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Diserete open mappings on manifolds

1. Introduction. The purpose of this paper is to give a new proof for the
following recent result of Cernavskii [2], [3]: If f is an open mapping of an
n-manifold into an n-manifold such that each point-inverse consists of
isolated points, then f is a local homeomorphism except for a set whose
topological dimension is at most 7 — 2. Our proof is more direct and

elementary than that of ('vlernavskii, who obtained this result as a corollary
of a more general result concerning mappings whose range space was not
required to be a manifold. In particular, we avoid completely the use of
the rather deep theory of Smith on periodic homeomorphisms of manifolds.
Instead, we will make use of the topological index (= degree) of a mapping.
We will also give an application concerning light open mappings.

2. Terminology, notation and preliminary results. All topological spaces
considered in this paper are assumed to be Hausdorff. All manifolds are
assumed to be connected and to have a countable base. All mappings are
assumed to be continuous. If X isaspaceandif Fc 4 C X, welet 0,8
denote the boundary of £ with respect to 4, and we abbreviate doxH
to oK. Let f be a mapping of a space X into a space Y. It is open
(closed) if the image of every open (closed) subset of X is open (closed) in Y.
It is light if for each y € Y, the inverse-image f~(y) is totally disconnected.
It is discrete if each point-inverse is discrete, i.e. consists of isolated points.
It is proper if the inverse-image of each compact subset of Y is compact.
If X and Y are locally compact, then a mapping f: X — Y is proper if
and only if f is closed and each point-inverse is compact. The branch set
B; of f is the set of all points in X at which f fails to be a local homeo-
morphism. The multiplicity N(x,f) of f at a point x € X is the number
of points in f~f(x), and we set N(f) = sup N(x,f) over all x € X. The
set of all points x € X for which N(z,f) <i is denoted by K,(f). It is
well known that if f is open, then N(x,f) is a lower semicontinuous
function of z. In other words, for each @ € X and for each integer k& <
N(a,f) there exists a neighborhood U of a such that N(xz,f) >k for all
x € U. In particular, if N(a,f) < o, then N(x,f) > N(a,f) in some
neighborhood of a. From this it follows that the sets K,(f) are closed.
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By a domain in a space we mean an open connected non-empty subset.
A subset A of a space X is said to separate X locally at a point x if
there is a neighborhood U of z such that for each neighborhood V of
such that Vo U, V — A is not connected.

Lemma 2.1. Let X be a locally connected space, and let A be a closed
subset of X such that int A = @ and X — A is not connected. If F is
the closure of the set of all points at which A separates X locally, then X — F
is mot connected.

Proof. Since X — A is not connected, we can express it as the union of
two disjoint non-empty open sets, U, and U, Denote V, = (int U;) — F.
Then it is easy to see that X —F =V, UV, V,NV,=0 and
U,c V, Hence X — F is not connected.

Lemma 2.2. If X is an n-manifold and if A is a closed subset of X
such that dim A = n — 1, then int A = @, and A separates X locally
at some point.

Proof. This is almost the same as Proposition 1.4.9.b in Borel [1]. How-
ever, Borel’s definition for local separation is slightly different from ours.
Anyway, there is a domain D such that D — A is not connected. The
assertion follows then from Lemma 2.1.

3. Discrete open mappings on locally compact spaces. In order to prove
that dim B; <n — 2 for discrete open mappings of n-manifolds, we first
show dim B; < n, that is, int B, = . In fact, this assertion is true for all
locally compact spaces.

Lemma 3.1. Let f: X —Y be open and let N(f) =k < . Then
N(x,f) <k for every x € B,.

Proof. Suppose N(z;,f) = k. Let ff(x;) = {x,,..., %} and choose
disjoint neighborhoods U; of ;. Then the set V = U, Nf(fU;N...
N fU,) is a neighborhood of x; such that f|V is injective. Since f is
open, it is a local homeomorphism at x;.

Theorem 3.2. If X is locally compact and if f:X — Y s discrete
and open, then int B;= @.

Proof. Suppose that int B, @. Then B; contains an open set U
with compact closure. The restriction ¢ = f| U is an open mapping for
which N(z,g) < oo for all « € U. Hence U is the union of the sets
K,(g). From the Baire theorem [6, p. 200] it follows that int K,(g) =V +# O
for some 7. Since N(g | V) <14, Lemma 3.1 implies that there is a point
2z in ¥V at which ¢g |V, and hence f, is a local homeomorphism. But
x €U C B, and we have reached a contradiction.

4. The topological index. We recall the definition and the basic properties
of the topological index (= local degree) of a mapping. For any locally
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compact space X, we let HP(X) be the p-dimensional Alexander-Spanier
cohomology group of X, with coefficients in the group Z of the integers,
and with compact supports. If X is an n-manifold, then H"(X) is iso-
morphic to Z or Z/2Z, according as X is orientable or not [1, I.4.3 and
1.4.8]. An orientable manifold X together with a preferred generator gy
of H"(X) is called an oriented manifold. If X is an oriented manifold,
and if D is a domainin X, then the standard homomorphism j : H*(D) —
H™"(X) is an isomorphism. Setting ¢, = j7Y(gx), we obtain a simultaneous
orientation of all domains in X.

Let X and Y be oriented n-manifolds, and let f: X— Y be a mapping.
Givenadomain D in X, apoint y€Y iscalled (f,D)-admissible if there
is a connected neighborhood U of y such that f definesa proper mapping
fi: DN fU — U. For example, if D is compact, each point in ¥ — foD
is (f, D)-admissible. If f defines a proper mapping D — fD, each point
in Y — ofD is (f,D)-admissible.

For each (f, D)-admissible point y, we can define the topological index
u(y ,f, D) as follows: Take any neighborhood U of y as above. Then
there is an integer % such that jf¥(gy) = kgp, where j:H"(D N f1U)—
H"(D) is the standard homomorphism. This integer is independent of the
choice of U, and is defined tobe u(y,f, D). If f isproper, then u(y ,f,X)
is constant for all y € Y, and is denoted by wu(f). If f defines a homeo-
morphism D — fD, then u(y,f, D)= + 1 forall y €fD. If f is a local
homeomorphism at x, there is a connected neighborhood D of x such that
f defines a homeomorphism D — fD. The topological index wu(f(x),f, D)
is then independent of the choice of D, and is denoted by ¢(x,f). Thus
ifx,f) is +1 or — 1, according as [ is sense-preserving or sense-
reversing at x. It is constant in each component of X — B,.

The following well-known property of the topological index is needed
later:

Lemma 4.1. Let y bean (f, D)-admissible point which does not belong
to f(DNB). Then the set A = DN fy) is finite, and

x€A

5. Discrete open mappings on manifolds. In this section we prove the

theorem of Cernavskii, mentioned in the introduction. The proof is preceded
by three lemmas.

Lemma 5.1. Let X be locally compact and locally connected, and let
f: X —Y be light. Then each point in X has arbitrarily small connected
neighborhoods U such that f defines a closed mapping U — fU.

Proof. Let « € X and let V be a neighborhood of x. Since f is light,
there exists a neighborhood W of a such that Wc V, W is compact
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and oW N f~Yf(x) = &. Choose a neighborhood D of f(z) such that
DNfow =, and let U be the z-component of f1D. Then Uc W,
and the mapping U — fU is closed.

Lemma 5.2. Let X be an n-manifold, and let U,, U, be disjoint
domains in X such that oU; = oU, and U, U U, # X. Then there is no
homeomorphism of U, onto U, which keeps the points of U, fixed.

Proof. Assume that there is a homeomorphism f: U, — U, which satis-
fies the condition of the lemma. Then f defines a homeomorphism ¢ : U; —
U,, and we obtain a commutative diagram

0y
H*Y(oU,) ——> H™(U,)
T A
‘id ’g*
| 8, |
H"_l(aUz) —> H"(U,)

On the other hand, H™(U;U U,) can be written as H"(U;) ® H"(U,),
where the projection mappings »* : H*(U, U U,) — H"(U,) are the homo-
morphisms induced by the inclusions r;: U; — U; U U,. Moreover, since
oU, = o(U, U U,), there is a coboundary homomorphism 6 : H*'(aU,) —
H"(U; U U,) such that the diagrams

0
H"Y(oU,) ——> H™(U, U U,)
|
»
N
B\ Y
H(U)

are commutative for ¢ = 1,2. Thus ¢ is given by d(a) = (d;(a) , dy(a)).
Since d; = g*d,, Im 6 does not contain elements of the form (b, 0) where
b #~ 0. On the other hand, we have the exact cohomology sequence

5
H'(3U) ———> H"(U, U U,) ——> HYU, U T,)

Here H™"(U,U U,) = 0 by [1,1.4.3]. Hence § is surjective, and we obtain
a contradiction.

Lemma 5.3. Let X and Y be oriented n-manifolds, and let f: X — Y
be closed and open satisfying N(x ,f) << co forall x € X. Let A be a closed
subset of X such that X — A is not connected and N(x,f) =1 for x € 4.
Then each component U of X — A s mapped onto a component V of
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Y — fA. Moreover, the induced mapping U — V isclosed, and u(y ,f, U)=
+ 1 forall yeV.

Proof. Clearly fU is contained in a component V of Y — f4. To
show that the mapping ¢: U — V defined by f is closed, let £ be closed
in U, that is, E=EN U. Then fE is contained in fE N V, which is
closed in V. But since VN f4d = @, fENV = fE. Hence ¢ is closed.
Since it is also open, fU = V. Moreover, since point-inverses are finite,
g 1is proper.

We next show that f defines a homeomorphism %4 :0U — oV. Since
f 1A isinjective and 90U c 4, it suffices to show that foU = 9V. Since
VNnfoUc VNf4d =0, foUc dV. On the other hand, since f is
closed, fU = V, whence oV = fU — fU c foU.

To show that u(y,f, U) = 4 1, it suffices to prove that g* : H™(V) —
H™(U) 1is surjective. Consider the diagram

5
H"(0U) ————> I"U) ———> H"(D)
A A
‘ }
o g*
|
H'@v)— ——> H™V)

Here H"(U) =0 by [1, 1.4.3], whence § is surjective. Since h* is an
isomorphism, ¢g* is surjective, and the lemma is proved.

Theorem 5.4. If X and Y are n-manifolds and if f:X —Y is
discrete and open, then dim By < n — 2.

Proof. 1t suffices to prove that dim (B;N D) <n — 2 for each domain
D in X such that D and fD are orientable and D is compact. Hence
we may assume that X and Y are oriented and that N(z,f) < oo for
all € X. From Theorem 3.2 it follows that dim B; <<n. Suppose that
dim B;=mn — 1. Let A be the closure of the set of all points in B at
which B, locally separates X. Then A4 # O by Lemma 2.2. Since 4 is
the union of the closed sets 4 N K,(f), it follows from the Baire theorem
that there is an integer ¢ such that the interior G of 4 N K,(f) with
respect to A is not empty. Let U be an open set in X such that G =
UNA. Since Gc K,(f), Nx,f|U)<i for x €G. Let a; be a point
in G at which N(x,f|U) attains its maximum, and let a,,..., 2,
be the other points of U N f=f(z;). Choose disjoint neighborhoods U; € U
of z;, and set V=UNfYfU,N...NfU,) Then N(z,f|V)=1
for x €TV NA.

Since x; € 4, there isapoint p in V N B, at which B, separates X
locally. Choose a connected neighborhood D of p such that Dc V,
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D — B; is not connected, and f defines a closed mapping D — fD = D".
This is possible by Lemma 5.1. By Lemma 2.1, D — A4 is not connected.
If W isacomponentof D — A, it follows from Lemma 5.3 that f defines
a closed mapping g of W onto a component W’ of D’ — f(4A N D)
and that w(y,f, W)= 4+ 1 for y € W',

We show that ¢ is a homeomorphism. If this were not the case, there
would exist two distinet points z;, z, in W such that f(z,) = f(z,). Choose
disjoint neighborhoods @, c W of =z. Since intfB,= @ by [4, 2.1],
there is a point y € fQ, N fQ, — fB;. Then g~Y(y) contains at least two
points, and

Iu(y ’f’ VV) - Z (x ’f)
*€g7(y)
by Lemma 4.1. But W — B, is connected, since otherwise B; would
separate X locally at some point of W (Lemma 2.1). Hence i(x,f) is
constant for x € W — B;. This implies |u(y,f, W) | > 2, which contra-
dicts the previous result. Thus ¢ is a homeomorphism.

Since D N B; # O, there must exist two components, say W, and
Wy, of D — 4 which are mapped onto the same component W’ of
D" — f(AND). Since [ defines the homeomorphisms f;: W, U o, W, —
W' U o, W', we obtain a homeomorphism f31f; : W, U a, W, — W, U 9, W,,
which keeps the points of 9,W; fixed. From Lemma 5.2 it follows that
D — A has only the components W; and W,. But this means that f
defines a homeomorphism W, U d,W; — D’. This leads to a contradiction,
because W, U 9,W; would be both open and closed in D. The theorem is
proved.

Theorem 5.5. (Cf. Cernavskii [2, Theorems 1 and 2.]) Let X and Y
be n-manifolds, and let f: X — Y be discrete, open and closed. Then N(f) <
©, and N(z,f)= N(f) for all x € X — f~fB;, where the exceptional set
S7YB; has dimension at most m — 2. If X and Y are oriented, then
N(f) = |u(f)]-

Proof. The inequality dim f—lfo <n — 2 follows directly from the
preceding theorem and from [4, 2.1]. We next show that N(z,f) < o
for each x € X. Suppose that f~(y) is infinite for some y € Y. Choose
metrics d and d; on X and Y, respectively. Arrange the points of
f7l(y) into a sequence x;,,,... and choose points z; € X such that
Az, x) < 1/i,d(f(z),y) <1/t and f(z) #y. Then the points z;
form a closed set whose image is not closed. This contradicts the closedness
of f and proves that the point-inverses are finite.

We next show that N(x,f) is constant for » € U = X — f-IfB;.
Since U is connected, it suffices to prove that N( ,f) is continuous in U.
It is lower semicontinuous, since f is open. Let x, € U, let N(z,,f) = £k,
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and let ff(x;) = {a;,..., 2} Choose disjoint neighborhoods U; of x;
such that the restrictions f|U; are injective. Since f is closed, the set
V=Y —f(X— (U;U...UU,) 1is a neighborhood of f(z;). Then

Nx,f) <k for x €U, ﬂ f1V. Thus N( ,f) is also upper semicontinuous
in U.

To prove that N(f) = N(x,f) for x € U, it suffices to show that
for each « €f-'fB; there is a; € U such that N(z,f) < N(z,;,f). This
follows directly from the lower semicontinuity of N( ,f) and from
int ffB, =

Assume now that X and Y are oriented. Choose a point z € U.
Then Lemma 4.1 implies

u(f) = i@, f)-

*€f7f(z)
Since U is connected, i(x,f) is constant for x € U, and we obtain
lw(f)l = N(z,f) = N(f). The theorem is proved.
Remark. The mapping f in Theorem 5.4 is a pseudo-covering map in the
sense of Church and Hemmingsen [4].

6. An application. Let f be a mapping of an n-manifold X into an
n-manifold Y. We let E; denote the set of all points x € X which are
not isolated in f-lf(x). For n = 2, Stoilow [7, p. 113] has proved that if f
is light and open, then E;= O, ie., f is discrete. It is not known whether
this is true for »n > 2.

Theorem 6.1. Let X and Y be n-manifolds, and let f:X—>Y
be light and open. If dim B, <n — 2 and if dim fE, <mn, then E;—= @.

Proof. The restriction of f to X — H, is discrete and open. Hence,
by Theorem 5.4, dim (B, — Ey) <n — 2. Since dim B, <n — 2, this
implies dim B; < n — 2. Moreover, dim f(B; — E;) <n — 2 by [4, 2.1].
Hence dim fB; < n. The theorem follows now directly from [4, 2.2] or
[8, Corollary of 5.2].

Corollary. If f:X — Y s light and open, then either E.,= @ or
dim fB, >n — 1.

Proof. Suppose that dlme,r <n—2. By [5, VL 7, p. 91], dim B, <
n — 2. Hence E,= @ by the above theorem.

7. Remark. All results of this paper remain true if the word »manifold»
is replaced by »cohomology manifold over Z», in the sense of Borel [1].

University of Helsinki
Helsinki, Finland
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