ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

387

ON THE FIRST FACTOR OF THE CLASS
NUMBER OF THE CYCLOTOMIC FIELD
AND DIRICHLET’S L-FUNCTIONS

BY

TIMO LEPISTO

HELSINKI 1966
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1966.387


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1966.387


Communicated 12 November 1965 by P. J. MYRBERG and K. INKERI

KESKUSKIRJAPAINO
HELSINKI 1966



Preface

I wish to express my deep gratitude to Professor K. INkEr1, Ph. D., for
suggesting the present problem and for his invaluable advice and encourage-
ment at all stages of my work. I am indebted to Professor S. Hyyrdo, Ph. D.,
who has made many useful suggestions during the revision of this paper.
My gratitude is also due to Professor A. Saromaa, Ph. D. and Mr. T.
MeTsANKYLA, Ph. M. for many illuminating discussions. In addition I should
like to thank the Personnel of the Mathematical Institute of the University
of Turku for the interest they have taken in my work. For the revision of
the English manuscript, I am grateful to Lector A.T.Laxpon, M. A.

I also wish to record my indebtedness to the Finnish Academy of Seiences
for accepting this publication for inclusion in the Annals of the Academy.

Turku, November, 1965
Timo LEPISTO



Contents

Page

Trtroduction ... ... ...ttt e 7
Chapter I. An asymptotic estimation of the first factor of the class number
of the cyclotomic field
§ L. Theorems .............uiiiitiuinne i 11
§ 2. Characters ..............eii i 12
§ 3. Expression for hy(m)/G(m) ... 18
§ 4. Estimation for hy(m) ........... ... . ... 20
§ 5. Proofoftheorem 2 ........... ... ... ... . . ... ... . . 27
Chapter I1. Dirichlet’s L-functions
§ 6. Theorem 3 and preliminary lemmas ................................ 31
§ 7. Proof of theorem 3 ...... ... i 32
Chapter I11. The first factor of the class number of the cyclotomic field k(exp(2 7 i/p*))

§ 8. Theorems and preliminaries ...................eouuunneennnnne .. 36
§ 9. The connection with INKERI’S and MAILLET’S determinants .......... 38
§ 10. Proof of theorem 4 ............iiiiiiunnnee e 41
§ 11. Proofoftheorem 5 ..............ooiiiuiuneee 42
§ 12. Some new expressions for K and proof of theorem 6 ................ 47

References ... .o 53



Introduetion

1. Consider a cyclotomic field k({), where { is a primitive mth
root of unity. We suppose that the natural number m is > 1 and in
addition we exclude those even values of m , which are not divisible by 4.
This restriction is not essential because both the primitive mth and (m/2)th
roots of unity generate the same field if m has some excluded value. 1t is
known that the class number h(m) can be represented in the form

h(m) = hy(m)hy(m) ,

where h;(m) and hy(m) are the so-called first and second factors of the
class number.

In the present paper we mainly consider the factor hy(m) especially
its behaviour, when m tends to infinity.

2. If p denotes an odd prime, KuMMER [11] conjectured that
(1) hy(p) ~ G(p) = 9(B—p)2 (-p)2 p(p+3).r’4> .

The sign used here is the sign of asymptotic equality, when p — <« .
He also calculated %,(p) for p = 97 and found A (p) =1 for p =19,
hy(97) = 411 322 823 001. It should be noted that G(97) calculated by
means of (1) is 455+ 10% to 3 significant figures. No proof of (1) has yet
been published.

AxkeENY and CHOWLA [1], [2] showed that

log(hy(p)/G
@) lim og(h(p)/G(p)) 0
poco  logp

They also announced as a consequence of this. that there exists a p,
such that A,(p) is strictly increasing for p > p,, in other words, if p, >
Py > p, then

hy(ps) > ha(py) -

Tatvzawa [17] proved that

(3) 2p(pt27) PR e(e)p™ < hy(p) < 2p(p*[20) P72 (log p)°
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where the upper bound is sharper than the upper bound given by (2).
Here ¢ and c¢(¢) denote respectively an absolute positive constant and
a positive constant depending on parameter & (> 0) alone.

Among the asymptotic estimations of k;(m) we further have the result

(4) log hy(p) ~ (p log p)/4
introduced by SiEGEL [15]. We can, however, find that this formally very
simple estimation is not so sharp as (2) and (3).

The above asymptotic estimations (2) and (3) give for ky(p) a good
approximation, whenever p exceeds a sufficiently large limit, the greatness
of which being, however, unknown. Therefore we need for A;(p) also the
estimations which are useful for every value of p. The upper bound

(5) hy(p) < 20=p)/4 4 (p+3)/4
and its improvement

[(k—1)! (p=4k+1),

introduced by Carwritz [3] are of this kind. Although (5) and (6) give a
better upper bound than (4), we can, however, verify that, for great values
of p, they do not give as good results as the asymptotic estimations (2)
and (3).

8. In the first chapter of this work we consider the asymptotic estima-
tion of %, (m). By using TaTuzawA’s method in the general case we have

(7) cle)ym™ < hy(m)/G(m) < exp(c(loglog m + w(m))),

where w(m) denotes the number of different prime factors of m, ¢ and
c(e) are defined in the same way as in (3), and

(8) G(m) = o o (2n)~ "™ [d [m

where ¢ denotes EULER’s function and d is the discriminant of £({) .
The number o’ =1 or 2 if m is even or odd respectively and ¢, defined

by (1.3), differs from 1 only if w(m) = 1. The result (7) implies the
estimation

log(hy(p)/G(p"))
Lo log p* -

p —>oo

which we obtained in [13] by an extension of the method of ANKENY and

CHOWLA.
If in (8) we replace m by an odd prime p, we get the expression
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G(p) , which appeared in KuMMER’s conjecture (1). The most that has been
shown in the direction of KuMMER’s conjecture is the result (3) of TATUZAWA.
Since we have shown that in the general case it is possible to get the
estimation, which has respectively the same accuracy in essence, it seems
in consequence of the present knowledge meaningful to extend KUMMER’s
conjecture as follows:

hqy(m) ~ G(m) (m — ) .

4. At the end of the first chapter we show, by means of (7), that there
exists an m, such that, for m > m,,

2 |m and p is a prime,

hy(m) < hy(pm) if
1(m) 1(pm) {2+m and p is an odd prime or 4.

In addition, if we write m = p*k, where p is a prime (p+k) and u
is a natural number, we prove that hy(m) is strictly increasing for m > my ,
when m increases in such a way that « and k& remain constants. If
k=1, this yields our result (cf. [13]), which includes the corresponding
result of ANKENY and CHOWLA.

5. In the second chapter we consider DIRICHLET’s L-functions
oo
Lis, ) = 3 zmpn™

closely associated with the conception of the class number. Here y(n)
denotes a character (mod k), where k£ is a natural number.

By using a similar method as in the proof of (2) ANKENY and CHOWLA
[1], [2] showed that on the assumption of the extended RIEMANN hy-
pothesis there exists for every positive & and for every s satisfying the
condition

$ <0, <s<0,<1
a non-principal character x(n) (mod p) such that

[L(s, x)| <1+e,

when the prime p > p(e) .
We prove that the method of ANKENY and CHOWLA can also in this
case be extended. Here we must assume that

(9) s=p= (Ot +1), k>kie, ) 0<0<},
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where 7 = w(k) or w(k) -1 if k is odd or even respectively. We show
that for every s and k satisfying the conditions (9) there exists a non-
principal x(n) (mod k) such that

|L(s, y)| <1+¢(e>0).

If & is an odd prime, this leads to the result of ANKENY and CHOWLA.

6. In the third chapter we consider the case m = p*, where p is a
prime and w is a natural number. It has been shown (cf. e.g. [19]. pp.
796—802) that h, = ,(2*) can be written in the form

(10) hy=Khy,

where h, is the first factor of the class number of the cyclotomic field
klexp(27i/2°7")) and K (see (8.4)) is an integer.

WESTLUND [20] showed that also in the case p =3, u =2, Iy(p")
can be represented in the form (10). In this case K , defined by (8.6), is
also an integer and h; is respectively the first factor of the class number
of the cyclotomic field k(exp(2ni/p“™)) .

INkERI [9] expressed %,(p) (p = 3) as a determinant (see (8.2)), from
which we can among other things conclude that A,(p) is an integer.

Carrrtz and OLsox [4] started from the so-called MAILLET’s determinant
D, and obtained the result

hw(p) = = p*7* D, (p = 3).

In the third chapter, we show first that the connection with INKERI's
and MaI1LLET’s determinants can be verified directly without reference to
the factor hy(p). Our main purpose, however, is to treat the factor K ,
and we derive for it some new expressions as determinants, which among
other things enable us to represent #A,(p*) as a product of determinants.
By applying the above results we finally estimate an upper bound for the
factor K, which further yields an upper bound for the factor A,(p").
It should be noted that these results were given in [13].



Chapter I

AN ASYMPTOTIC ESTIMATION OF THE FIRST FACTOR OF THE CLASS
NUMBER OF THE CYCLOTOMIC FIELD

§ 1. Theorems

7. In this chapter we consider the behaviour of the first factor &(m)
of the class number of the cyclotomic field k(e*’™), when m tends to
infinity. It should be noted that m = 3 throughout this paper. This fact
follows from the restrictions for m introduced in section 1. In this paper
p always denotes a prime and « a natural number. Our primary object
is to prove

Theorem 1. Let ¢ and c(s) denote, respectively, an absolule positive
constant and a positive constant depending on parameter &(> 0) alone. Then

c(eym™ < hy(m)/G < exp(c(loglog m + o(m))) ,

where
(1.1) G = G(m) = ¢ o/(2n) ™ | @4 | m .

Here d denotes the discriminant of the field k(e*™) and

, , [1'if2}m,
(1.2) o' = o'(m) = .
|2 if 24m,
](25 if m=2",
(1.3) 0 = o(m) = {p"if m = p*(p> 2),

1 elsewhere.

As a consequence of this we have
Theorem 2. Let m = p*k, where p+k. If q is a prime such that
q>p and g+k then

hy(q'k) > Iy(p“k) ,
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when p*k is great enough. In addition there exists an m, such that, for
m > mg,

hn(pm) if 2\m and p =2,
hy(m) < | by(pm) if 24m and p =3,
lh1(4m) if 24m.
When m = p is an odd prime, it follows from (1.2) and (1.3) that

o'=2 and o =p'. Since |d| = p*~* (cf. e.g. [6], p. 506), we get, by
(1.1),

G = 2p(p*[2m) PV .
We have
exp(c(loglog p + 1)) < (log p)*,

where ¢’ is a positive constant. Because w(p) = 1, we can thus conclude
that theorem 1 implies the result (3) introduced by TaTuzawa [17].

8. In order to prove the above theorems we first, in paragraph 2, con-
sider the so-called characters and present some preliminary results, which
are needed particularly in paragraphs 3 and 4. In paragraph 3 we in-
vestigate the factor %y (m) in order to find for it the expression, which
would give a proper starting point for estimation. In paragraph 4 we focus
our attention on the asymptotic estimation of A (m), and finally, in para-
graph 5, we prove theorem 2.

§ 2. Characters

9. Let £ be a natural number. A function y (of an integral variable)
is a character (mod k) if it has the following three properties:
(i) y(n) =0if and only if (n, k) > 1,
(i) y(n) = () if n=1 (mod k),
(iil) y(nl) = y(n) y(I) for every pair of integers n, [.
It follows from these basic properties (cf. e.g. [7], pp. 216—224 and
[14], pp. 99—103) that the number of characters (mod k) is g¢(k) and

one of them is the so-called principal character y,, for which y,(n) =1,
whenever (n, k) = 1. Further we have

k k) if x = 2,
(2.1) 2, um) = {o iy - 72

n
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- [@(k) if n=1 (mod k),

—_
[ ]
W

-

x(n)

2ER(k) l 0 elsewhere,

where R(k) denotes the set of the characters (mod k).

10. We say that the character y, (mod k) is equivalent to y, (mod k,)
and write
= X
if and only if
n(n) = xs(n)
for every n, which satisfies the conditions
(n, k)=, ky)=1.

Obviously this (&) is an equivalence relation on the set of the characters.
If 7, ~ 7, then we say that the character y; is definable modulo %,,
and we call k, a defining modulvs for y, . If k, is a defining modulus for
4, then the corresponding character y, is completely determined by y, .

We now present some results, which follow from the above definitions
(cf. [6]. pp. 67—70 and [7], pp. 216—224).

Lemma 1. Let k' be a divisor of k. In order that a character yx (mod k)
be definable modulo k', it is necessary and sufficient that y(n) = 1 for

n,k)=1, n=1(mod k).

Lemma 2. If k' is any multiple of k then a character y (mod k) s
definable modulo k' . If ky and k, are defining moduli for y , then so is
(kl : 1‘72) .

Lemma 3. If y isa character then all defining moduli for y are multiples
of the least modulus. This is denoted by f(y) and is called the conductor of y .

A character y (mod k) is said to be a primitive character (mod k)
(denoted usually by *) if k= f(y). the conductor of y . Otherwise y
is called an imprimitive character (mod k).

Lemma 4. If y is a character (mod k) and f(y) its conductor then there
exists a unique character y* (mod f(y)) equivalent to y . Moreover, yx* is
primitive.

Lemma 5. Lel y be a character (mod k) and suppose that

k= ke, ... ki

is « decomposition of k into pairwise coprime positive integers. Then there
evists a unique decomposition of y into characters y; (mod k)

X = XiX2---%
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such that
J) = 1) f(x) - - ()

where f(x;) s the conductor of y;.

In the following we consider especially the characters y (mod m),
where m is fixed. There exists, by lemma 4, for each character y (mod m)
a unique character yx* (mod f) equivalent to y, where f = f(y) is the
conductor of . We denote by S the set of all these characters
2* (mod f(y)) . Obviously S is also the set of all the primitive characters,
each of which is equivalent to a character (mod m) (cf. lemma 4). Through-
out this paper we use the notation y instead of x* where there exists no
danger of misconception.

We say that the character y is even or odd if y(— 1) = 41 or — 1
respectively. Further we denote by a(k) and b(k), respectively, the
number of the even and the odd characters y (mod k), which belong to
the set S . In addition we have

n(k) = a(k) + b(k) ,

where n(k) is the number of all the characters in S, which are primitive
characters (mod k). It follows from lemma 3 that & |m .

11. With the help of the above lemmas we now prove the following
Lemma 6. Let k be a divisor of m . If k s divisible by the square
of an odd prime or by 8 then

(2.3) a(k) = b(k) = % n(k) .

If k is divisible neither by the square of an odd prime nor by 8, then
(2.4) ak) =bk)=nk)=0 o 2|k and 4+Fk,

but

(2.5) bk) = L (n(k) — (— )W) if 24k or 41k.

Proof. If w(k) = 0 then (2.5) is true, since now k=1, n(k) =1
and b(k) = 0 . Consider next the case w(k)=1. Now £k is of the form p* .

If p* =2 then n(k) = 0, since there exists no primitive character
(mod 2).

Suppose p*> 2. If we denote by y, a character (mod p*) then it
follows from (2.2) that

(2.6) D= 1)+ D gp(— 1) =0,
where, in X’ and X", the summation occurs over all the primitive and all
the imprimitive characters (mod p*) respectively. The characters in the



Timo LepisTt0, On the first factor of the class 15

sum X" are characters (mod p“~') (u = 2). Since, on the other hand,
every character (mod p“™') is also a character (mod p*) (see lemma 2), we
can decide that every character (mod p“~') occurs in the sum X”.

Suppose first that « =2 and p* = 8. It then follows from (2.2)
that 2" = 0. According to the definitions of the even and the odd charac-
ters we now conclude, by the equation (2.6), that

a(p*) = b(p") = 3 n(p") .
Let p*=4. Consequently X' = — 1, since, by (2.2), 2" =1.
Hence we get
b(4) =L (n(4) + 1).
Let p be an odd prime and w = 1. In this case the sum X” contains,
by lemma 1, only the principal character. Hence X" =1, and we can
write

b(p) = 3 (n(p) + 1) .

We have thus shown that our theorem is true, when o (k) = 1.
Suppose now that w (k) > 1. Let y (mod k) be a character in S. It
follows from lemma 5 that y can be written in the form
(2.7) X=dp s k=% (pthk),

where y, and y, are characters (mod p*) and (mod k) respectively.
Further we get

(2.8) k= f(x) = Sf0u) f(n) -
Since f(y,) = p* and f(y) = ky, it follows from (2.7) and (2.8) that

fOw) =0, fln) = k.

We can thus conclude that S contains also the characters y, and y, .
Suppose, on the other hand, that y, (mod p*) and y; (mod k,) are charac-
tersin S. Then it is clear that y = y, »; is a character (mod %) and we
can, by lemma 5, decide that

f(l) = pukl H
which yields that f(y) = k. Consequently we find that 5 belongs to S .
Suppose now that k is divisible by the square of an odd prime or by
the number 8. It is then possible to assume thatin (2.7) « = 2 and p* = 8.
Hence we get
b(k) = a(p*) b(k,) + b(p") a(ky)
= 3 n(p*) (a(ky) + b(ky)) = 3 n(k).

We thus observe that the first part of our lemma is true.
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If k is divisible neither by the square of an odd prime nor by 8. let us
suppose first that 2|k but 4+ k. In this case we canin (2.7) choose p =2
and v =1, and we get

n(k) = n(2) n(k)) = 0.

The cases 2+k or 4|k, so far not considered, we prove by induction
on (k). Suppose that k (w(k) > 1) is such a divisor of m , and assume
that the lemma is true for all the divisors %’ in question, which satisfy
the condition

ok') < wk) .
In (2.7) we may assume that p is an odd prime and w = 1. Since
o(k) = ok) — 1,
it now follows from (2.5) that
bk) = bllky) a(p) + alky) b(p)
= F(nlk;) — (— 1)"O7) Fu(p) — 1) + Flky) + (— "7 3n(p) = 1)
— 3 () — (— 1)"¥).

We now decide that also in this case our lemma is true, and thus the prcof
is concluded.

12. For the odd characters we finally prove the following
Lemma 7. Let k be a natural number and denote by Q(k) the set of the
odd characters y (mod k) . If n is an integer then

l Lok) if n= 1 (modk) and k> 2.
(2.9) D) =1 — fek) if n= — 1 (mod k) and k> 2.
we e l 0 elsewhere .
Further
(2.10) > am)y= > xn),

Z1€P 7 € Q(my)

where m, 1is the greatest divisor of m prime to n . and P denotes the set
of the odd characters in S .

Proof. Suppose first that k=1 or 2. Since there exists only one
character both (mod 1) and (mod 2), namely the principal character, which
is even, it follows that the sum in (2.9) is empty. Consequently the value
of the sum is zero, and in this case our lemma is true.

If k> 2 we get, by (2.2),

(=1 =0.

7€ R(K)
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We now find that the number of the even characters is equal to the
number of the odd characters. Since, on the other hand, the number of all
the characters (mod k) is ¢(k), we can conclude that
[ Lok) if n= 1 (mod k),
x(n) = L .
2EQ(K) ] sq(k) if n = —1 (mod k).
Suppose now that
n = -+~ 1 (mod k).

In this case we can write

Mogn) = > yn)+ X xzn) =0,

7 € R(k) 1€ T(k) 7€ Q(k)
2—n)= > yn)— > xn)=0,

L ER L ET €0

where T(k) denotes the set of the even characters in R(k) . If we subtract
both sides of the above equations from each other, we get
> oyn) =0,
7€ Q(F)
which proves (2.9).

Consider now the equation (2.10). We find that y(n) (y €S) is differ-
ent from zero if and only if f(y)im,. We denote by S, the set of all these
characters in §. According to lemma 2 there exists for every character in
S, a character (mod m,) equivalent to it. Since m,'m , there exists, on
the other hand, for every character (mod m,) a unique character (mod m)
equivalent to it, and it follows from this and lemma 3 that there exists for
everv character y, (mod m,) a unique character y in .S, such that

LA fn -
We can thus conclude that there exists one-to-one map of S, onto the set
of the characters (mod m,). From the definition of m, we get

(n : m") = (n. f(7)) =1 (Z € S”) s
and hence

(2.11) z(n) = yn(n) .
The sum X ¢py(n) may now, by (2.11). be written in the form
(2.12) Do) = X )= > zn).
Z€P ZE€PNS, 7 € Q(my)

(It should be noted that (2.12) holds also in the case m, = 1. In this
case the sets PN S, and @(m,) are empty, and all the sums in (2.12)
have the value zero.)

9
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§ 3. Expression for h,(m)/G(m)

13. Our intention here is to treat the factor %;(m) in such a way that
in later work we are able to estimate it with the help of series. We need the
following lemmas:

Lemma 8. The factor hy(m) can be expressed in the form

hy(m) = 2% @my=+ ™2 TT S 4y,

2€P n=1

where x = — 1 or 0 if m 1is even or odd respectively (cf. [8], p. 376).
Lemma 9. If d denotes the discriminant of the field k(e*™™) then

d =TT/

7€S

(cf. [7], p. 403).
We consider the DiricHLET L-series

Lis, )= gty

—
where s = ¢ + it. For these series we have

Lemma 10. Let y be an arbitrary odd character. If f= f(y) 1is the
conductor of y then

!
L, p) | =af?=] ) g

n=1

where y denotes the inverse of the character y (cf. [7], pp. 400—401).
Lemma 11. If »x* is an odd character primitive (mod f) then

|3 2rmnl = m fP A L, ) ]
n=1
Proof. If we denote m = kf then
S5t 53,

Here we have made use of (2.1). By lemma 10 we get

S
B

g

(3.1)

t\ﬁ

I M*

il M‘s
\l
||
o~

S

Ii M'\
x|
*
Gl

n

I

f
DIAGTETEE S VAR

This together with (3.1) yields our lemma.
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14. Lemma 6 presented in the preceding paragraph enables us to prove
Lemma 12. If o s defined by (1.3) then

TTf = eld].
7EP

Proof. We write

TT/ =TT #® =TT, #® TT, K0,
kim

7EP

where, in 77,, k runs through the divisors of m divisible by the square
of an odd prime or which are = 0 (mod 8) or = 2 (mod 4), and, in 17, k
runs through all the rest of divisors of m . It follows now from lemma 6
that

T_Il kb(k) - ‘l_l'l krl(k)/3 , 'r|'2 kb(k) _ 02 |—|-2 k"("')“'i ,
where
(32) 94 — I—I-g k_(,l)m(k) .

By lemma 9 we have

T[f=aTTr = e
7€

klm

Suppose first o(m) = 1. In this case m = p*, where p is an odd
prime (u =1), or m = 2" (u = 2), and we conclude from (3.2) that
ot = p or ¢* = 4 respectively.

We may now assume that w(m)> 1. Let p be a prime such that
p | m . If we distinguish from % the power of p, we get for odd p the
exponent

(33) - (M) W) — D) =1 — 1) =0,

If, on the other hand, p = 2, we get for it the exponent in (3.3) multiplied
by 2. We thus have

0> = 1(w(m) > 1).

This completes the proof.

15. It now follows from the above lemmas that

(3.4) hym)|/G = | TTL(L, »,

7EP

where ( is defined by (1.1). From lemmas 11 and 12 we namely get
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m

| am)n | = (m/m) ™2 TT(f* | L1, 5)|)

Zx€P n=1 2 €EP
= (mfay ™ o | TT L1, 7))
Z1E€EP
Hence, by lemma 8,

fa(m) = 2 @) m g AW TT L1, ) |

7EP

which leads to (3.4).

§ 4. Estimation for h,(m)

16. In order to find an asymptotic estimation for the factor &,(m) we
consider the expression

ITTL(, 2.

Z2EP

Throughout this and the next paragraph we use ¢ and c(e) to denote
respectively an absolute positive constant and a positive constant depending
only on parameter & (> 0) not necessarily the same in their various occur-
rences. In addition, in this paragraph, the constant implied in O is always
an absolute one. We need the following lemmas:

Lemma 18. Let yx(£ yx,) be a character (mod m), which has the con-
ductor f. Then

(4.1) L, 7% =L, ) T — z5w)/p),
pim

where  y* is the corresponding primitive character (mod f) and p runs
through the prime factors of m (cf. [14], p. 127).
Lemma 14. If « = 3 then
! p71 = O(loglog x)

p=x

(cf. [14], p. 20).
Lemma 15. Let (m,l)=1 and 0 =1 <m. If afx, m, 1) is the
number of primes = [ (mod m) not exceeding x then

a(x, m, 1) = O(p(m)~t ajlog(x/m)) (x > m)

(cf. [14], p. 44).
In the further procedure we require the conception of the so-called
exceptional character y'. Let s =o¢ + . If

o=1—cllogm(|t|+ 2)) =3/4,
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then
L(s, ) # 0

for every x (mod m) with one possible exception. If such an exceptional
character exists, it is a real one and we denote it by ' (cf. [14], p. 130).
We can now formulate the following lemmas:

Lemma 16. Let m = exp(log"f x) and y # 3o, x . Then

N y(n) A(n) = O(x exp(— ¢ log* ) ) ,

nx

where

[logp if n=p/ (j=1),

A(n) =
) [0 otherwise

(cf. [14], pp. 133—136).
Lemma 17. Let

Ua) =Y 3 xm) A)

x " n<x

where Q' denoles the set Q(m) excluded y' . If

=)

x = exp(log®m)
then U(x) = O(xjlog x) .
Proof. Since
log m = log'®

it follows, by lemma 16, that

U(x) = O(p(m) x exp(— ¢ log‘]2 x)) = O(x exp(logm — ¢ logl’ x)) = O(x/logx) .

’

Lemma 18. The exceptional character y' satisfies the inequality

L(L, y) > cle)m™

(cf. [5], p. 275, and [16], p. 163).
The proof of this lemma is also included in PrRacHAR's consideratiors
(cf. [14], p. 145—146).

17. The number of prime factors of m denoted by w(m) plays an
important role in our estimations. For it we present the following three
lemmas:

Lemma 19. o(m) = O(log m/loglog m)

(cf. [17]. p. 108).
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Lemma 20. If n is a natural number and a is an integer such that
(@, m) =1 then the number of solutions of

(4.2) 2" = a (mod m)

is at most neotWL

This follows immediately if we denote

u u, u,
m=pilps2...p",

where the numbers p; are distinct primes and the integers w; = 1.
Suppose namely that n; denotes the number of solutions of the con-
gruence

a2 = a (mod pJi) ,
where j assumes the values 1, 2,..., . Since
[n if p#2,
[n2 if pj=2,

n; é
we get that the number of solutions of (4.2) equal to

I
1

is at most a”™M+1,

The following lemma has an important meaning for the estimation of
hy(m) . Therefore we give for it a detailed proof, which in some degree
differs from the proof of TaTuzawa [17].

Lemma 21. If

(4.3) p" = + 1 (mod m)
then
(4.4) > X ) = Ofam)/m)

Proof. We divide the series in the left-hand side of (4.4) into two parts
S; and S,, where, in §; and in §,, p runs through all the values, which
satisfy (4.3), and which are smaller and greater than m respectively. In
order to estimate S; we write

[es)

(4.5) =2t 2.
n=2 p<m

p*=+1 (mod m)

Let us denote

M(n) = 2(n — 1)2(:)(M)+1 +1,N@n) = 9 200(m)+1
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whence it follows that
N(n) — M(n) > 2p2™

since n = 2. It follows from lemma 20 that we can write (for a fixed n)
(4.6) pr=om+1(j=Mmn), Mn)+1,..., Mn)+p.—1),

where »; denotes a natural number and f, is the number of incongruent
solutions p of the congruen-es (4.3) . Further we define

(+.7) b= Ai (Mn) + . =j=Nn)),
where A is the product of all the primes not exceeding m . We thus have
. N N(n)

(4.8) Mpm= Y (ym— DT <2m! bt

p<m j=M(n) j=M(n)

p=-+1(mod m)
Denote
N(n)
I,711 - > vj_l 3 '[7(x) — Irn .
j=M(n) 2<n<x
By using ABEL’s method of partial summation we now get
(4.9) D V= V@)/[x] + X nn + 17 V(n),
2<nZx 2<n<x—1

where [x] denotes the largest integer = x . Since M(n + 1) = N(n) + 1,
we get
N(n

Viny = > o1

J

j=3

Here the integers v; are positive and the same number occurs at most
two times. We replace distinct numbers v; in order of ascending magnitude
by the numbers 1, 2, 3,. ... Hence

N

V(n) j7' = O(log N(n)) = O(w(m) logn) ,

IIA

=
It now follows from (4.9) that
> Vafn = O(o(m)x™ log x) + O(w(m)

2<n<=x

Z n~i(n + 1)7tlogn) .
n=x—1

2<n
If x tends to infinity, this yields
> Van = O(w(m)) .
n=2

This together with (4.5) and (4.8) leads to the result
S; = O(w(m)[m) .
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We estimate the series S, as follows:

S, =03 Yp =03 p— 1)) =0(m").

>m n>2 p>m

This, combined with the above estimation of §;, proves our lemma.

18. According to (4.1) we can decide that

(4.10) UPLU. 0 =T1LA, 0TT TTQ — x(p)/p)™

2 €Q(m) x€P p|m
The product in the right-hand side of (4.10) can be treated in two parts.
We estimate the product
TT L. 2)
% €Q(m)
by using TaTvzawa’s method [17].

We first write ([17], p. 109; cf. [12], p. 449)

(4.11) |—[ L(1l, y) == exp( 2(n) A (n) (nlogn)™1) .

1€Q 'n>2

From the exponent of the equation (4.11) we distinguish a finite sum being
extended over all integers n such that

2 < n < W= [exp(log®m)] .

We denote V = 3m and divide this sum into five parts as follows:

2i= ;VP“I QL x@) . Y= > (X, 2(p)

V<psW
Si=— D p ). DYa= 2 2 ), x®")
P=W prEW nz=2

Ys=—2 X ()L
pr<W nx=2
where in X,y runs through all the characters of @(m). In addition we
denote

o= D yn)A(n)(n logn).

n>W /GQ
Now our object is to estimate 2X; by using the above lemmas. It follows.
by lemma 7, that

= dplm) D p!

p<V
p= =1(mod m)

= gm) > (mj — 1)1 =Ogm)m™ > j7)

mj—1<V j<4
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From lemma 15 we get, by using ABEL’s partial summation,

1 -1
(2l =g0m) 2 p
V<ps=W

p = =+ 1(mod m)

=%Yqm) Y (am,m,+1)+amn,m,—1) @ — @+ 1))+ 01

Ve n= Wl

= 0(/ (& log(&/m))~1 dﬁ> -+ O(1) = O(loglog m) .

\
By lemma 14, we get
D'y = O(loglog m) ,

and from lemma 21 it follows that

Dul =5 em) > (")t = O(w(m))
P"é W n=2
p" = + 1 (mod m)
It is easy to verify that
25 =0(1)

From lemma 17 we finally get, by ABEL’s partial summation,
D6= Um) (n7flogn — (n - 1)7/log(n + 1))
n>W

S (U1 = U)W+ 1) log(W+ 1)) — U(W + 1)/((IW=+1) log(1F'+4-1))

20

= 0(/ £llog 2 & d§> +0(1)=0(1) .
"

Combining the above estimations we may, by (4.11), write

exp(— c(loglog m + o(m))) < | TT L(1 | < exp(c(loglog m + w(m))) .

1€Q’
It is known that

L(1, y) = O(log m) .
This and lemma 18 yields
cle) m™ < [L(1, y') < elofem,
In addition we have, by lemma 19,
(4.12) exp(— c(loglogm - w(m))) > m~"€¢™ = c(e) m™ .

Collecting these results we obtain

(4.13) cle) m™ < | TT L(1, y) | < exp(c(loglog m + w(m))) .
% € Q(m)
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19. In order to estimate the product (cf. (4.10))

Z2€EP pim

we write

(4.14) IIT=exp( X > > x@)mp™").
y€EPpimn=1

It follows from lemma 7 that

S ) Lo(m,) if p"=:+1 (mod m,) and m, > 1,
;tep)C o= 0 otherwise,
where m, denotes the greatest divisor of m prime to p. Let { denote

the least positive exponent such that

p = -+ 1 (mod m,) .
Now if
(4.15) p’ =+ 1 (mod m,)

then ¢ |» and, on the other hand, if £ |» then (4.15) holds. Since we can
write

8

P Y =@ —DT1=3p L 1)T=3m",

~
Il
it

we have
220 Dyt = O( X g(my)my) = O(w(m)) .
2€EP plm n=1 pim
Hence
e—Cm(m) < ! Hl < eco,(m) .

This, together with (4.13) and lemma 19 (cf. (4.12)), yields
(4.16) c(eym™ < | TTL(1, ) | < exp(c(loglog m + w(m))) .

7€P
From (3.4) and (4.16), it now follows that theorem 1 is true. As we see, the
upper bound in (4.16) depends essentially on w(m), because there exists
an infinity of the numbers m such that

w(m) > c log m/loglog m .

In order to get a sharper upper bound we find, on the other hand,
that we must mainly focus our attention on the series appearing in lemma
21 and in (4.14).
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§ 5. Proof of theorem 2

20. From theorem 1 and lemma 19, it follows that
cle)ym™ < hy(m)/G < c(e)m® .
This can be also represented in the form
(5.1) log(h,(m)|G)[log m = &(m),
where &(m)— 0, when m tends to infinity.
Let us denote

u u u
m = pprps...p'.

where p,, ps,..., pi are distinct primes. We define
1

(5.2) E(m) = > (w; — (pj — 1)) log p; .
j=1

Since 4|m , whenever m is even, we get
p—D'=3y.

This yields the inequality

(5.3) E(m) =1logm.

From the prime divisors of m we choose p; arbitrarily and denote
p=p; and u = u;. We can thus write the discriminant d in the form

(cf. [6]. p. 508)

(5.4)  logldl = @(m)E(m) = ¢ gp((u — (p — 1)) log p + E(k)),

where k = m/p*, ¢ = ¢p(k) and ¢, = @(p*) . Let ¢ > p be a prime such
that g+ k. We denote by d, the discriminant of the cyclotomic field
k(exp(2mi/my)) (my = ¢*k) . We now get, by (5.2) and (5.4),

(5.5) log|dy/d| = @(gg(u — (@ — 1)) log ¢ — g(v — (p — 1)71) log p)

+ @(pg — @p) B(k) > @(pq — ¢p)E(m) .

It now follows from the equation (1.1) and the inequality (5.5) that

log(G4/G) > log(e,/0) + log(ei/e”) — % ¢(gq — ¢p)log 2

+ plpg — @p)E(m)[4 4 w log(q/p) .

where G, = G(m;), 0, = o(m;) and o; = o'(m;) . We get, by (5.3),
(5.6.) (1/4 — ¢)E(m) > % log 27 (0 <c<1/4),
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when m is great enough. It is easy to verify that
log(:/0) + log(ey/e’) = 0.
Hence
(5.7) log(t4/G) > ¢ ¢ p*~" B(m) + wlog(q/p) -
By (5.1) and (5.7), we obtain
log(hy(my)[y(m)) > ¢ g p*~ E(m) + u log(g/p) + e(my) log m, — e(m)log m .

Let m now be so great that |e(m;)| and |e(m)| are less than c¢/4 . Fur-
thermore, we have, by (5.3),

log(hy(my)/Ry(m)) > % ¢ (¢ p*~" — 1) logm = 0.
This implies the result
ha(q°k) [ln(p"k) > 1,
when ¢>p, (pg, k) =1, and m = p“k is great enough.

21. We denote by d, the discriminant of the cyclotomic field k(e*™r™)
where p (= 2) is a prime factor of m . Then

log [ dyfd | = (g(w + 1 — (p — 1)) — gp(w — (p — 1)) ¢ log p
+ (g, — w)E(k) .
. This leads to the inequality

ua;l)

where q{, = @(p
(5.8) log | dyfd | > ¢(g, — qp)B(m) .
It now follows from (1.1) and (5.8) that
log(G,/G) > log(gs/0) + log(oz/0") — % ¢(@, -~ ) log 2
+ (o, — gp)E(m)/4 + log p ,

where G, = G(pm), o0y = o(pm) and o, = o'(pm). When m is great
enough then (5.6) holds and

(5.9) log(G,/6) > (4, — ¢,)E(m) + log p .
We can decide, by (5.1) and (5.9), that
log(hy(pm)[hy(m)) > ¢ ¢ p“~* E(m) + log p + e(pm)log pm — &(m)log m .

We choose m so great that |e(pm)
addition we apply (5.3), we thus get

and |e(m) |are less than ¢/4 . If in

log(hy(pm)[hy(m)) > % c(gp"™" — 1) logm = 0.
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Hence
hy(pm)/hy(m) > 1.

22. We suppose that ¢ is an odd prime such that g¢+m . Let us
denote by dy the discriminant of the cyclotomic field k(¢>*'™) . We may
now write, by (5.4),

log |dg/d| = (¢ — 1) ¢(m) (¢ — 2) (¢ — 1) loggq + E(m)) — q(m)E(m)
> (q — 2) g(m)E(m) .
Furthermore, we get
log(G5/6) > log(g,/e) + log(es/e) — (g — 2) ¢(m)log 27
+ (¢ — 2) g(m)E(m)/+ + log q .

where Gy = G(gm), o3 = o(gm) and 0y = o'(qgm) . It is easy to verify
that

log(gs/0") = 0, log(gs/0) = — log m!*.
If m is great enough then
log(G4/G) > ¢(g — 2) ¢(m) E(m) + log(q/m) .
Further we have
log(hy(qm)/hy(m)) > c(q — 2) g(m) B(m) + log(g/m"%) + e(gm) log(gm)
— ¢(m)log m .
If m is great then |e(gm)! and |e(m)| < c¢/4, and
log(hy(qm)/hy(m)) > 3 ¢ (¢ — 2) g(m) — 1 — (2¢)77) log 1 .
Since ¢(m)—> oo, when m tends to infinity, then
(g — 2) glm) > 1 4 (207
for great values of m . Hence
hy(qm)/hy(m) > 1.
In the same way we can show that if m is odd then
(5.10) hq(4m) > hy(m) .

when m is great enough. Namely, if we denote by d, the discriminant
of the cyclotomic field k(e*"#*"), we have

log | dy/d | = @(m)E(m) + 4log 2.
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This yields, by (5.6),
1og(G4/G) > cg(m)E(m) + log(4/m1") ,

where Gy = G(4m) and m is great enough. For great values of m we
thus get, by (5.1) and (5.3),

log(h,(4m)/hy(m)) >

o=

c(p(m) — 1 — (2¢)71) log m .

This implies (5.10).
Our theorem is thus established.



Chapter II
DIRICHLET’S L-FUNCTIONS
§ 6. Theorem 3 and preliminary lemmas

23. In this chapter we consider the functions
Lis, 7) = X g™

where y(n) is a character (mod k). Our intention is to prove the following
Theorem 3. Lei k(= 3) be a natural number, e an arbitrary positive
number. & a positive number < § and

T—T(k)Jw(k) if 21k,
S otk -1 if 20 k.

If the extended Riemann hypothesis is true, there exists for every given pair s
and k . where

(6.1) sZq = (14 0+ 1), k> ke, 9,
a non-principal character y(n) (mod k) such that
TL(s,y) <14 e.
If k= p*, where p is an odd prime, we get for s the condition
s = (1 -+9)2.
and we can thus decide that the above theorem implies the result of A~-

KENY and CHOWLA (cf. e.g. [2], p. 487).

24. In order to prove theorem 3 we apply some lemmas expressed in
the preceding chapter. In addition we need the following lemmas:
Lemma 22. If the extended Eiemann hypothesis istrue and (k, 1) = 1 then

X

ala, k, 1) = gk / d&/logé + O(x* log x)

5
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where the constant implied in the O symbol is independent on k (cf. e.g.
[14], p. 236).

It should be noted that the restriction x =k made for instance in
PRACHAR’s book is plainly unnecessary, for

x
~

Az, kLl = 0(1), (p(k)_I/ déflog & — O(atlog @) .

when x < k.
Lemma 23. If s denotes a complex number then

L(s, ) = exp( Xl x(@" ) p™™) (6> 1),
p.n

where o is the real part of s, p runs through the primes and n through all
the natural numbers (cf. e.g. [12], p. 459).

§ 7. Proof of theorem 3

25. Let us define
Lif pr= 1 (mod k),
— 1if p» = — 1 (mod k),

np —
l 0 elsewhere

b

(k = 3 according to the hypothesis). Combining this definition with lemma
7 we get

Al

eZo,(k)x(p") =5 @(k)b,, .
V4

If we first assume that s is a complex number, we thus have, by lemma
23,
(1) TTLe. 2 = expl gl (X + X 3 by n ™) (0 1),
x €Q(k) P p n=2

where b, = by,
Denote

From lemma 22 we now obtain

(7.2) B)=a(@, k, 1) —a(@, k, — 1) = 0@} log 2) .
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Suppose ¢ > 1. By using ABEL’s partial summation we obtain
pp 2 A g P

(73) bp p7 = Z B(n) (n—a o (n + 1)—0) + B(x)[x]—rx
y<ps=x y<nZx—1
— B(y) ([y] + 1)
Since
n41
(74) =+ )T =o / EdE = on

it follows from (7.2), (7.3), and (7.4) that

(7.5) Z b, p” = O(c Z T logn + 27" loga 4+ 5" log y) .

y<pgs y<nzx—1

Since ¢ > %, the series

_,,_.l)
n " * logm

2

138

n

-+

converges, and from (7.5) we ge

(g

by p™" = C(&') (y > yole')) ,

IA

y<rp

where ¢ is an arbitrary positive number. We can thus conclude that the
DIRICHLET series
% —s
l by p
p

converges. Therefore it presents an analytic function of s, whenever
o> % (cf. [12], p. 157). Further the series

(7.6) D D by tpT™

p n=2

is clearly an analytic function of s for o > %, in fact without any
hypothesis. Hence by the theory of analytic continuation it follows that
(7.1) proved for ¢ > 1. is also true for 5> 1 on the assumption of the
extended RrEMANX hypothesis.

26. Our intention is to estimate the series in the right-hand side of
(7.1) as a function of k. Let us restrict s to be real, and in addition we
assume that s satisfies the inequality in (6.1). If we in (7.3) take y = k — 2
and if x tends to infinity, we get (cf. (7.5.))

3
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(7.7) Dbypt =0(s Y 2" log n)
P =k—

=0(s / £ log £dE) = O((k — 2)""" log k) ,

k—2

where the constant implied in () depends only on . Here we have made
use of the inequalities

(7.8) 25 — 1 =0, 2s/(2s — 1) = (1 — 9)/0.

We next estimate the series (7.6) by applying the same method as
before in the proof of lemma 21. We denote the series by §; and write

LS3; §S4+S5:
where

oo o8
S, = Z nlp™, S Z Z nlp™.

2w

n=:
p™ = + I(mod k) p" =+ 1(mod

In order to estimate S, we write

(7.9) Sy=2n ) p™
n=2 p<k
p" = + 1(mod k)
Denote
(7.10) Mmn)=2n—1)y"" 1, Nmun)=2n"".

whence it follows that
N(n) — M(n) > 2n" .

since n = 2. From lemima 20 it now follows that we can express the
numbers p" in the form (4.6), where M(n) and XN(n) are defined by
(7.10). If we make use of the definition (4.7), we obtain

. N(n) N(m)
DpT= D (k=)< (k— 1) Dy
p<k j=M(n) Jj=M(n)
We denote
N -
V, = 2_ v, V(x) = Z V..
Jj=M(n) 2<n<x

By using ABEL’s partial summation we now get

Z = > Vmn Y n + 1) + V(x)/[«] .

2<n 2§n<x—

IV\
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Since M(n + 1) = N(n) + 1, we have

)= Yo =2 Y.

Hence
N(n)

Vin) = 0(/5“"’ df) = O((v + 1)n'™),

where the constant implied in O is an absolute one. Furthermore, we get

Vafn = O((r + 1) ( Z 7 4 a ) = 0(r + 1),

n<=x 2<n< a1

h/\

where the constant implied in O depends on 0 alone. From lemma 19
and from the equation (7.9) it follows that

(7.11) Sy = O(z(k — 1)™) = O((k — 1)"* log k) ,

where the symbol O implies a constant, which depends on § alone.
Finally we estimate the series S; as follows:

S5 = O( ka_ﬂs) =0(2 (a(n) — a(n — 1)),
p>F

n>k
where m(n) denotes, as usual, the number of primes not exceeding n .
Since z(n) = O(n/log n), we have
(7.12) Sy = 0(s Y. n*[log n) + O(k**/log k) = O(k™/log k) .
n>k

where the constant in O depends only on o . Here we have made use of
the inequalities (7.8). Combining the results (7.1), (7.7), (7.11), and (7.12)
we get

TT L(s . 2) = exp(g(k) y (k) ) .

7 € Q(k)

where y(k)— 0, when k tends to infinity. This proves our theorem.



Chapter III

THE FIRST FACTOR OF THE CLASS NUMBER OF THE CYCLOTOMIC
FIELD k(exp(27i/p“))

§ 8. Theorems and preliminaries

27. In this chapter we restrict ourselves to the case m = p*.
Let r denote a primitive root (mod m), r; the smallest positive re-
mainder of # (mod m), ¢ = % ¢(m). and

(8.1) g = (rrj — 1;.0)[m .

When p is an odd prime, INKERT [9] has shown that %,(p) can be expressed
as a determinant as follows:

‘A Qo1 - - -1 0

Qg1 de - - -2 51
(8.2) hip) = D =

oo Gog3- - Qo1 g

Ty Teoy -« -1 To

1 1 U | 1

If p is further an odd prime and (k,p) =1, we define k' by the
congruence kk’ =1 (mod p). Denote by D, the so-called MAILLET’s
determinant

(8.3) det(Z(jk) (j. k=1.2,..., F(p—1),

where /(j) is the smallest positive remainder of j (mod p). In section 6
we mentioned that the determinant (8.3) is equal to A,(p) multiplied by
a power of p. Therefore there exists a connection with the determinants
(8.2) and (8.3). In this chapter we show that this connection can be found
without applying the theory of class number.
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28. Denote u = p* !, w=121¢), and v = (p — l)w. In section
6 we mentioned the factor K . Inthecase p = 2, uw=3 it can be repre-
sented in the form (cf. e.g. [19], pp. 796—802)
(8.4) K =2 1 TTF(9).
j
Here ¢ = exp(2mi/p(u)), j takes the values 1, 3,...,2w — 1. and

w—1

(8.5) Pla) = ) cal,

where ¢; = + 1 or — 1 if the absolutely smallest remainder of 5/ (mod 2)
is positive or negative respectively.
In the case p =3, w = 2 the factor K can be written in the form

(cf. [20], p. 204)
(8.6) K=2"p ™' T H®).
j
Here j assumes all odd values less than ¢(p*), except the multiples of
P, O = exp(2mi/p (p*)) and
H(x) = > na*,

p* — 1, except the multiples of p.

Our intention is to prove the following theorems:

Theorem 4. If p =2 and w = 3, the factor K can be represenied in
the form

Co ¢ Cy. .. C

€ e €y . €y

(8.7) K=+ D2= + e €y ey . . .8,

where e = % (¢ + ¢j11) -
Theorem 5. If p =3 and w =2, K is equal to the determinant

€00 o1 C €t €0 o C€lum1 €y |
9oo o1 < Go,w 91,0 G101 - -Gp2,01

+ | 9n Jo2 <90, 911 -1, s Gp2 w0 s

gO,v—-? gO,l‘—l LR gO,v+w—3 gl,r——2 o gl.l'fw—3 LR gp—ﬁ,r» w—3
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where the integers ey and gj. are defined by the equations

(8.8) or — | s 7l if 20,
. = ‘ |

l(r(PH‘)w—‘k - Vv-‘rk)///f if 247,

(8.9) I B O i 21,
. e = ‘ |

l Qpripork — Tosk if 247.

If D(m) denotes the determinant in theorem 5 then it follows from
the above results that A,(p*) can be written as a product of the deter-
minants in the form

hy(p*) = 4 DD(p*)D(p?) - - - D(p*) ,

where D = D(p?) =1, when p = 2.

From the theorems 4 and 5 we can conclude that the factors K and
hy(p*) are integers. These results have been shown earlier by means of
different methods.

As a consequence of theorems 4 and 5 we can prove

Theorem 6. The integer K satisfies an inequality

I o(u—=3)w[2

(8.10) |

o

if p=
w(2p—1)/(p—1)—(v+3)/2 p(“"r“)/ if p>

~o

If we apply theorem 6 for the case p = 2, we obtain, by means of
(10), for £y(2*) an upper bound

(8.11) hy(2¥) = 200t

Also in the case p > 2 it is possible to get, by means of (10) and (8.10)
an upper bound for %,(p*), which, however, we do not give explicitly.

Tt is easy to verify that if p* is great, the asymptotic approximation
(7) gives for A (p*) an upper bound better than the above estimations.

§ 9. The connection with Inkeri’s and Maillet’s determinants

29. In this paragraph we denote by p an odd prime. Further denote
Dy(@) = det(e + 2Gk) (. k=1.2,..., 3p—1).
From the definition (8.3) of MAILLET’s determinant it follows that

(9.1) D,(0) =D, .
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We observe that the last column of D, has the elements p — 2, p — 4,
..., 1. If we add the doubled first column to the last column both in D,
and in D,(x), we get, by (9.1).

(9.2) Dy(x) = 3z + p)Dy/p -
If « = —%p, it follows from (9.2) that
(9.3) D,=—3%D,,
where
D, = Dy(— tp) — det(jky)  (G.k=1,2.... . F@—1)
and
(9.4) (k} = 2k) — 3 p.

Denote by #~ an integer, which satisfies the congruence
xri =1 (mod p).
Further denote
D) = det ({r’"™"}) (j,k=0,1,...,3(»—3)).
The absolute values of the elements in the first column of D; are
(9.5) R R (L S NI R S
We get by (9.4)
(9-6) iy =1 —3pl<zp.
We further have
p—gplF = 3D
if j==k and 0 =j,k =% (p — 3). Thus it follows that all the numbers
in (9.5) are distinct. By means of (9.6) we can now deduce that the numbers
in (9.5) are the numbers
(9.7) 12, 3/2,5/2, ..., (p—2)2

disregarding the order. The numbers |[{j}| (j=1, 2, ... .3 (p— 1)) are
also the numbers (9.7) disregarding the order. Consequently we can decide
that the numbers

00, (1), {2y, L., (IR

coincide with the numbers {j} (j=1,2,...,%(p — 1)) disregarding
the order and the sign. In the same way we can show that the numbers

N I o P
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coincide with the numbers {j’} (j=1,2, ..., 1 (p — 1)) disregarding

the order and the sign. In addition we find that
e |y i (=4 and (Pt = 4 {n},
(=
| — ('} if {7} =+ {I} and () = T {n')}.

By interchanging rows (columns) suitably and by changing the signs of
some rows (columns) we get

(9.8) D,=+ D).
Here we have made use of the above results.

30. It follows from (9.4) that D) may be written in the form
|

Mo — %D T — %D T — 3D

A T o —2P -T2 —32P |

| 7g~1“’%’20 7'g_z~%p CoTg— D
where ¢ =1 (p — 1) and r_; = Ar7). We double every column and
interchange the jth and the (g9 — j + 2)nd columns, when j runs through
the numbers 2, ..., 3¢ if 2/g or through the numbers 2, ..., 1 (g + 1)
if 24 g . Then, by means of the equation

27‘_j —p = — (Qrg_j —P),
we get
2rg — P 2ri—p ... 21, —p
. 2 —p  2rp—p.. . 2r,—p |

(9.9) LoDl — | 2P ‘

2ry =D 2 —pP... .2 5, — P

The determinant in the right-hand side of (9.9) appears in [9]. If we treat
this determinant, we get (cf. [9], p. 9) the result

(9.10) 2D, = + p** D,

where D denotes INKERI's determinant defined by (8.2). From (9.3), (9.8),
and (9.10) we finally conclude that

D, = + p P2 D



Timo LePisTO, On the first factor of the class 41

§ 10. Proof of theorem 4

31. In order to write the product in (8.4) as a determinant we replace
2z in (8.5) by ¢ and multiply both sides of the equation thus obtained by
971 . Since :

(10.1) — 7= %71,
we get
(10.2) 0=1c¢ +c0 +cg92+ ... — (¢, — F(F))v“ 1.

We further multiply both sides of (10.2) by #™! and repeating this pro-
cedure w — 1 times we have, by means of (10.1),

0—cy— F(I) 40+ ... ey 0.

0=c Loy o —(c, — F(9)) 9L,
(10.3) ! 2 (¢ (7))

0=co1 — (g— F@I — ... e BTV

By (10.3), we can deduce that

o — FU) ¢ T Y
o Co ey + F(
o4y : o HEB)
Co1 —cy+ F() ... —co

The expression (10.4) is an equation in F(J) of degree w . This equation
has solutions F(97) when j assumes the values 1, 3, ..., 2w — 1. The product
of the solutions is equal to the constant coefficient of the eguation dis-
regarding the sign. We get this constant coefficient from (10.4) by replacing
F(9) by zero. We thus get

Co ¢ 2 Cio
_ ) L c, Cq...—C
(10.5) [ F(97) — - ! ? ’ ’
J
Coy — Cp  —Cpewn— Cyus
where j runs through the values 1, 3,5, .., 2w — 1.

32. It is known that
5 =1 -+ 2*71 (mod 2v)

(v = 3 according to the hypothesis). Suppose
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b =5/ (mod 2%) (jb] < 2#7Y).
Since b is an odd integer, we may write
5H = (14 2+71)p =21+ b (mod 2v).
From this we conclude that
_[ —1lif ¢j=+1or b>0,

“UT| 4 1if g=—1or b<0.
This relation yields

C,

(10.6) G = — Cpyj-

The determinant in (10.5) may be written, by means of (10.6), in the form

|

Co 151 Cw1 :

c ¢ c

1 2 w0

e — |
D'(2") = |
! e
| |
| Cur Cwo-Cops |

We add the jth row tothe (j + 1)st row, when j takesthe values w — 1,
w—2,..., 1. We thus get

D'(2v) = 271 D(2v),

where D(2*) denotes the determinant defined in section 28. This together
with (8.4) proves theorem 4.

§ 11. Proof of theorem 5

33. Consider the expression (8.6). By a slight alteration of H(x) we get

g (m)—1
(11.1) H(x) = D> r,a".
n=10
Consider the product
(11.2) T =TT HE),

J

where j assumes all odd values less than ¢(m) except the multiples of p .
We find that the numbers @/ satisfy an equation

(11.3) 4 1=0,
where g = L¢(p*). Further we have, by (11.3),
(11.4) Ot = — @7 .
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By (11.1) and (11.4), we can now write H(®) in the form

HO) = 22: a, O,
where
(11.5) (p = Ty — Tgipn -
We define a function H(O , x) as follows:
(11.6)  H@,x)=ay+ (a; + )0 + @, @ + ... + a,_, 057,
whence

(11.7) H(© ,0) = H(O).

34. Since (cf. [18], p. 417)
TT (=0 = 02+ /e +1),

J

the numbers @/ satisfy an equation
(11.8) S T B A

In order to formulate the expression H(O, x) for our purposes we need
the equation

(11.9) O = — Ol 4 O — @ L4 @I

which follows from (11.8).
Using (11.9) in (11.6) we get

(11.10) 0 =1cop— H(O ,2) + (cu + )0 + ... + ¢y 0w e
+ ¢ o" + 01,10“’+1 + o O e e +

4 ey eFrr 4 Cps1 el L Cps,w1 O,
where
(11.11) Gk = W + (— 1)y,
It is easy to verify that
"J'+ rg+]-=m=p",
from which it follows, by (11.5), that

(11.12) a,. ;
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We can now conclude that

. — 1Y le, = ¢
(11.13) l C]k + ( ]') Cok C]—l ,wik o
lCOk = cp—2,w-+k .
Here we have made use of (11.11) and (11.12).

35. It follows from (11.4) and (11.9) that
(11.14)  (cyy — H(O , )07t = — (co — H(O , 7)) (— 6" + 6™
— O L. e,

Multiplying both sides of (11.10) by &' we get, by means of (11.13) and
(11.14),

0 =coy + @ + €O + €3 + ... + (¢ — HO, x))6"
40, 0% 4 ¢ O+l L €13 G (¢, o + H@, )@ &

+ cp—ﬁ,l @(P——Wv + CP—Z ,2 @(P_2)w+l -!_ s _i_ (C’p—Z,w + H(@ ’ x))@v_l N
We further multiply both sides of this by @~'. By (11.13), we thus get

0 = Cog + 003@ + . + (60.w+1 + x)@w—l
—If"' 6112 Qw + 61,3 @uv}l _4:_ L + (Clgw,‘l o x)@?w—l +

. —2)w —2)w-1 i r—
ey 2 OPT e,y OPTI L (e, g e — )0
Repeating this procedure » — 1 times we finally have

—1
0=cy,q+¢uO+ ...+ Coiws CA
, +1 2u—1
e, O O e 07T
—2)w —2)w+1 p—1
LB e OPTT e, e O

- Cp—‘l 5 O—.

If we consider the system of all the equations thus obtained, we see that
the coefficient determinant

Cop — H ¢y +2...¢ 0 2 ce e Cpa e

Cup +— & Cop ceiCpe — H ¢,y .+ Ho ey, H

""(l.r—] Cor oot C()J‘rfw;—i’. Cy so—1 * * cl,r»}w—l R Cp—Z.vfu'-Z
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vanishes. Here we have shortly denoted H = H(®, x). We denote this
determinant by D’(m , «) . Consider first the positions of H in D'(m , ).
Then we can write the following schema:

lo..w—1 w wtl wt2...2w-1 2w 2w41...(p—2)wf1...0—1 »
}'——H :

. I 1
—H f +H ; f +H

e -

wrl _H GH _H | +H

:Zw—.}—l r ‘ | +H

(p—2).w+1 ! 4+ H
(p—2w+2 | | +H

0 | . 4H

The numbers in the schema show the order of the columns and the rows.
We can now observe that by adding and subtracting the rows appropriately
we get D’(m , x) in a form, which proves that

(11.15) D'm,x)=0

is an equation in H(@ , x) of degree v, when x has some fixed value.
We find that the expression (11.6) of H(® , x) is a solution of (11.15). We
now replace in (11.6) @ by 67, where j assumes all odd values (> 1)
less than ¢(m) except the multiples of p . In the same way as before we
treat this expression and it is evident that we get also in this case the same
equation (11.15). It is now clear that there exists an infinity of the values
of x such that all the expressions H(6 , x) are distinct for each 2. Since
the number of the possible values of j is v, each solution of (11.15) is
included in the expressions H(67, x) The product of the solutions is equal
to the constant coefficient of (11.15) disregarding the sign. We get this
coefficient from (11.15) replacing H(® , x) by zero. Hence

(11.16) TTH@® ,2) = + D(m ,2),
J

where j runs through all odd values less than ¢(m) except the multiples
of p and D(m , x) denotes the determinant
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Coo Cop T % ... Cy C1,0 -+ -Clyuem1 -+ - Cpg w1
| |
FCpp T X 602 w0 Cope 0171 . o cl,w RN Cp—Z,u* !
. ]
| c’l’ Lv—1 COL‘ LR C0 s Uw—2 Cl sv—1 cl Low—2 Cp——2 S v w—2

36. The expression (11.16) is an equation in « of degree =< ». There-
fore it must be an identity, since it has an infinity of solutions. Consequently
the value x = 0 satisfies the equation, and it follows from (11.2), (11.7)
and (11.16) that

(11.17) T = + D(m, 0).
Consider the determinant D(m , 0) . We first observe that
G = g+ (— DVl = — A 20+ (— 17 (2, — m)
=m — 2r, ek + (— 17 (21— m) .
Hence
(11.18) ik = [ 200 —rnw 320,

l_ 2(F (pajpork — Towr) i 247

Since each column is divisible by 2, D(m , 0) can be written, by means of
(11.18), in the form

Fo — T e Ty — rpu‘-1 7A(P+1)uv — Ty coee r(ip—l)u'—l 77 ,vpu'fl
Lo o — Tor1 + -+ - T — Tpw T(P+1)”'+1 = Pepq - )"(21)_1)!( — T
<

! '.L'—l - 720—1 e Tpu'——i _ T(Zp—l)w—ﬂ 7'2p1;r—-1 _ TZZ‘—] L 71(3p—2)u'—‘2 - r{ip—l)u-—?. i
From the jth (j=wv,v—1,...,2) row we subtract the preceding row

multiplied by r. A general element of the determinant may be treated
as follows:
Tigr — Thy1 — r(ry — 1) = — mlg; — qx)

where we have made use of (8.1). From this it follows that D(m , 0) can
be represented in the form

Yo — 1o e Ty T T <o Tepatjue—1 — Tl
j D — 9 s Qe — qu—l T Q(Zp—l)u‘—] — Gpre—1
oy v—1 |
-+ 2'm! 1~ Qe - G — Qpw ceQapaye — Gpr

i
i qv—Z - q?l'——?_ e qu—S - q(2p—l)w——3 LR q(3p—2)w—3 - q(?p—l)u‘—i?o .
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37. In (8.8) we defined the numbers ¢; . In order to show that these
numbers are integers, we first write

(11.19) Piesk = Tork = — petE (e 1) (mod m)
and
(11.20) Ppajpork — Tesn = 17 (070" — 1) (mod m) .

It follows from (8.8) that j in (11.19) is even and in (11.20) odd. Con-
sequently both expressions p —1 — j and j + 1 in the exponents of
(11.19) and (11.20) respectively are divisible by 2. In addition it is known
that

PP =970 =1 (mod pu) .

from which it immediately follows, by (8.8), (11.19), and (11.20), that the
numbers ¢ are integers. On the other hand it is easy to verify, by (8.1)
and (8.9), that also the numbers g;. are integers. Hence

(11.21) D(m ,0) = £ 22m"™" u D(m) ,

.

where D(m) is the determinant in theorem 5. This result together with
(8.6). (11.2), and (11.17) proves our theorem.

§ 12. Some new expressions for K and proof of theorem 6

38. Consider the determinant D(m, 0) defined in section 35. We
replace the numbers c¢; by the expressions (11.11) and write the deter-
minant of order v as a determinant of order ¢. We thus get

Ly Ay o oo Uy e ey I
I a; Uy - - . Uy L T Ayio - - - Qg
, Y Y Ao oo o Oy o g - oo Oopy Qg oo o Qg g |
_l)(nl,())_—___ g2 v-Hw U v v 84U
1 0...0 —1 | 0
0 I ...0 0 ... 0 1 !
0 0 ...1 0 ... 0 0o ...1 E

Since  rj A+ vy =m, it follows by (11.5) that

a; = 2rj — m.
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Applying this in the above determinant we have

ry —dm o —dm. i —dm
no—dm o m—dm.., —im ’
| |
(121)  Dm, 0)=2 7 —im  re—tm.. g, —Fm |
‘ 1 0 0
0 1 0
| 0 0 1

Consider first the elements in the first row. Denote
(12.2) ) = A(n) — im,

where A(n) denotes the smallest positive remainder of n (mod m) (see
section 29, the case m = p). Hence

(12.3) =l —dm | = 3w — 1.

Since 7; is not a multiple of p, |{r;} | cannot be expressed in the form
p(k — %), where k is a natural number. Since

1 ;
lrp—gm| # |1 —3m],

when j#k and 0 =j,k <g, we can deduce that the numbers | {r;} |
take exactly ¢ distinct values, when j runs through the numbers 0, 1,

2,..., g— 1. By (12.3), it follows that the numbers | {r;}| can take
only the values
(12.4) 12,3/2,...,(m—2)2,

except the numbers of the form p(k — 1). The number of the numbers
(12.4) is clearly %(m — 1) whereas the number of the numbers p(k — %)
occurring in (12.4) is 1(u — 1) . Their difference is ¢, and it follows that
if we strike out the numbers p(k — 1), the remaining numbers in (12.4)
coincide with the numbers

l{ro}l’{{rl}l}7 R E{rg—l}l
disregarding the order. We can thus conclude that the first row of the
determinant (12.1) may be written as follows:

1

1—3m 2—gm...p—1—3m p+1—3Lm... 5m—1)—1m

[N

if the order and the sign are not taken into consideration. Furthermore,
we get
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. I {rim} if {n}= n—3im=/{n},
U =) gy i () = — b = — (),

where 1 =<=n =<y (y=3%(m —1)). By means of this and the above
results D(m , 0) can be written in the form

{2y ...{p—1 b+1
{r {2r} ... {(p — D} {(p+ Dryp ... {771} I
i {ra} {2ry} .. {(p — D)ra} {(p + Vrop - {yrs} !

(ro_y {2r ) (@ — Droad {(@+ D Avread ,

+ 2
?)1,1 ’01,2 vl?P—l ?)LP+1 Ul,y ‘
?)2’1 7)2’2 172,1,_1 02,})%1 ’02’7 i
i /Uw,l vw,Z vw,p——l vw,p+l . vw,/

where y = L(m — 1) and v, is either 4 1, — 1 or 0. We subtract from
the jth row (j=2,3,..., v) the first row multiplied by 7;_,. Thena
general element of the jth row may be treated as follows:

(12.5) {nr; 1} — 10 {n}=ml[j,n],
where
(12.6) [, n] =301 — 1) — (nr;y — Anr_y))/m .

We want to note that the numbers [j, n] need not be integers, but if we
double them, we get integers. By means of (12.5) and (12.6) D(m , 0)
may be represented in the form

{1 2 -1 AL
2,11 [2,2]...[2p—1] [2p+1]...[2,7]
3,11 [3,2]...03.p—1] [Bp+1]...[39]

Lot v, 1] [0,2]...ep—1] [op41].. [

/01,1 vl,g "'vlsP—l vlvP‘l'l ...vl’y
/02,1 U2,2 ...U2’P__1 /1.72'P+1 ...’02,7
| Vw1 Vy2 + v+ Vi, p1 Vi, pt1 ce Uy,
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Denote
lif j=1land n +# kp + 1,
) 2if j=1land n=4Fkp + 1,
(J;n):l[j,n]—[j,n—l] ifj=2and n £ kp - 1(n = 2).
[j,n] —[j,n—2]if j =2 and n =kp + 1
and

[Wn — V0 if 0 # kp + 1 (2, =0),
Ui, = .
’ lvj"_—vj,n—z ifn="Fk +1,
where j, n, and k are natural numbers. By subtracting from the jth

column (j=g¢, g—1,...,2) the preceding column we can now express
D(m , 0) in the form

-

L G2 (Lp =) (Lp 1) (Ly)
21 (2. e -1 @p D). (2
3.1 (32 ... Bp— 1) Bip D). By)

(12.7) £ 2'm"™" [o,1] (1;2)...(msp — 1) (vip+1)...(0x)

Uy 1 'ul_,.l "'ul,p—l ulgprl ...lll../
g1 Up,2 - Un pg Uy, pi1 cee U,
‘ u‘w ,1 uu‘ ,2 . uw ,p—1 uu’ .p=1 uu-

If m =3, y = %(m — 1) is of the form kp + 1, elsewhere y = kp — 1.
Denote by D”(m) the determinant in (12.7). By (11.21), we thus get

(12.8) K=+ p™" D'(m).

39. Consider the elements of D”(m). All of them are integers except
the first » elements in the first column. If, however, we multiply the first
column by 2, we get a determinant, each element of which is an integer
without any exception. It follows immediately from the definition of the
numbers u;, that

(12.9) Ujn,

We now estimate the elements (j;n). If j =2 and n #kp + 1 (n = 2),
we obtain
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LUsm) =10l —[j,n— 1]l =m™ | Anr;y) — H(n — 1)r;y) — 75 |
=m (| A(mry) — A(n— ri) |+ g ) <2 —m™t.

If =2 and n=14kp + 1, we have

Gim) =) = m— 2] =t Ary) — M — 2)r) — 2
<3 —mt.

From this we conclude that

Ilif n#kp+1,

12.10 gy n) | =
( ) s l2ifn=kp—{~1.

In order to estimate K by means of a determinant it is convenient to
start from the expression D”(m), since the absolute values of the elements
in D"(m) are = 2 except possibly the first v elements in the first column
(see (12.9) and (12.10)).

40. By applying the above results we now prove theorem 6. Consider
first the case m = 2* (u = 3). We use the so-called HADAMARD’S lemma
(cf. e.g. [10], p. 259) in (8.7). Since each element of the determinant D(2¥)
is absolutely < 1, the sum of the squares of the elements in every row is
< w. We thus obtain the result

K = @),

which proves the first part of our theorem.
Consider now the case m = p*, where p is an odd prime and » = 2.

We divide the first column of D"(m) by Im andthe (k(p — 1) 4+ 1)st
column (k=1,2,..., 3u — 1)) by 2. Since the absolute values of the
elements in the jth row (j =1,2,...,v) are, by (12.10), < 1, the sum
of the squares is <g¢g. Let z (j=v+ 1, v+ 2, ..., ¢g) denote the

number of the elements in the jth row, the absolute values of which are
= 2. The number of non-zero elements in the jth row is thus = 2p — z;
and the number of the elements absolutely equal to one in the jth row is

= 2(p — z;). Let N; denote the sum of the squares of the elements in
the jth row. We then obtain the result
if j=1,2,...,v,
azay (N =70 o
200p —z)+4<4p if j=v+-1,v4+2,...,9.

If we apply HADAMARD’s lemma, we get

(12.12) | D'(m) | < m 2w g7l (4p)e



52 Ann. Acad. Sci. Fennica A.I. 387

Here we have made use of (12.11). It follows now from (12.8) and (12.12)
that

K < 2(/1—3)/2+w gv/2 pl+w/2 .

This implies the second part of our theorem.
Using (8.10) in order to estimate an upper bound for 4,(2*) we obtain

hy < 2°,
where

u—3
2= j 27 =(@u—42"41
i=1

and this leads to (8.11).
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