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On homology theories in loeally conneeted spaces II

Introduction. Our purpose is to prove the theorems of the first paper
of this series [6] for Borel homology ([1]), for the homology theories of
Deheuvels ([2]) and for the homology of residue complexes in noetherian
preschemes with finitely generated coefficient sheaves ([4]). Steenrod homo-
logy is included as a special case of Borel homology. In [6] these theorems
were already proved for singular and Alexander-Kolmogoroff homologies
([6]), pp- 6, 7, 12, 14), since the latter is isomorphic to the projective homo-
logy of a grating spectrum (see [7], p. 279). Note that in these theorems
the homology groups H,(N) are canonically isomorphic to the corres-
ponding Cech homology groups of X, if each open covering of X has a
refinement in the net N and vice versa.

We recall for convenience some definitions in [6]. Let X be a topologi-
cal space and C:0<«C_; < Cy<—C;<.... acomplex on X ([6], p.3). In
the terminology of Deheuvels ([2]) C is an antisheaf of complexes on the
ordered set of subsets of X. Let N be a net of coverings of X ([6], p. 5).

o [0
Each « € N defines a double complex C, and 'Cy,(¢ > — 2) is by defini-
tion the augmented complex C(x, C,;) of chains of the nerve of a with
coefficients in the antisheaf Cy([6]), p.4). All homology theories in question
can be obtained from complexes of this kind and, if there is a coefficient
group, C_; can be chosen as the constant antisheaf associated with it. To
get what we want we need only to prove that

(0.1) H,(Cyp) = Hy(Cyls, ) = 0

for each x € N,p > —2,9g> — 1 (see [6], p.5). In particular, the homology

of C, will then be canonically isomorphic to the corresponding Cech homo-
logy in paracompact, Ic,_, and semi-lc, spaces (relative to C.).

1. The Borel homology theory of locally compact spaces can be defined
as follows: Let K be a Dedekind ring and K* its quotient field. Let X
be a locally compact space and C%* : 0 — (% (' — . . .. the standard in-
jective resolution of the constant sheaf K on X ([1], p. 138). Denote by
C*:0— (%— (1 —.... the presheaf of cochain complexes on the ordered
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set of subsets of X obtained from C* by applying the section functor
I,. The dual D, of C* is a complex on X defined as follows: For each
P c X, D.P) = D(C*(P)) (see [1], p. 142). By definition D,(P)=
Homy (C*(P), K*) ® Homy (C*** (P), K*/K) (n > — 1) and D_; (P)=
Homy (C%P), K*/K). The functorial maps C*(P)— C*(Q) (@ c P c X)
induce by transposition the functorial maps d (P, Q): Dy (P) < Dy ().
C* is c-soft. Hence the homology groups of D, (P) are canonically isomor-
phic to the Borel homology groups H,(P, K) for each compact P c X.
Beacause K* and K*/K are injective and C* is c-soft, the functorial
maps d (P, Q) are monomorphisms allowing D, (@) to be considered as a
subcomplex of D, (P) for all compact sets ¢ C P.

The modules C*(P) (P compact) are divisible as quotients of the
divisible module C"(X), hence the modules D,(P) (P compact) are
K-flat and torsion free. If B is a K-module, it follows that for all compact
QcP,D.Q) @x B can be considered as a subcomplex of D.(P) ®x B.
For each U c X denote by DS(U) the direct limit (or union) of the
complexes D, (P) (P c U compact). Then DS and DS ®x B are complex-
es on X. We claim that they satisfy (0.1) for any open covering x of X
and all values of p and ¢ greater than — 2. This is true for D, and for any
finite family B of compact subsets of X, because

H,(C* (8, Dy)) = H,y(Homy (C*(8,C7), K*)) @ H,(Homy (C*(8, 07+1), K*/K))
= Hom, (HY(C*(8, ), K*) @ Homy (HF(C* (8, C11Y)), K*[K) = 0(g>— 1)
and H,(C\ (B, D_y)) — Homy (H2(C*(B, (7)), K*|K) = 0.

The same conclusion follows for D, ®@x B from the universal coefficient
theorem. If now o = (U,),¢ is any open covering of X and ¢=2X _ p+1¢,€
Cplev, D;) (¢ € Dy(N; ¢, Us)), there is a finite family 8 = (P)jer (I’ € I) of
compact subsets of U €1I) such that ¢, =0, if s¢ I'P*l and ¢, €
Dy(N; ¢, Py), if s €I'P™' . This means that ¢ € Oy(8, Dy) C Cper, D). If ¢ is
a cycle, it is a boundary in C,(8, D,) and a fortiori in Cy(x, Dy). The same
conclusion follows for D% ®@x B by tensoring the modules above with B,
and we have proved (0.1) in the case of Borel homology.

If we denote by C, the kernel of Dj— D° ;, the Borel homology groups
H:(U,K) (Uopenin X, n > — 1) can be computed from the complex

0« Cy(U) <« D{(U)«....

(see [1], theorems 3.4 and 3.7 and remark p. 144. Note that the homology
commutes with direct limits.) If X is hlc,, it is locally connected, and
H® (U, K) =0 for each open U in X (see [1], pp. 149—151). Hence the
sequence 0 — Cy— Dj— D¢ ; — 0 is exact. Because Dj and D, satisfy
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(0.1), so also does C,. By taking tensor products with B one gets a similar
complex for H; (U, B). A mapping of X to a point gives a surjective
augmentation of this complex by the constant antisheaf B ([1], 6.1, p. 148),
and the homology groups of this augmented complex are isomorphic to the
corresponding augmented Borel homology groups of U in dimensions grea-
ter than — 1.

Hence we get from theorem 3, [6], p. 11 the following result: If X is a
paracompact, locally compact, lc,_; and semi-lc, space relative to Borel

¢

homology with compact supports, then the Borel homology groups H,
(X, B) and the Cv‘ech homology groups ]ivf,l(X, B) and I\ﬁ(X, B) (n > 0)
are canonically isomorphic. In particular, the Cech homology is exact and
has compact supports. .

Remark 1. The isomorphism H{(X, B) ~ H;(X, B) remains in fact
valid without the paracompactness condition (roughly speaking we need
strong n-refinements only on the compact supports), although lemma 1 in
[6], p- 7, must then be replaced by a more general one. Note that this isomor-
phism cannot be concluded directly from the same result in the compact
case, because the set of compact, Ic, ; and semi-lc, subsets need not be
cofinal in the set of all compact subsets.

Remark 2. If X is compact and K is a field, the isomorphism
(X, K)__f\_/ﬁ,,(X, K) is well-known without any local connectedness
conditions.

2. In [2] Deheuvels has defined homology theories for presheaves and
antisheaves on topological spaces as hyperderived functors of certain compo-
sed functors. They can be defined by resolving functors as follows: Let %
be the set of open and proper coverings ~ of X, which are closed to the
rightie. Uc U, U;€x = U €x. If 4 isapresheafon X and U,D U,
D....0U, with U;€x for i =0,..,n, set AUy, ...,U,) = A(U,).
Let py,...v, AUy, .., U =AUy, ..., U.,...,U, bethe identity
AU, — A(U,) for i > 0 and the functorial map A(U,) — A(U,) for
7 = 0. Denote by C(~, A) the chain complex

0 e,
0<—— (—BUO Ea‘4(U0) <__1 @Ulc Uy €a A(UO, Ul) <—*‘2* .....
an v an-(»l
<~ @u,cu,_jc...crpead (Up ..., U)<——. ...

where 0, = @y, c Uy_1C...CUy€a (2o (= 1) PiUO... u,)-
If p€ is a refinement of « then fcx and Cu(B, 4) C Cy (x, 4).
Denote by ‘K(X) the double complex (K(X);) with K(X); =0 for
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i>0 orj< 0 and with differentials 'd: K(X); — K(X);_,;,"d: K(X);

— K(X); ;1 , defined as follows:
KX)j =TT Ciagrerera_; (0 <1),
where the product ranges over all sequences xycx, C...C«x_; in ¥
and C; o ..o, = Cila_i, A). "disinduced by 9; and
ld(aj,ao,...,oc_i)o(oc... ca_; — (bj,ﬁo ..... [)’_i+1)ﬂoc.‘. Ch_ii1
b, BorersBir1 Zl?:z-&l (—1)fa Boseees BrrerosFizn
(Cja/foW-vﬁm-~~=ﬁ_;+1 Cojwﬁo’wwﬂ_iﬂ)' The corrected 6ech homology

groups H (X, A) are the homology groups of ‘X(X) endowed with the total
differential and grading. Note that these homology groups can be non-trivial
in all negative dimensions.

If U is an open subset of X and « € ), we denote by «|U the cove-
ring of U consisting of elements of a contained in U. Obviously ~/U c
«V, if UcV. If we replace the groups C; , ... ., , by the corres-
ponding groups C; o v,....s_, v in the definitions, we get a double com-
plex ‘X(U) = (K(U)y). If U cV, we have a natural inclusion ‘X(U)
‘N(V) induced by the inclusions /U C x4V (k= 0,...,-i). Hence the
functor ‘K : U —‘K(U) is a complex on the open subsets of X and
defines there a homology theory H. If « is any open covering of X, we
can suppose without changing the homology that all elements of <% are
refinements of «. Then each °K;: U —‘K(U); is isomorphic to a direct
product of direct sums of coelementary antisheaves Ay (U, c U, U; € x)
such that

(1) Ay (U) = A(U,), if Uyc U, and 0 otherwise,
(ii) the functorial map Ay (U)— Ay (V) is the identity, if either
Uy,cUcr Uy V, and zero,if U, ¢ U.

To verify (0.1) it is therefore sufficient to show that IHi(x, Ay ) = 0 fer all
values of 7. The elements of « containing U, form a closed non-empty
subcomplex /A of the nerve of «. Clearly H(x, AUo) = Hi(4, Ay,) for all

i. The assertion follows because the coefficient system Ay is constant on

4 and 4 asa star is homotopically trivial.
If the coefficient presheaf A is constant and H_,(‘X (U)) = 0 for
each open U in X, we can augment the complex

0 < Ko<= K< ...
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by A as we did in the previous section. Otherwise it can be augmented
for example by Coker (‘X <—‘K,).

All these results can be obtained for antisheaves simply by replacing all
sequences U, C ... C U, by the opposite sequences U,D ... U,.

The same argument as used in [6], p. 12, for singular homology again
shows the validity of theorems 1 and 3.

Remark. In [2], pp. 316—317 Deheuvels defined for any antisheaf B
the homology groups H.(X, B) as hyperderived functors of a composed
functor Iy, {L; x}rep In the category of modules, in which we are
operating, these groups are trivial in connected spaces, if the closed points
are dense and non-isolated. This can be seen as follows: Any antisheaf B
has a projective resolution < of the form

0 1
O+ @PrexCu<~@PyexCpy<......

(see [2], p. 265), where each C} is a coelementary antisheaf associated with

U (see definition in the previous section). From the definition it follows that

(@rcx OEU) (V) = @uecyCu(U), the functorial maps (@ycx ) (V) g

(@recx Cv) (W) (VCWcX) beinginclusions. If € X, then I'(@®ycxCh)

=lm ), (@pycyCuU) =N.ey (®ycyCiy(U)), which is zero unless z
-

has a minimal neighborhood U,. If closed points are dense, we must have
Uy = {=} ie. @ must be isolated, which is contrary to our assumption. If
<) is an injective resolution of the presheaf {IL 2. x PBjpeyon % then the
double complex ‘KI' '+ NLp, x PB} is trivial. Since its homology groups are
isomorphic to the groups H,(X, B), we have proved our result.

3. Let (X, @y) be anoetherian prescheme and let X p» (p> —1) be the
set of p-dimensional points of X. Foreach x € X, let M, be the (constant)
sheaf on {x} associated with an @, module D, ([4], p. 113) and let *%
denote the inclusion of {x} in X. Then the residue complex of X is a
chain complex of @y-modules Ky = (‘Rx,p)p= —1. where Kx,, is the direct
sum (over X,) of the sheaves ¢ *(M,). ‘Ky. » is generated by the presheaf
K,:U— ®,c X, I N M)U) = @,c v, D,. We show that this presheaf
is already a sheaf i.e. satisfies the conditions FI and FII in [3], p. 109.
Let & = (U));e; be a family of open subsets of X andlet U be their union.
FI is clear because each « € U, is contained in some U, Let (s; =
Exi,j m; )ier (%;,; €U, , m; ; € Dxi,j) be a family of elements of K,(U))
(1 €I) such that the restrictions of s; and s, coincideon U, N U, (i, k € I)
Le. m; ;=m , whenever x; =, ,. There is obviously a family
(M), e X, of elements of D (x € X,) such that m, = m; ; whenever x =
a; ;. To prove FII it is sufficient to note that only a finite number of the

m, s are non-zero, because U is quasicompact. The natural map K, —
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‘Kx,p is thus an isomorphism. Each inclusion U cV c X of open subsets
induces natural isomorphisms ‘Ky , =~ ‘K, |U. The corresponding inclu-
sions U, cV, induce a natural map °Ky—'X,. The induced maps
I'(Xy,,) = I(Xy ), ie. K(U)—K,(V), can be identified with the inclu-
sions @ev, D= @rer, Ds -

If F is an @y-module of finite type, we define C. (X, F)= Hom,,
(X;F, ‘Ky). For each inclusion U c V c X of open sets the maps F|V —
F|U and ‘K, — ‘KX, induce a functorial map C (U, F|U)— C(V, F|V).
The inclusion maps b, : 75 X(M,) — Ky, induce a map h: @, X, Hom,
(X;F, i3 %(M,)) — Hom,  (X;F, ‘Kx ). We claim that £ is an isomor-
phism. Each f, € Hom, (X;F, oy X(M))) is a family of maps f(U): F(U)
— X (M,) (U) compatible with the restriction maps and A(2, ¢ X, fo ()
is the map @,ex, fu(U) : F(U) > (@ex, 15> (M) (U) = @yex, iy ()
(U). The injectivity of & is clear. To prove the surjectivity let f be an
element of Hom, (X;F, ‘Kx,,) ie. a family of maps f(U): F(U)—
(@xexp i X(M,) (U) = @uex, i X (M,) (U) satisfying the obvious compa-
tibility conditions. For each « € X, and U c X denote by f (U) the map
which associates with each a € F(U) the component of F(U) («) associated
with . Each family (f(U))yc x defines an element f, of Hom, (X:F,
i3 X(M,)). Because F is of finite type and X is quasicompact, f is comp-
letely determined by its values on a finite number of sections (see [5], p. 46).
It follows that f, is non-zero only on a finite number of p-dimensional
points & of X. Obviously (X f,) = f, which proves the surjectivity of /.

Hom, (X;F, i (M,)) is canonically isomorphic to Hom, (F,,D,)
([5], p. 42, (4.4, 3.1)), and the map C,(U, F) — C,(V, F) can be identified
with the natural inclusion @, v, Hom, (F,,D,) — ®,¢ v, Hom, (F,,D,).
Let ¢ = (C,),- _, bethecomplexon X defined by

C(U) = Co(U, F) (p > — 1).

The argument used in [6], p. 6, for the singular complex again shows the
validity of (0.1) for C' and for the net of open and proper coverings of X.
Hence different augmentations of C give rise to different homology theories,
which can be compared with the corresponding Cech homology theories by
means of theorem 1, [6], p. 8.

4. To show that the paracompactness condition is indispensable in
theorem 3, part I §4, we exhibit below a locally contractible Hausdorff space,
whose singular homology is different from the corresponding Cech homology:
Let S2 be a two-sphere, 4 and B two points on 82 and let [ be a geodesic
joining 4 to B (A4 and B are not included in /). We define a topology 7'
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on §?% as follows: A4 has a fundamental system of neighborhoods obtained
by omitting all points of ! from the members of a converging sequence of
metric neighborhoods of 4, which do not contain B. Elsewhere 7T is
supposed to coincide with the standard metric topology of S2 Endowed
with this topology &§2% is neither regular not paracompact and it has the
properties mentioned above. The open subsets U =8*— 4, V=8 —-1—B
cover 8% and it is easy to verify that U, V and U N V are contractible.
The triviality of the singular homology groups of S* follows from the exact-
ness of the Mayer-Vietoris sequence of the open triad (U, V', q N V). Onthe

other hand it is easy to check that the two-dimensional Cech homology
group of 8% is isomorphic to the coefficient group in contradiction with
the claim of theorem 3. The above argument is valid for the homology of
any fine complex (with respect to finite open coverings), which satisfies the
homotopy axiom. In fact, the exact Mayer-Vietoris sequence can be easily
derived from the spectral sequence of the covering {U, V} in the homology
theory in question. We leave the details to the reader.

The author gratefully acknowledges the support of the Institute for
Advanced Study during the preparation of this paper.

The Institute for Advanced Study, Princeton, N.J.
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