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On homology theories in locally connected spaces II

Introd,uction Our purpose is to prove the theorems of the first paper
of this series [6] for Borel homoiogy ([I]), for the homology theories of
Deheuvels ([2]) and for the homology of residue complexes in noetherian
preschemes with finitely generated coefficient sheaves ([a]). Steenrod homo-
logy is included as a special case of Borel homology. In [6] these theorems
were already proved for singular and Alexander-Kolmogoroff homologies
([6]), pp. 6, 7, 12, I4), since the latter is isomorphic to the projective homo-
log;, of a grating spectrum (see [7], p. 2i9). Note that in these theorems
the homology groups H"(I{) are canonically isomorphic to the corres-

ponding Cech homology groups of X, if each open covering of X has a
refinement in the net .ly' and vice lrersa.

We recall for convenience some definitions in [6]. Let X be a topologi-
calspace and C: 0<-C_r-Co- Cr-.. . . a, complex on X ([6], p. 3). In
the terminology of Deheuvels (l2l) C is an antisheaf of complexes on the
ordered set of subsets of X. Let l[ be a net of coverings of X ([6], p. 5).

Each a € N defines a double complex ä* urra 'å*r(q > - z) is by defini-
tion the augmented complex C*(a, Cr) of chains of the nerve of a with
coefficients in the antisheaf 4(t6l), p. a). All homology theories in question
can be obtained from complexes of this kind and, if there is a coefficient
group, C_, can be chosen as the constant antisheaf associated with it. To
get what we want, we need only to prove that

(0. 1) H r('C *r) : H r(C *(*, O n)) - 0

for each ue N,p> -2,q> - I (see [6],p.5). In particular,the homolog;z

of C* will then be canonically isomorphic to the corresponding Cech homo-
logy in paracompa,ct, l,cn_, and semi-lc, spa,ces (relative to C *).

I. The Borel homology theory of locally compact spaces can be defined
as follows: Let K be a Dedekind ring and K* its quotient field. Let X
be a locally compact space and -C* 

, O --- öo --- ö, --- .. . . the standard in-
jective resolution of the constant sheaf ff on X ([t], p. 138). Denote by
C* : 0 --> C0 --> Cr --> .. . . the presheaf of cochain complexes on the ordered
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set of subsets of' X obtainecl frorn l'r b;- appl;.ing the section functol
4" The dual D,* of C" is a comple,x o1r X defined as follo$'s: For each

P cx, Dxe): D(C"(P)) (see [1], ti' 142)' B;' rlefinition D"(P):
Horno {)"(P), -K") @ Hom.(C'i'(P), I{*iI{) (n > - 1) and D-r(P):
Horn* (Co(P),IixlK). The functorial maps C*(P)'-" C"(Q) Q c P c X)
irrclnce b}, transposition the functoriir.I maps d (P, Q) : D*(P) - D*(Q).

i',' is c-soft. Hence thc liomr,ilog)' groups of D*(P) are canonicaliy isomor-

phic to tire Borel homology gronps H,,(P, K) for each compact P c L
Beacause 1i" ancl 6*ili are injective ancl C" is c-soft, the funct,orial

rnairs r/ (P,Q) are monomorphism's a,llci$-ing D*(Q) t'o be considerecl as a

snl-rcomplex of D".(P) fol ail cornpact sets (1 c P.

The rnoclules C"(P) (P compnct) are dir-isible as quotients of the

clir.,isible rrocll-rle C"(X), hence the modriles D"(P) (P compact') &re

li-flat apd torsion free. If B is a .K-nroclule, it follou-s tiiat for all compact

Q cP,D*(Q) QoB c:rn be consirlered as a subcompler of D*(P) E.B.
Ior each u c x denote liv DiQ-) the direct limit, (or uniori) of tlic
complexes D*(P) (P cU compact). Their D! and Dl Qr.B arecomplex-

es on f. \1,e claim that ther- satisfy (0.1) for anY o})en covering e of -f
and all l.alues of p ancl q greater than - 2. This is trre for l)* a,ncl for anl'
fiirite family p of compact subsets of f , because

Hr(Cu (l ,Dr)) : är(Hom6 (C*(fr,Cs) , 1('F)) 6r f/r(Homr Q*U3 , C'i't) ,I{" iIi))
: Homr @p(Cx(p ,ce)) , I{'F) @ Hom, GIP(C* (0 ,C',* 

1)) 
, 1l'F/1() :0 ((1> - I)

and Ho(c*(§, D-r)): Homn (HP(c*(P, c0)), lr"l/i) : 0.

The same conclusion foliorvs for D* Q.B from the universal coefficient,

theorem. If now a:(Li,),e, isanyopencol'eringof X and c:J".rr+rc"€
C,,(x, Di) (c, € Di(t-l;e" L7;)), there is a, finite famii5' F - @,),.r' (I' c I) of
.årrpo.i subsets of Lrt(i e I) such tha,t c" : 0, if s € -I'pil and c" €

Dr(O,u"P,), if s €1'p+t. Thismeansthat' c €Co($,Dr) cCr(x,Di). If c is
a cycle, it is a bounclary in C*(p, Dr) and å fortiori in C*(:r, D[). llhe same

conclusion follorvs for: D"* E.B b), tensoring the modules above rn'ith B,

and \,!'e have proved (0.1) in the case of Borel homologv.
If ll'e denote by % the kernel of D[ + D"-, , the Borel homology groups

H"-(tl , I{) (U open in X, n } - I) can be computed' from the complex

o <- co(u) <- D;(u) <-- " . . .

(see [1], theorems 3.4 and 3.7 and rernark p. 144. Note that the homology

commutes u.ith direct lirnits.) If X is hlco, it is loca1Iy connected, and

H"-r((J,/l) :0 for each open U in X (see [1], pp. 149-151). Hence the
sequence 0 - Co -'> Di--> D"-ru 0 is exact. Because D[ and D"-, satisfy
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(0.1), so also does Co. By taking tensor products with B one gets a similar
complex for H"^(U,B). A mapping of X to a point gives a surjective
augmentation of this complex by the constant antisheaf B (ll], 6.1, p. 148),

and the homology groups of this augmented complex are isomorphic to the
corresponding augmented Borel homology groups of U in dimensions grea-
terthan - L

Hence we get from theorem 3, 16l, p. 11 the following result: If X is a
paracompact, locally compact, lc^_, and semi-lc, space relative to Borel
homology with compact support's, then the Borel homology groups H:
(X, B) and the Cech homology groups H"(X, B) arrd Hi(X, B) (ru > 0)

are canonically isomorphic. In particular, the Cech homology is exact, and
has compact supports.

Remarb I. The isomorphism ,I1i(X,B) =H""(X,B) remains in fact
valid without the paracompactness condit'ion (roughly speaking we need

strong n-refinements only on the compact supports), although lemma 1 in
[6], p. 7, must then be replaced by a more general one. Note that this isomor-
phism cannot be concluded directly from the same result in the compact
case, because the set of compact, lc,_, and semi-/c, subsets need not be
cofinal in the set of all compact subsets.

Remark 2. If X is compact and K is a field, the isomorpirism

H,(X, X) -. å^1x, X) is well-known without any local connectedness
conditions.

2. In 12) Deheuvels has defined homology theories for presheaves and
antisheaves on topological spaces as h1'perderived functors ofcertain compo-
sed functors. They can be defined by resoh-ing functors as follows: LeL (J

be the set of open and proper coverings a of X, which are closed to the
righti.e. U CU;,U;e a>U ex. If A isapresheafon X and Uo=U,
)....)U" with U;e a for i,:0, .,fr, seh A(Us,...,U"):A(Uo).
Let fuo...uni A(U.,. .., U^) --> A(Uo,. .., e,,.. .,Un) bethe identity
A(Ui ---> A(Ui for rj > 0 and the functorial map A(Ui --> A(Ur) for
i : 0. Denote by C*(x, A) the chain complex

0<- @ro eoA(U)*a' @rrcL,o euA{Uo,Ur)*ä'-

d
<"n @u, curr*I c ... c Lro eo A (Ur, , fl*)

where 0n: @uoC(ro_1c... c u0€d (rl:o (- I)'P'uo...u^).

Denote by ',K(X) the double complex (K(X),) with ll(X);j: 0 for

u 
0n+t
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--> I{(X),,i_, , defined as follows:
K(X)ij -+ K(X)r-r, j , "d i K(X)U

K(X)ii : m Cj,o0,..., ct..i

where the product ranges over all sequences docelc... C*-; in
and C7,or,...,a-i: Ci@-i, A). "disinducedby äi and

'd'(ai,o6,...,o-;)o6c... cd-i : (bi, p0,..., fi-a)/0c... cd-;+r

bi,,,0,...,f _it t: I--5' (-1)* oi,Bo,...,i*....,fr_i+r

(ci,,o,...,i*,...,f 
-iar 

cci,fo,...,d-;11)' The corrected öe"h homology

groups H,(X, A) arc the homology groups of 'K(X) endowed with the total
differential and grading. Note that, these homology groups can be non-t'rivial
in all negative dimensions.

If U isanopensubset,of X and *e 9b, wedenoteby alU thecove-
ring of [/ consisting of elements of a contained in U. Obviously a)U c
d,iT/, if U cV. If we replace the groups Cj,o0,...,*_, by the corres-

ponding groups Ci,oolu,...,d_i1 u in the definitions, we get a double com-

plex ',)(«l): (K(U),i). Tf U cV, we have a natural inclusion :((U) c
',<(V) induced by the inclusions x1"lU c "*lV 

(k - 0, . . . , -i). Hence the
functor 1ti: U --->',K(U) is a complex on the open subsets of X and
defines there a homology theory H. tf a is any open covering of X, u'e

can suppose without, changing the homology that all elements of I are

refinements of a. Then each ',Ki : U --->'X(U)i is isomorphic to a direct
product of direct sums of coelementary antisheaves .4uo([/o C U;, U; e x)
such that

9t

(i)

(ii )

Auo@)- A(Uo), if Uo C fJ, and 0 otherwise,

the functorial map AuoJJ) ---> Au.(V) is the identity, if eitirer

Uo c Lr cr % + V, and zero,if % + fl .

To verify (0.1) it is therefore sufficient' to show that' H;(a, Auo):0 fcr all

values of d. The elements of a containing Uo form a closed non-empty
subcomplex z1 of the nerve of a. Clearly H1(a, Aur) : II;(/,1r0) for all

rl. The assertion follows because the coefficient system Auo is constant on

/ and / as a star is homotopically trivial.
If the coefficient presheaf .4 is constant and H-r(K (t/)) :0 for

each open U in X, we can augment the complex

0 <-',(o <- '*ru-
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by a as we did in the previous section. othern'ise it can be augmented
for example by Coker (,t - Xo).

Ali these results can be obtained for antisheaves simply by replacing all
sequences Uoc . . . c U^ bythe opposite sequences Uo) . . .) TJ^.

The same argument as used in 16], p. lZ, for singular homology again
shows the validity of theorems I and 3.

Remark. In l2l, pp. 316-317 Deheuvels defined for any antisheaf B
the homology groups H"(x, B) as hyperderived functors of a composed.
functor /-s*{L4,x}4eo. fn the category of modules, in which we are
operating, these groups are trivial in connected spaces, if the closed points
are dense and non-isolated. This can be seen as follows: Any antisheaf B
has a projective resolution !7 of the form

0=- @ u.*Cou<- @u .rCL<*. ... ..
(see [2], p.265), where each ciu is a coelementary antisheaf associated with
U (see definition in the previous section). From the definition it follows that
(@u. *Ct) (V): @uc nC"u(l), the functorial maps (@,.,;C,r)(V)-->
(@c,. 

"C'u)(W)(V 
cW cX) beinginclusions. Tf r€X, then J-"(6, .*Cb):I*.,. r (@u.rC""(U)): o,e v(@u.rC'r(U)), which is zero unless z

has a minimal neighborhood (Jo. rf closed points are dense, we must have
Ur: t*j i.e. e must be isolated, which is contrary to our assumption. ff
? is an injective resolution of the presheaf {La,*PB}nuoon g*, then the
double complex K T y 'J{L 

4 , x PB} is trivial. Since its'homology groups are
isomorphic to the groups H*(X,.8), we have proved our result.

3. Let (X,@*) beanoetherianpreschemeandlet X, (p> - 1) bethe
set of p-dimensional point's of x. For each r € d let M, bethe (constant)
sheaf on {r} associated w-ith an (0,-modale D* ([4], p. IIB) and let ,i,x
denote the inclusion of {a} in x. Then the residue complex of x is a
chain complex of @"-modules K,- ('X*,r),, _ r. where Xr,, is the direct
sum (over Xr) of the sheaves i"*,*(M").Xr,, is generated by the presheaf
Kn:U --> 6l*e xo f(t-*'"(M")lU) : 6»,u uoDn. We show that this presheaf
is already a sheaf i.e. satisfies the conditions 71 and III in [B], p. I09.
Let a: (Ui\e r be a family of open subsets of X and le| U be their union.
7,1 is clear because each r e.Uo is contained in some (Ji. Let (s;:
Z*r,,ml,)rr, (rt,t e(Ui)o , nti, j e D"r,) b. a family of elements of Kr(tI1)
$ e I) such that the restrictions of s; and s6 coincide on Uin Uk (d, k e.I)
i.e. rrli,j : rn*,. whenevet fri, j : fir",n . There is obviously a family
(m*)*r*, of elements af D*(r €Xr) such that, m*:,tnli,j wheneyer z:
rr,,. To proye ?II ib is sufficient to note that only a finite number of the
rnx:s a,re non-zero, because U is quasicompact. The natural map Ko-
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Xr,n is thus an isomorphism. Eachinclusion U cV cX of opensubsets
induces natural isomorphisms ',Kr,, -Ky,olU. The corresponding inclu-
sions UrcVo induce a natural map Xu-->'yr. The induced maps

T(Ku,) --> l(Xr,o), i.e. Ko(U) "> Ko(V), can be identified rvith the inclu-
sions @,. unDn* @*evoDn.

If l' is an @r-module of finite type, we define C*(X,.E') : Homox

(X;X,'X*). For each inclusion U cV cX of open setsthemaps FIV -->

IltJ and, Ku-X, induce a functorial map C*(U,FlU)--->C*(V,FIV).
The inclusion maps h-: i,"*'*(M,) --- 1K*,, induce a, map fu: @nexpHomo,
(X;X, i"*'x(M-))*Hom.;, (X;?, K*,o). We ciaim that h isan isomor-

phism. Frac}, f , € Homu, (X;?, i,.*'x(M,)) is a family of maps f "(U) 
: I(U)

*i"*'* (M") (U) compatible with the restriction maps and h(»-expf") (U)

is the map @*exrf.(tl),I(U) ---> (c)".r, ii'" (M-) ) (U) : c),ex, di'" (M")

(U). The injectivity of h is clear. To prove the surjectivity let / be an

element of Homp* (X;F,X*,) i.e. a famil5z of maps f(U)tI(U)'-->
(@"ux, if*'*(M.)) ((l) : @,exp 'ii'x (M-) (I/) satisfying the obvious compa-

tibility conditions. X'or each r e Xo and U c X denote by l"@) the map

which associates with each a e n(U) the component of n@) @) associated
with r. Each family (1"(U))"., defines an element f, of Hom o* (X;?,

ii'*(M")). Because -F is of finite tSryeand X isquasicompact, f is comp-
letely determined by its values on a finite number of sections (see l5], p. 46).

It follows that f, is non-zero only on a finite number of p-dimensional
points r of X. Obviously h(»f"):/, which proves the surjectivity of /i.

Homo, (X;n,d*'x (fu[")) is canonically isomorphic to Hom6, (I*,D*)
([5], p. 42, (4.4,3.I)), and the map Cp(U,I)-->Co(V, -F) can be identified
v'ith the natural inclusion @re u, Homr, (F *, D*) + @,e ,oHr^ö*(I * D").

Let C: (C)or_, bethecomplexon X definedby

Cp(U) : Cp(U, ?) (P > - t).

The argument used in [6], p. 6, for the singular complex again shows the
validity of (0.1) for C and for the net of open and proper coverings of X.
Hence different augmentations of C give rise to different homology theories,

which can be compared" with the correspondirrg ö"rh homology theories by
means of theorem l, [6], p. 8.

4. To show that the paracompactness condition is indispensable in
theorem 3, part I §4, we exhibit below a locally contractible Hausdorff space,

whose singular homology is different from the corresponding Cech homology:
Let B2 be a two-sphere, A and B two points on §2 and let 7 be a geodesic
joining A to B (A and B are not included in 7). We define a topology ?
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on §2 as follows: ,4 has a fundamental system of neighborhoods obtained
by omitting all points of I from the members of a converging sequence of
metric neighborhoods of ..4, which do not contain B. Elsewhere 7 is
supposed to coincide with the standard metric topology of §2. Endowed
with this topology B2 is neither regular not paracompact and it has the
properties mentioned above. The open subsets U : Bz - A, V : B2 - I - B
cover §2 and it is easy to verify thal U, V and a i V are contractible.
The triviality of the singular homology groups of B2 follows from the exact-
ness of the Mayer-Vietoris sequence ofthe open triad (U, V, Y n V). Onthe
other hand it is easy to check that the two-dimensional Cech homology
group of §2 is isomorphic to the coefficient' group in contradiction with
the claim of theorem 3. The above argument is valid for the homology of
any fine complex (with respect to finite open coverings), which satisfies the
homotopy axiom. In fact, the exact Mayer-Vietoris sequence can be easily
derived from the spectral sequence of the covering {a, V} in the homology
theory in question. We leave the details to the reader.

The author gratefully acknowledges the support of the fnstitute for
Advanced Study during the preparation of this paper.
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