 decreased by at least 1
— can therefore be escaped only at most by some exceptional solutions of
the form (30). And in consequence we have:

3.2. In the case of a differential equation which is of the form (18), if »
s not of the form (44), it is sufficient to proceed as follows, in order to find the
solutions of the form (1). If 2 wvanishes identically, find a second-order inter-
mediate integral by solving the differential equation (97). Otherwise use 1.4 to
find the solutions of the form (30), and then apply the transformation (87).
The zeros and singularities of the Jacobian J as given by (96) must also be
examined for possible additional solutions that might be transformed away.
The transformed differential equation is then of a form to which either 1.3 or
2.3 will be applicable to find the solutions of the form (1).

4. Quasi-substitutions

We turn now to a class of transformations which are closely associated
with the generalized Laplace’s transformations and which we shall call
quasi-substitutions.

Some of these are obtained as resultants of a transformation (51) and
the inverse of a transformation (51). For example, if the differential equation

gs = ¢*> — pt
is transformed by letting
§=w, n=9q, {=2—2y
the transformed differential equation is
o+ n?’t=0
If on the other hand the linear differential equation
S+ YT —2YQ +2Z =0
is transformed by letting
=X, n=7Y, (=@



26 Ann. Acad. Scient. Fennicz A L. 377

the result is the same differential equation o -+ 2?7 = 0. Both trans-
formations are instances of (51). The resultant of the first and the inverse
of the second is represented by the equations

X=2z, Y=9q, Z=2¢—yg*

And this last transformation is an example of a quasi-substitution.

Generally, a quasi-substitution is represented by a triple of equations,
expressing the new variables X ,Y ,Z as functions of z,y,2z,p,q.
And from these equations alone, independently of any particular differential
equation to which the transformation is applied, there foilow equations
expressing P and @ as functions of x,y,z,p,q, and equations ex-
pressing x,¥,z,p,q as functions of X ,Y ,Z,P,@. Thus the quasi-
substitutions share with ordinary substitutions the important property that
they may be applied to any arbitrary differential equation of first or higher
order, without raising the order of the differential equation. This contrasts
with the situation in regard to Laplace’s transformation, and its present
generalizations, that a particular transformation, represented by a particular
triple of equations, is adapted to a particular differential equation and in
general cannot be applied to a ditferent differential equation without raising
the order, and without destroying the feature that inverse equations exist
expressing x,y,z,p,q as functions of X,Y ,Z,P,Q.

(In some cases it may happen, as in the example given above, that a
quasi-substitution is also a birational transformation in the five-dimensional
space whose coordinates are x,¥%,z,p,4.)

One class of quasi-substitutions is represented by equations of the form

(102) X=2, Y=Fx,y,2,q), Z=GC(x,y,z,Flx,y,z,q)
where F is to be found from the equation
(103) Gox,y,z,F)+q0sx,y,z,F)=20

and where G may be chosen arbitrarily, subject to the condition that (103)
is a non-trivial equation which has a solution for F, and that F so found is
not independent of ¢. As a consequence of (102) and (103) there follow the
equations

(104) P=G1(93,?/,Z,F)+]’G3(x,ysZ>F)
(105) Q:G4(x5yyz>F)

The resultant of a transformation (102) and an ordinary substitution is
of course also a quasi-substitution. These are the only quasi-substitutions
that are applicable tc ordinary differential equations — in the sense that
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when they are applied to a partial differential equation that has the property
that all derivatives occurring are derivatives with respect to ¥, the trans-
formed differential equation has the same property.

It can be shown that, besides the foregoing, the only remaining quasi-
substitutions are those represented by equations of the form

(106) X=Ex,y,z,p,q, Y=Flx,y,z,p,q),
Z=G0Gx,y,z,E F)

where £ and F are to be found from the equations
(107) Gix,y,z, B, F)+ pGsx,y,z,H,F)=0
(108) Gyx,y,2, B, F)+qGsx,y,2,E,F)=0

and where ¢ may be chosen arbitrarily, subject to the condition that (107)
and (108), regarded as equations to be solved for £ and F, are inde-
pendent, and that £ and F as found from (107) and (108) are such that
E.F; — E,F, does not vanish identically. From (106) — (108) it follows that

(109) P=G(x,y,z,E,F), Q=0Gx,y,z,E,F)

In order to find a quasi-substitution (106) when the function # isgiven,
not independent of both of its last two arguments, we may treat

G(x,y,z,¢,¢ Gox,y,z,¢,c
(110) F(x,y,z,— W,y 15 €) . o7,y 1 )) .

Gyx,y,z,¢6,¢)° Gyx,y,z,¢,¢)
as a partial differential equation to be solved for . We must find a solution
of (110) such that G,/G; and G,/G; are not both independent of ¢;, and we
may then expect that (107) and (108) will be compatible and will have a
common solution for K.

To find a quasi-substitution (102) when the function F is given, not
independent of its last argument, we may express ¢ as a function of
x,y,z,F, and then treat (103) as a partial differential equation to be
solved for G.

The significance of quasi-substitutions in the present context is that,
when the methods of the preceding sections lead to an intermediate integral,
it may often happen that the argument of the arbitrary function involves
derivatives. In this case the best way to treat the intermediate integral may
be to use a quasi-substitution to reduce the argument of the arbitrary
function to Y. We may expect to be able to do this whenever the argument
of the arbitrary function is a function of x,y,2,p,¢. And it may some-
times be possible even when derivatives of higher order are involved.

Some other applications of quasi-substitutions suggest themselves, which
we must leave unexplored in the present paper.
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One of these is that it may happen that a given differential equation
can be transformed to one that is linear by means of either a generalized
Laplace’s transformation or a quasi-substitution, even when this is not
possible by an ordinary substitution. The example cited at the beginning
of this section illustrates this point. In this example the linear differential
equation obtained is one that has an elementary general solution. But
evidently it may also be that the linear differential equation is not ele-
mentarily solvable. And even in this case it seems that the treatment of the
given differential equation might be facilitated by the knowledge that it is
in a certain sense essentially linear.

Another possible application is to the treatment of the Monge-Ampére
equations. It is not immediately clear how substantial this may be. But one
example is included in the next section as an indication.

5. Examples

We add some further examples illustrating various points in connection
with the preceding sections.

(Ex. 1) @+ y)s+p%—p+a’g=0

Theorem 1.3 is applicable, and f,, is — 6pt/(x + y). To make this 0 identi-
cally in p we must have { = 0 and hence z = yy(x) 4 y(x). Substituting
this in the differential equation yields the condition y'(x) = 2y'(x) +
a®p(x). Thus we have what may be described as a solution of the form (2),
with the condition not satisfied that there is no relation of the form (3).
It may, however be reexpressed as a solution of the form (1) by letting

We then have

O

22

This is the only solution of the differential equation of the form (1). That it
is quite special compared to the general solution is indicated by the fact that
we would still get the same solution if we replaced the term p3% in the
differential equation by if(p), f being chosen as any function not of the
first degree or 0 degree.

(Ex. 2) s+ yqgt =0
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This has the intermediate integral
— g + logy = log y(q)
By the quasi-substitution
X=z, Y=q, Z=2z—1yq
this becomes
Q=— " y(¥)
By integration of this with respect to Y

Z=— / &Y p(T)AY + ¢(X)

Hence the general solution of (Ex. 2) may be written in the following para-
metric form, with ¢ as the parameter:

y ="y
z = gqe plg) — / ¢ p(g)dg + ¢(2)
To this we must add separately the solution

2=y + pl@)

which was lost by the form in which the intermediate integral was written
above.

In this case more familiar methods would suffice for the integration of
the intermediate integral, but there is an advantage of uniformity in always
using a quasi-substitution when the argument of the arbitrary function
contains p or gq.

(Ex. 3) s = (xp + yg — 2t
By the same quasi-substitution as was used for (Ex. 2) we get
S=XP—1Z

This can be solved by Laplace’s transformation, with the result

Z=XIX,Y) — I(X,Y) + Xp(¥) — y'(¥)

where I(X,Y) = / XY p(X)dX. Hence we get for (Ex. 3) the parametric
solution:
y = —alyx,q) + In(, q) —2y'(q) + v"(9)
r=wl(x,q) — (g + Dy, q) + ¢l 9)
+ ay(q) — (xg + L)y'(g) + ¢9"(9)
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To this we must add separately the solution

t=cy + g()

which was lost by the quasi-substitution.
In the former solution we may of course take @(x) to be 0 and so find for
(Ex. 3) the more special solution

y=—29'(q) + v"(q)
z=ayp(q) — (xq + 1)y'(q) + qv"(q)

We shall think of this last as a solution of a form that is analogous to the
form (1) except with ¢ instead of z as argument of the arbitrary function.
For although we must regard ¢ as an unspecified parameter in order to
give the pair of equations as solution of the differential equation, it will then
follow from these equations that ¢ is in fact 02/0y.

(Ex. 4) gs = @3 — pt

Following the method of 2.3 we get from A = 0 the solution

_rc—}—c

Then the remaining solutions are found by the transformation & — x s
n=¢q, { =2z— 2yq, which, as we have already seen in section 4, leads to
o + n*r = 0. For this we get the intermediate integral

+ @(x)

1
‘?=¢<§+;}*>

and hence the solution

(= /¢<5+ %)dn+¢(§)

Thus as parametric solution for (Ex. 4) we have:

1 s 1 < 1) I
y=—*2? 1(x,q)—§wx+z—§q§¢(x)

1 1 1
z=1I,q) — 7 Ly, q) — qw<x + ?> + ¢(x) — 7 @' ()

1
where I(x,q):/y)(x—}—?) dq .

Q% — s
Ex. 5 rt— §% = — —~
( ) 2(z — ap)
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If we use the quasi-substitution
X=p, Y=9q, Z=z—ap—1q
we get the transformed differential equation
S+ YT —2YQ+2Z =0

This is a linear differential equation for which, as we have already seen in
section 4, Laplace’s transformationis §¢ =X, n =Y, ¢ =, reducing
it to o + 5?7 = 0. Using for this last the solution which was just obtained
above, we find

1 1 1
Z=YIX,¥)~ 5 L(X, V)~ 5 m(x + —}-,) + Yp(X) — 5 ¢/(X)

, " 1
where [(X,Y) = / 1p<X -+ -}—,>dY. Hence for (Ex. 5) we find the para-

o

metric solution:

1 1 1 1
xz—qll(p,q)+3111(p,q)+§q2w’<p+g> — q¢'(p) + 5@"(20)
y=—1p,q — q¢p)

1 1 1 1
p=—\pe 5 Il(p,q)+§plu(p,q)—§(12wp+;
1 , 1 AN I
+§p92w p+§ —\pq + §¢(p)—l—§p¢ ()

In addition to this parametric solution we must also look into the question
of solutions satisfying either ¢ = f(p) or p = constant, as there is a
possibility that such solutions might be lost by the particular quasi-substitu-
tion which was used. In fact we find in this way (¢ —p)g =1, ¢=0,
» = c¢. These first-order differential equations are to be solved by familiar
methods, and the resulting solutions must be adjoined to the parametric
solution above, for the full general solution of (Ex. 3).

(Ex. 6) 52 = a?p?

To avoid carrying the double sign, let @ stand ambiguously for either one
of the two square roots of «?, and so write the differential equation as

1
§ = apt?
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~1

Following the method of 3.2 we find
G,y,2,9,6)=10g (¢ + ¢) — a*z + cy)
F(x,y,z,q,t):a‘lt‘%—q
From (93) we find P = 0. Hence A must vanish identically (as is also

easily verified directly). The equation P = 0 is the equation (97). From
it we get Z = ®(Y), and hence the second-order intermediate integral is

1 . L
5 logt — ayt* — a(z — yq) = D1t — q) + log a

In order to solve this without first specializing the arbitrary function @
we proceed by taking the partial derivative with respect to y, obtaining

1 —l—f-at :l{ -1 2 ¢/ —1 4 0
5 @ t-ay—t at™? —aty — P'(a7tt — q)| =

From this the differential equation obtained by setting the first factor equal
to 0 is easily solved, and its common solutions with (Ex. 6) are found to be:

o= —alog (y + ¢(a) + by + o
z=—a?log (y 4+ b) + (y + b)) + ¢
z = by + p(x)
Evidently the general solution is to be obtained from the second factor in
the equation above. The differential equation obtained by setting it equal
to 0 may be rewritten as
a1t — g = Q! 7 — )

(since no new solutions of (Ex. 6) are obtained by taking @’ equal to a
constant). Then we treat ¢ as the dependent variable and on this basis
make the quasi-substitution
E=uw, 17=a,—1t"5 — v, C:a’lté‘—l—q
This yields
19 = — @[C + Q)P

o 'w”(n)r A0
Qn) =a /L'(ﬁ) dy — 2a o )

If we let

we may solve this as a Riccati equation, obtaining

. ‘i’@r Aol
@+ / Lo'(n) M= )+ 9@
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Hence inverting the quasi-substitution we get the parametric equations:

e +e@]
Y= 20 P — o' o) + e@] "

’(n) @’ () / [w”(n)r
=202 —————+a2—— —qa? ——| d
L= ) ) T o) o))
We omit the remainder of the work, which is lengthy and serves no further

purpose of illustration. It is necessary to find an expression for z in terms
of x and n by using

z=/m@+wm

And as three arbitrary functions are then involved, a relation among them
must be found by substituting in the differential equation, i.e., in (Ex. 6).

(Ex. 7) s =29 + ¢*
(Ex. 8) t+ y*)s =+ 2yp — yq

We omit details of these last two examples. (Ex. 7) is a very simple case in
which a (generalized) intermediate integral, containing an arbitrary function,
results by two successive applications of a generalized Laplace’s transforma-
tion. (Ex. 8) has only a one-arbitrary-function elementary solution, obtained
by one application of a generalized Laplace’s transformation.

6. Conclusion

The writer has urged elsewhere (Remarks on the elementary theory of dif-
ferential equations as area of research, in Information and prediction in
science, New York, 1965) the problem of characterizing the class of partial
differential equations that have elementary or elementary-parametric
general solutions. It seems quite certain that there are negative results to
be obtained, both for this problem and for the problem of elementary and
elementary-parametric solutions that involve one arbitrary function, and
that the negative results may be expected to begin with differential equa-
tions cf the second order in two independent variables. But the present paper
is directed entirely towards the positive side of these questions.

It is not immediately clear whether the methods of this paper may suffice
to treat the positive aspect completely, or how far in this direction they may
be expected to reach. But substantial extensions of these methods would
seem to be possible, and we conclude by giving some brief indications in this
regard.

3
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First, while still keeping to the case in which the argument of the arbitrary
function is @, we may seek to use the same or similar methods to treat the
question of solutions of the form (2) for which a relation of the form (3) does
hold. Or instead of a single relation (3) we may suppose that there are two
or more such relations, i.e., relations having the following forms:

(frlz(‘l) - B(l) (x ’ ¢(x) ’ (}”1(’6) ) ¢2(x) sty ‘Pn(l) s (pl("l/) ’ Q‘I(Sb) ) ‘F;(x) P (pr/;—k(x))
99;—1(1) = B(2)(x ’ ‘I(x) > 931(93') ) ¢2(x) PR ¢n(x) > 9:,(1) > ‘P;(x) > (F;(x) ] <P;—k(x))
1 (@) = By, (@), 2(@) , ¢2(@) - (@) , ¢ (@), 01(2), @2(@) s -+, Fasl®))

A somewhat hasty preliminary survey suggests that such an extension of
the methods will indeed be possible, and that it may be expected to lead to a
second kind (or kinds) of generalization of Laplace’s transformation.

Then a different extension is to allow the argument of the arbitrary
function, in the elementary or elementary-parametric solution, to be other
than a. Here we must consider not only the case that the argument of the
arbitrary function is a function of x,y,z, but also the case that the
argument of the arbitrary function involves derivatives of z. (For an
illustration of the latter possibility see (Ex. 3) above, where there is an
example of an elementary-parametric solution in which the argument of the
arbitrary function is q.)

At least if the argument of the arbitrary function involves derivatives of
no higher than first order, the expectation is that a substitution or trans-
formation can be used to reduce to the case in which the argument of the
arbitrary function is & (or X). Indeed it is clear that if the argument of
the arbitrary function is «(x , ¥, z), the required reduction is accomplished
by a substitution in which X = «(x,y,2); and if the argument of the
arbitrary function is «(x,y,z,p,q), the required reduction is accom-
plished by a quasi-substitution in which X = «(x,y,z,p,q). The problem
which remains is to find the requisite substitution or quasi-substitution
when only the differential equation is given, and not the argument of the
arbitrary function.

A large part, but not the whole, of the problem of reducing to the case
in which the argument of the arbitrary funcsion is x (or X), is included
in the problem of reducing a given differential equation, by an appropriate
substitution or transformation, to a differential equation in which » (or R)
is not present. The latter problem is treated in the paper by the present
writer which is referred to above, but the treatment there is inadequate
because it fails to take into account the existence of quasi-substitutions.

Princeton University
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