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Introduction

It is well-known that each 2-dimensional Riemannian manifold is locally
conformally equivalent to the plane. Hence, in the 2-dimensional case, the
local properties of quasiconformal maps may be studied in the plane. In
higher dimensions the situation is different. There is no reason for dis-
regarding Riemannian manifolds other than the Euclidean space. In the
first part of this paper we develop and study concepts which are needed
for the theory of quasiconformal maps in Riemannian manifolds. As an
application, we generalize in the second part certain results of Teichmiiller,
Wittich and Belinskij (cf. Lehto—Virtanen [1], p. 233).

Notations

The tangent bundle of a differentiable manifold M is denoted by 7'M .
The derivative of a differentiable map f: M — N is a fibre map Df:
TM—TN . Wedenote by int M the complement of the boundary of M .

Let M be a CP-manifold. An open set U € M is called a C?-co-
ordinate neighbourhood of M, ¢ <p, if there is a C%diffeomorphism
of U onto an open set in R".

The support of a function ¢: M — R, ie. the closure of {x € M |
¢(x) # 0}, is denoted by supp¢.

R: the set of real numbers.

R*: the set of positive real numbers.

R’ : the set {x = (¥.,...,%.) ER" |2, > 0}.

B'@,r)={y €R" | |y—a| <1}.

8" Na,r) ={y €R" | |ly—a| =r}.

0, : the measure of B"(0,1).

o, : the measure of S*7'(0,1).

If there is no danger of confusion, we may omit the index = in B" or
S™. Similarly, z may be omitted if x =0 and r if r=1.

A Borel measure in a manifold M is a measure which is defined in the
family of Borel sets of M .
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Part 1

In the first part of the paper we develop the concepts which are necessary
for the theory of quasiconformal maps in manifolds. To some extent this
consists of generalizing the definitions given for the euclidean local case
and stating simple results which are not readily accessible in the literature.
For some notions, however, marked differences appear by departure from
the classical case. This occurs e.g. in sections 6 and 8 where ACLP-maps
and dilatations are considered. In the whole, we have not tried to confine
the discussion to the minimum and have in some places presented more
material than that which would be absolutely indispensable for our purposes.

1. Riemannian manifolds

In this section we introduce some terminology and assumptions about
manifolds.

1.1. Theorem. Let M be a manifold satisfying the following conditions:

a) M s infinitely differentiable,

b) M is paracompact,

c) M is connected.

Then M has the following properties:

d) M admits partitions of unity of class C*,

e) M has a countable base for open sets,

f) M admits a Riemannian metric,

g) M is metrizable.

For the terminology we refer to the sources given below.

Proof. The property d) is proved in Lang [1], p. 30. A proof for e) may
be given following the argument in Bourbaki [2], pp. 111—112, and using
¢) in addition to b). A Riemannian metric is constructed in a well-known
manner by means of partitions of unity (Lang [1], p. 98). Finally, metrizabi-
lity follows e.g. by Urysohn’s theorem (Kelley [1], p. 125).

1.2. Convention. In the sequel all manifolds are assumed to satisfy the
conditions a)—g) of Theorem 1.1. By a Riemannian manifold we mean one
which has a (fixed) Riemannian metric. A submanifold of a Riemannian
manifold M is called a Riemannian submanifold if its Riemannian metrie
is induced by the Riemannian metric of M .

Manifolds with boundary are also admitted. However, if products of
manifolds are considered, it is tacitly assumed that at most one of the
factors has a non-empty boundary.
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2. Measurability

Before developing a theory of measure for Riemannian manifolds we
study first questions of measurability. Since one of our basic requirements
is that continuous maps preserve measurability, it is natural to consider
Borel sets. The family of Borel sets in a topological space is defined in the
ordinary way as the smallest o¢-algebra containing all open sets.

2.1. Definition. Let M and N be manifolds. A map f: M — N is
measurable if the preimage f~Y(U) of each open set U C N is a Borel set.
In particular, every continuous map is measurable. A measurable real-
valued map f: M — R is also called a Baire function.

2.2. Lemma. Let M and N be manifolds and f: M — N a measurable
map. Then the preimage f~(E) of each Borel set E C N s a Borel set.
If g: N— L is a measurable map, then gof: M — L is also measurable.

Proof: The family of subsets E of N, such that f~(F) is a Borel set,
is a c-algebra. Since it containg every open set U C N, it also contains
all Borel sets of V.

The second assertion is an immediate consequence of the first one.

2.3. Lemma. Let M, N and N’ be manifolds, f: M —~N and
f: M —N'" maps. Then the product map g: M — N XN’ is measurable
if and only if f and f' are measurable.

Proof: The canonical projections p: NXN' —N and p': NXN' — N’
are continuous, hence measurable. Thus the measurability of ¢ implies that
f=peog and f'=p og are measurable by Lemma 2.2. On the other
hand, if f and f' are measurable, then ¢g~}(UxU’) = f4(U) N f'~4(U")
is a Borel set for all open sets U c N and U’ € .N'. Since the products
Ux U’ form a base for open sets in N X', ¢ is measurable.

2.4. Lemma. Let M be a manifold and E «a finite dimensional real vector
space. If f: M —~E and g: M — E are measurable maps, then f -4 g :
M — E is measurable, and if : M — E is measurable for each Bare function
2oin M.

Proof: The addition B xE — E is continuous. Hence the measurability
of f- g follows from Lemmas 2.3 and 2.2. The proof is similar for Af.

For the next lemma we recall that the set of linear maps R"— R"
may be canonically represented by matrices of type (m,n) with real
entries. Hence to each map M — L(R", R™) corresponds a matrix function

(ij), dj: M—R, i=1,...,m, j=1,...,n.
2.5. Lemma. Let M be a manifold. Let f: M — L(R", R™) be a map
and (Aj), i=1,...,m, j=1,...,n, the corresponding matrix

Sunction. Then the following conditions are equivalent:
a) [ is measurable,
b) the functions 2; are measurable,
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c) the map g: MXR"—R™ defined by

g(x ,v) = f(x) (v), r€M, vER",

is measurable.
Proof: The evaluation map e: L(R", R")XR"— R™, defined by

e(uw ,v) = u(), u € L(R", R™), v €R",

is continuous. Hence a) implies ¢) by Lemmas 2.3 and 2.2.

Let ¢, €R", j=1,...,n, denote the j-th canonical basis vector
(0,...,1,...,0). If c) holds, then the maps fj: M — R™, defined
by fi(x) = g(x,e¢), are measurable. On the other hand f; = 2;; X ... X 4,; .
Thus ¢) implies b).

Finally, b) implies a), since f may be regarded as the cartesian product
of the maps 4;.

2.6. Definition. L.et M be a manifold. A set F C M is a null set,
if @(# N U) has Lebesgue measure zero for each coordinate neighbourhood
U c M and each coordinate map ¢: U -—R" (of class C%).

A condition is said to hold for almost every « € M, or almost every-
where in M , if it holds everywhere except in a null set.

2.7. Remark. Since sets of Lebesgue measure zero in R" are preserved
by ('-diffeomorphisms, the coordinate maps ¢ may be of class C.
In addition, only coordinate neighbourhoods U belonging to a fixed cover
(U:) of M need be taken into consideration. We also remark that since
(U;) may be chosen to be countable (Theorem 1.1. e)), the definition will
agree with the measure defined later in section 3.

2.8. Convention. As derivatives of functions differentiable almost
everywhere we shall meet functions which are not defined in a Borel null
set. If such a function is measurable in its set of definition its extension
by a constant value will also be measurable. We agree to carry out always
such an extension by the value 0. Hence we may regard all functions as
defined everywhere.

2.9. Lemma. Let M and N be Riemannian manifolds, f: M — N
a continuous map, and w: TM —TN a measurable fibre map over f (i.e.
u maps each fibre 7.M, x € M, linearly into the fibre 7, N ). Then
|lul| and detw are Baire functions in M .

Proof: In case M = U and N = V are open setsin R" and R™ we
may represent % by a measurable map g: U — L(R", R") (Lemmas 2.3
and 2.5). The norm and the determinant are continuous functions in
L(R", R™) which depend continuously on parameter points x € U and
y = f(x) € V. Hence the assertion follows by Lemma 2.2. Since the question
is local, this also proves the general case.
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c) the map ¢g: MXR"—R™ defined by

gx,v) = fx) (v), x€M, vER",

1s measurable.
Proof: The evaluation map e: L(R", R")XR"— R™, defined by

e(u,v) = u), u € L(R*, R™), v€E€R",

is continuous. Hence a) implies ¢) by Lemmas 2.3 and 2.2.
Let 6j €ER", j=1,...,n, denote the j-th canonical basis vector
0,..., ,0). If c) holds, then the maps fj: M — R™, defined
by fix) = g x e,) are measurable. On the other hand f; = 2;; X ... X 4, .

Thus c¢) implies b).

Finally, b) implies a), since f may be regarded as the cartesmn product
of the maps A;.

2.6. Definition. Let M be a manifold. A set F cC M is a null set,
if @(E N U) has Lebesgue measure zero for each coordinate neighbourhood
U c M and each coordinate map ¢: U —R" (of class C%).

A condition is said to hold for almost every « € M, or almost every-
where in M , if it holds everywhere except in a null set.

2.7. Remark. Since sets of Lebesgue measure zero in R™ are preserved
by C'-diffeomorphisms, the coordinate maps ¢ may be of class C!.
In addition, only coordinate neighbourhoods U belonging to a fixed cover
(U;) of M need be taken into consideration. We also remark that since
(U;) may be chosen to be countable (Theorem 1.1. e)), the definition will
agree with the measure defined later in section 3.

2.8. Convention. As derivatives of functions differentiable almost
everywhere we shall meet functions which are not defined in a Borel null
set. If such a function is measurable in its set of definition its extension
by a constant value will also be measurable. We agree to carry out always
such an extension by the value 0. Hence we may regard all functions as
defined everywhere.

2.9. Lemma. Let M and N be Riemannian manifolds, f: M — N
a continuous map, and u: TM —TN a measurable fibre map over f (i.e
« maps each fibre T.M, x € M, linearly into the fibre T, N ). Then
llu|| and detw are Baire functions in M .

Proof: In case M = U and N = V are open setsin R" and R™ we
may represent % by a measurable map g: U — L(R", R") (Lemmas 2.3
and 2.5). The norm and the determinant are continuous functions in
L(R", R™) which depend continuously on parameter points z € U and
y = f(x) € V. Hence the assertion follows by Lemma 2.2. Since the question
is local, this also proves the general case.
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2.10. Theorem. Let M and N be manifolds and f: M —~ N a con-
tinuous map which is differentiable almost everywhere. Then the derivative map
Df: TM —TN is measurable. If M and N are Riemannian manifolds,
then ||Df|| and det Df are Baire functions.

Proof: Since the question is local, we may assume that M = U is an
open subset of R™ and f is a map of U into R™. It is well-known that
the partial derivatives of f are measurable (cf. Saks [1], p. 170). Hence
Df: UxR"—R"XR™ is measurable by Lemmas 2.5 and 2.3. The last
assertion follows from Lemma 2.9.

3. Integration

In this section we define a class of measures for Riemannian manifolds.
Thereafter functions in manifolds may be integrated in accordance with
standard methods (e.g. Munroe [1], Saks [1]). In particular, we follow
Saks in defining integrals with infinite value.

3.1. Definition. Let 3 be a manifold (cf. 1.2). A decomposition of M
is a pair ((Ui) , (Ei)) , where (U;), 1 €1, is a cover of M by coordinate
neighbourhoods of class C' and (&;), ¢« €1, is a family of Borel subsets
of M . In addition, the following conditions are imposed:

a) the index set I is countable,

b) for each 1 €1, E,C U;,

¢) UE;=M and ENE; =0, for i #j.

A decomposition ((Vj) , (F,-)) , Jj €J, is a refinement of a decomposition
((Ui) , (E,-)) , €1, if for each j €J there is an ¢ € I such that V;c U;
and F;C K.

3.2. Lemma. Every manifold M has a decomposition and any two de-
compositions have a common refinement.

Proof: Since M has a countable base for open sets, there is a cover
(Un), n €N, of M by coordinate neighbourhoods, indexed by the set of
natural numbers. If we define

n—1

En:Un— U Um,

m=1

then K, is a Borel set, and ((Un) , (E,,)) , n €N, adecomposition of M .
For the second assertion we remark that if ((U,-) , (Ei)) , t€1, and
((V,-) , (Fj)) , j€J, are decompositions of M, then ((U,— nr,,
(&Z: N Fj)) , (1,7) €IXJ, is also a decomposition.
3.3. Definition. Let f: M — N be a C'-diffeomorphism of Riemannian
manifolds M and N . The continuous function Jr= J(f) defined by
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Jy(x) = |det Df(z)]| , x €M,

is called the jacobian of f. It has the following properties:
a) if f is the identity map, then Jy=1,
b)if f: M—N and ¢g: N—L are Cl-diffeomorphisms of Rie-
mannian manifolds M, N and L, then

Jgof - (Jg Of) Jf,

ce) if f: M—M" and g: N— N’ are C*-diffeomorphisms of Rie-
mannian manifolds M, M', N and N’', then

fog(x>y)=Jf(x)'Jg(y), xeﬂl: ?/GN,

for the map fxg: MXN—M xN'.
3.4. Lemma. Let u and t be Borel measures in a manifold M . Let ¢
be a non-negative Baire function in M , such that

() =/svdf

E

for each Borel set E < M . Then a Baire function o in M is u-integrable
if and only if op is t-integrable and

/Qdy =/Q<pdr.

M M

Proof: If ¢ is a simple function, i.e., a finite linear combination of
characteristic functions of Borel sets, then the proof is immediate. To prove
the general case we may assume that p is non-negative. Then it is the
limit of an increasing sequence of simple functions, and the assertion results
from the monotone convergence theorem.

8.5. Theorem. With each Riemannian manifold M we can associate
a unique Borel measure 7, so that the following conditions are satisfied:

a) if N 145 an open Riemannian submanifold of a Riemannian manifold

M, then vy (E)= tN(E) for all Borel sets K C N,

b) if f: M—N isa C-diffeomorphism of Riemannian manifolds M

and N, then

TN(f(E)) = /deTM
E
for all Borel sets K C M,
c) if M=R" or Ry, n=1,2,..., 7y isthe Lebesgue measure.
Proof: Let U and V be open setsin R, and f: U —V a C'-diffeo-
morphism. Then it is well known that for all Borel sets Ec U
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(3.1) (f(B)) = / Jedr,
E

where 7 is the Lebesgue measure.

Let M be a Riemannian manifold, such that there is a C'-diffeo-
morphism f: U - M, where U is an open set in R". We define a
measure 7 in M by

T (B) = =(f1E)),

for all Borel sets £ c M . If there are measures 7, satisfying the con-
ditions a)—c), then

(3.2) Tu(E) =/Jfof—1 dz;
o

must hold for all Borel sets £ ¢ M . On the other hand, the right hand side
of (3.2) may be used for defining 7,,, since it does not depend on the choice
of f and U by (3.1) and Lemma 3.4. This definition is clearly compatible
with a), and also with b) by Lemma 3.4 again.

Let M Dbe any Riemannian manifold and ((U,») s (Ei)) , 1€, a
decomposition of M . If 7, exists, it must satisfy

(3.3) Tu(l) = ; Ty, (B N E)

for all Borel sets £ < M , by a). In order to use (3.3) as a definition for 7, ,
we shall show that its right hand side does not depend on the choice of the
decomposition ((Ui) , (Ei)) . By Lemma 3.2 it is sufficient to consider a
refinement ((V;), (F))), j€J, of ((Uy),(E)), i€1.

Let «: J — 1 be a map such that

Vic Uy, and F;C Ey;
for each j€J. Let J;=«"%i), for i €. Then we obtain
E;, =UUF;, 1 €1,
Ji
and

; Ty (BN F) = ; JZ (BN F) = ; (B N E))
by a). Hence (3.3) may be used for defining 7,,. The demonstration of the
properties a) and b) results immediately from the following remarks:
1) If ((Ui) , (E'i)) , 1 €1, is a decomposition of a manifold M and N
is an open submanifold of M, then ((Ui nN),E:N N)) , t€I, is
a decomposition of N .
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2) If f: M —N is a C'-diffeomorphism of manifolds M and N,
and ((Ui) , (Ei)) , t €I, a decomposition of M, then ((f(U,v)) , (f(E.-))) ,
t €I, is a decomposition of N .

This completes the proof.

3.6. Definition. Let M be a Riemannian manifold. The measure 7,
defined in Theorem 3.5 is called the Lebesque measure of M .

3.7. Theorem. Let M and N be Riemannian manifolds. Then the
Lebesgue measure of the Riemannian product manifold M ><N is the product

of the Lebesgue measures of M and N . s of . |
Proof: By the definition of product measure, we must prove that
(3.4) _ Tuxn(BXF) = ty(B) tn(F)

for all Borel sets Fc M and FcCN.

If M and N are C!-diffeomorphic to open subsets of R™ and R",
then M XN is C'-diffeomorphic to an open subset of R™*+". In this case
(3.4) follows from the definition (3.2) by Fubini’s theorem and ¢) in Defini-
tion 3.2. In the general case it suffices to remark that if ( (E,-)) , 1€T,
and ( j)) , j€J, are decompositions of M and N, then
((U:x V) (E XFy)), (@ ,j) €IxJ, is a decomposition of M XN .

3.8. Theorem. Let f: M — N be a C'-diffeomorphism of Riemannian
manifolds M and N . Then a Baire function o in N is ty-integrable if
and only if (oof)J; is tyrintegrable and

/@dTN=/(Q°f)deTM-
73

N

Proof: This follows immediately from Lemma, 3.45and b):of Theorem 3.5.

4. Curves and are length

4.1. Definition. A curve in a manifold M is a continuous map » from
a closed interval I =1[a,d], a <b, to M. A curve y is called dif-
ferentiable if y is continuously differentiable.

4.2. Remark. If y: I — M is a differentiable curve, we identify the
derivative Dy(¢), ¢t€1, with a tangent vector of M at y(f). This
determines a curve Dy in the tangent bundle 7 .

4.3. Definition. Let J/ be a Riemannian manifold and y a piecewise
differentiable curve in M . The length of y is defined by

= / 1Dy (@)l de
I

where ||| refers to the Riemannian metric .
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4.4. Definition. Let M be a Riemannian manifold and «x,y two
points of M . Their distance d(x,y) is defined by

d(x ,y) = infl(y),

where I' is the family of piecewise differentiable curves y: [a,b] — M
joining x and y, ie. y(a) =z, p(b)=y. Since M is connected, I
is not empty.

4.5. Lemma. The distance d(x,y) is a metric in M compatible with
its topology.

The proof is elementary. We remark that this proves the metrizability
of M independently of Urysohn’s theorem.

4.6. Lemma. Let y: [a,b]— M be a curve in a Riemannian manifold
M. If v is differentiable at t, € [a,b], then the interval function

[t,t]—d(»(t), 7)) a<t<t<b,

s differentiable at t, and its derivative is |Dy(4,)|| . In particular, if y 1is
differentiable,

(4.1) l(y) = sup Z d(?’(ti) ) V(ti+1)) B a=t <t <....<t,=0b.

Proof: If M is locally cuclidean, the proof is well-known. In the general
case we may replace the Riemannian metric ¢ of M by a euclidean metric
coinciding with ¢ at y(f,). If » is differentiable, we denote by s(¢) the
right hand side of (4.1) for the restriction of y to [a¢,#], when a <t <b.
Then s is continuously differentiable and its derivative is ||[Dy(t)||. Hence
s(b) = 1(y) -

4.7. Definition. Let y: [a,b] — M be a curve in a Riemannian mani-
fold M . The length of » is defined by

Uy) = sup D" d(y(t:) , y(tis1) » o=ty <t <....<t,=b.

If I(y) is finite, y is rectifiable.

Let y be rectifiable and let s(t) denote the length of the restriction of
y to [a,t], a <t <b. The function s is called the arc length of v .
There is a unique curve y;: [0,l(y)] — M with the property y = p;0s.
The curve y; is called the parametrization of y by arc length.

4.8. Lemma. Let y be a rectifiable curve in a Riemannian manifold M .
Then vy is differentiable almost everywhere.

Proof: 1f f is a lipschitzian function in M , then foy is of bounded
variation, and hence differentiable almost everywhere. Since local co-
ordinates in M are lipschitzian, at least locally, the assertion follows.

4.9. Theorem. Let y be a rectifiable curve in a Riemannian manifold M
and let s denote its arc length. Then the equality
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§'(t) = [IDy@)

holds almost everywhere. In particular, for the parametrization vy, of 7y
by arc length, we have

Dy =1 ace.

Proof: This follows from Lemmas 4.6 and 4.8 (Riesz—Sz.-Nagy [1],
pp- 23, 25).

4.10. Definition. Let y be a rectifiable curve and v a Baire function
in a Riemannian manifold M . Let y; be the parametrization of y by
arc length. The integral of o along y is defined by

i(y)

f9d8=/9°71d8,

7 0

provided the latter integral exists. Otherwise the integral of o along y is
undefined.

4.11. Theorem. Let M and N be Riemannian manifolds and f:
M — N a continuously differentiable map. Let v be a rectifiable curve in M .
Then o' = fory s rectifiable and for each non-negative Baire function o
m N

[eas < [eonimpas.
7 y
Proof: Since f is locally lipschitzian, there is a constant C such that

(4.2) Iy') < Cly)

and the same relation holds for subcurves of y and their images under f.
Let s(s’) be the arc length and 7, (y;) the parametrization by arc length
of y(y). Then there is a unique monotone function ¢: [0,{(y)] -
[0,1(y")] with the property s" = @ os. By (4.2) ¢ isabsolutely continuous.
Hence we obtain

Iz') ()

/eds=/9°y1d8’ =/(90V{°¢)¢’d8-
’ 0 0

14

But 7,09 = foy, and ¢ == [IDyjll ¢ = [Df  Dy,|| <|IDf| a.e. This proves
the theorem.



KALEVI SuOMINEN, Quasiconformal maps in manifolds 15

5. Module

In this section we define the module of a family of curves in a Riemannian
manifold and study its properties.

5.1. Definition. Let M be a Riemannian manifold and " a family of
curves in M . We denote by F(I') the class of all non-negative Baire
functions p in M which satisfy

fgdszl

14

for all rectifiable curves y € I.
For each positive real number p we define the p-module of I' as
follows

"

M (') = inf/ of dt,
F(T)M

where 7 denotes the Lebesgue measure of M . If F(I') is empty, we
define M,(I") = oo.
5.2. Lemma. The module M, is monotone and countably subadditive, i.e.

(5.1) M, (F) < M),
if I'cl”, and

(5.2) M,(I) < > M,(I),
it T=Urli, i=1,2,... L

Proof. If I'c I, then clearly F(I')D F(I"). This proves the in-
equality (5.1.).

To prove (5.2) we choose functions o, € F(I;), 1 =1,2,... Then,
for each n >1, o,=sup{o;,..., 0.0 €EFI,U...UT,) and
/of,’dt < Z /e{’d‘t.
M =t M

Choose &> 0. If Y M,(I7) is finite, we may assume that
Z/Qfdr < Z M,(I) + ¢.
12 i 1
Then ¢ =limog; belongs to F(I') and

/y' dv < Y M) + ¢
M i

by the monotone convergence theorem. This completes the proof.
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5.3. Theorem. Let f: N —N' be a C'-diffeomorphism of manifolds
N and N’ witlh Riemannian metrics g and g’ satisfying

(5.3) mig < f*¢' < M?%, O<m <M< .
Let I be a family of curves in N and let I denote its image under f in
N’'. Then

m" m"

apr MoD) = Mp(I7) = 0 M,

(5.4) (),

where n s the dimension of N . In addition, if f s conformal,

(5.5) M P M) < M,(I") < m" P M), for p=>n
and
(5.6) m" P M (') < M,(I") < M" P M,(TI'), for p<m.

Proof: Let o€ F(I"). Let y €I' be a rectifiable curve. Then, by
Theorem 4.11,

L= [eniofids.
Y
Hence (¢ f) |IDfl € F(I).
Let 7 and 1t denote the Lebesgue measures of N and N',

respectively. Then
/ Qv = / (e oSy,

N’ N

by Theorem 3.5 b) and Lemma 3.4. The assumption (5.3) implies J, > m"
and ||[Df]| <M . Hence

us / (o fP DI dv < / o

This proves the first inequality of (5.4). The second inequality follows by
interchanging N and N'.
If f is conformal, we have J,= |Df|". Then

0 [ orippieds = [erar
N N
Hence the left hand inequalities in (5.5) and (5.6) result from the estimate
m < ||Df| <M. The remaining inequalities are again proved by inter-
changing N and N'. '
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5.4. Notation. Let S = S"~! be the unit sphere in the euclidean space
R". We denote by S, = 87! the hemisphere {x €S |x, >0} and by
[, the family of curves joining the points a = (0,...,0,1) and
b=(0,...,0,—1) in §;.

We denote by 8, and (n—1)-dimensional spherical cap contained in a
hemisphere, or, as a limiting case, an (n—1)-dimensional disc. We denote
by I'+ the family of curves in ', which join a pair of opposite boundary
points.

5.5. Lemma. There is a conformal diffeomorphism f: S, — S’ with
the property f(I',) = I", .

Proof: We may assume without loss of generality that the boundary
spheres of S, and S’ coincide, since this may be achieved by a con-
formal transformation. Then f is obtained by projecting from the point
which divides the segment joining the centers of S, and S, in the ratio
of the respective radii.

5.6. Theorem. The n-modules of the families I', and I, defined in
5.4 satisfy the inequalities

Ons [ 'n_1> et ,._1]“
(5.7) M) > mjf = F<42_ 7 (n—1)
and
M
.9 g = 2,

where d s the diameter of S’ .
Proof: For each point y € S~ we define the curve y,: [0,7] — S, by

V(@) =cosg-a+sing- -y, 0<¢p<m.

Clearly, y, is parametrized by arc length.
Let o € F(I')). Since y, € I'., we have

/9d¢21

y
for each point y € 87%~?. By Hélder’s inequality we obtain

(5.9) /Q" (sin )" do </ (sin (p)_ = d(p)n_l > 1.

Ty

=1

o Q

2
Since sin ¢ > e for 0 < ¢ < —, the last integral can be estimated:

2
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H _ n—2 7 n—1 _ n—2
2/(sin ) "ldp < 2 (—2‘) /q) "ldp = (n—1)7.
0

Hence, for y € 8%,

1
n 3 n—2 -
/Q sm @ d(p Z [(n——l) ﬂ]n_l

Yy
and

/ "d ~ wn—l
S TIC YP

S

This proves the inequality (5.7).
To prove (5.8) we note that the conformal diffeomorphism f given in

Lemma 5.5. satisfies the conditions of Theorem 5.3 with M = d/2, m = d/4 .
5.7. Remark. The exact value of the last integral in (5.9) is given by

'\/;.[’(/ﬁi_“_) [p(l N ;_>

2(n—1) \ 2 2(n—1)

—1

This is asymptotically equal to 2(n—1) for large values of n.

5.8. Corollary. Let F; and F, be disjoint non-empty subsets of an
(n—1)-sphere S of radius R . Let I' be the family of curves which join F,
and Fy, in S. Then

k
(5.10) =g
where
1 — =l
7= [(n—1) \/ﬂ]"_l T(\n‘z )

Proof: Let a € F;, and b€F,. Let S"C S be the cap of height < R
with @ and b as opposite boundary points. Then I' contains the family
I of curves joining @ and b in S’ . Hence it is sufficient to prove (5.10)
for I . But this follows immediately from (5.8) and the inequality d < 2 R .

5.9. Theorem. Let a and b be two points of the sphere S*~'. Let C,
and O, be disjoint connected subsets of R", such that C; contains a and
the origin and C, is unbounded and contains b. Let I' be the family of
curves joining C; and C, in R". Then

(5.11) M, (I') = =,

where x = x, depends only on n .
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Proof: Let us first suppose that |a —b| > 1. Let S, denote the
sphere {x ||x — 1b| =r} andlet I be the family of curves which join
¢, and O, in S,. Then I,c I' andif ¢ € F(I'), then o |8, € F(I}),

for 1 <7 <14/ 3. Hence, by Corollary 5.8,
2 2 y y

Jea=;
¢t do =

ST

where o denotes the Lebesgue measure of S,. Integrating with respect to
r we obtain
143
2

/ d>/kd kl
‘g T > 7r=§og3.
R" 3

If |a —b| <1, the same inequality results by considering the spheres
fwlle —}(@tb) =7}, t<r<iVs.

This proof is taken from Véiisdld [1].

5.10. Theorem. Let I' be a family of curves in R" with the following
property: For each y: I —R" in I there are points a ,b €1 such that
@) =m and |yb) =M, 0 <m <M. Then

M l—n
(5.12) M. (I < wa <log ——) .
m
Equality holds when I' contains the curves y., x € S"™', defined by
yalr) = 1, m<r<M.

Proof: We define the function o by

(‘[x} - log %)—1 for m < |z| < M
o(x) == 1 m/ -

0 otherwise .

Mt
o"dt = w, \log W)

R"

Then p € F(I') and

which proves (5.12).
Let us now assume that I’ contains the curves y.. Let o € F([).
Then
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M
1 S/st :/Q(rx)dr,
Yx m

for each 2 € S"!. Thus

M M

1 n—1
1 g/g"r"‘ldr< 7(17)

m m

by Holder’s inequality. Hence

M 1—n
o"dr > w, \log P s

HTL
which completes the proof.

6. ACLP-functions

6.1. Definition. Let M be a Riemannian manifold. A differential u
in M is a Baire function : 7TM — R which is linear in each fibre 7. M ,
x €M . A differential » in M is an LP-differential, with p > 1, if the
Baire function |[ju[P (cf. Lemma 2.9) is integrable over any compact set
Ac M.

6.2. Remark. The concept of an LP-differential is independent of the
Riemannian metric chosen for the definition. Hence C!-diffeomorphisms
of Riemannian manifolds transform LP-differentials into LP-differentials.

6.3. Definition. Let M and N be Riemannian manifolds. A continuous
function f: M — R is ACLP?, for some p > 1, if there is an LP-differen-
tial w in M with the following property:

(6.1.) foy, is absolutely continuous and D(foy,) = uo Dy, a.e.

for the parametrization by arc length y; of all rectifiable curves y : I — M
except for a family I" with M,(I')=0.

In this case, w is called the differential of f and denoted by Df.
It is uniquely defined up to a set of measure zero.

A continuous map f: M — N is ACLP, if gof is ACLP for each
Cl-function ¢ in N .

6.4. Remark. Let M, N and L be Riemannian manifolds. If f:
M —N isan ACLP-map and g: N — L a C'-map, then gof is ACLP .
Similarly, it may be shown that if f: M — N is ACLP and ¢g: L - M
a (l-diffeomorphism, then fog is ACLP? (cf. Remark 6.2, Theorem 5.3).
This also holds if g: M XL -— M is a projection.



KALEVI SUOMINEN, Quasiconformal maps in manifolds 21

The classical definition of ACLP-functions is applicable only for open
subsets of R™, since it makes essential use of coordinates. In order to prove
that our definition implies the classical definition, it suffices to apply (6.1)
to segments parallel to the coordinate axes. For the inverse implication the
partial derivatives of the function in question are combined to form an
LP-differential and the proof is completed by using Lemma 4.1 in Viisili
[11.

6.5. Lemma. Let M be a Riemannian manifold and f: M — R" a
map whose components f;: M—->R, i=1,...,n, are ACLP-functions.
If Uc R" is an open set containing f(M), and g: U — R a C-function,
then gof is an ACLP-function in M .

Proof: Let Dyg, 1 =1,...,n, denote the partial derivatives of ¢ .
Then

is an [LP-differential in M .

Let y be a rectifiable curve in M such that the condition (6.1) is
satisfied for each function f;. Then it may be immediately verified that
(6.1.) holds for y, gof and wu.

6.6. Remark. Lemma 6.5 shows that an ACLP-function f: M — R
is also an ACLP-map.

6.7. Theorem. Let M and N be Riemannian manifolds and f: M — N
a map. If each point x € M has a neighbourhood U such that f| U :
U—-V is ACLP? for some neighbourhood V of f(x) containing f(U),
then f is ACLP.

Proof: Let g: N—R be a C'-function. We are to show that gof
is ACLP.

Let (U), ¢t=1,2,..., be a cover of M by open sets U; such
that f|U;: U;—V; is ACLP for some open set V;C N. Then
gof|U; is ACLP. Let wu; denote its differential. Since u; = u; a.e.
in U;NU;, thereisan LFf-differential » in M such that u, = u a.e.
in U;.

Let Iy, i=1,2,..., denote the family of rectifiable curves 3 in
U; such that (6.1) does not hold for y, gof and w. Then M, (1) =0
for 1=1,2,..., and M,(I')=0 for I'= U I';. This completes the

proof, since every rectifiable curve in M for which (6.1) is not satisfied,
has a subcurve in I'.

6.8. Lemma. Let M and N be Riemannian manifolds and f: M — N
an ACLP-map. Then each point y € N has a coordinate neighbourhood V
such that, if U = f~V), the map f|U: U—V is ACLP.

Proof: Let W c N be a coordinate neighbourhood of y with co-
ordinate functions y;: W—-R, ¢=1,...,n. Let ¢ be a C-function
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nNo
[\

in NV, with supp ¢ € W, having value 1 in a neighbourhood ¥V of y.
Then the functions ¢y;, ¢ =1,...,n, may be extended to C'-functions
z;: N — R such that z;of is ACLP.

Let f-3(V) be denoted by U . Then each function y;of | U = 2,0 f | U
is ACLP? . Every C'-function g: V — R may be represented in the form
g="n"y,,...,y,), where A is a Cl-function. Hence gof| U is ACL?
by Lemma 6.5.

6.9. Theorem. Let M, N and L be Riemannian manifolds. Let f:
MxN —L bean ACLP-map. Then the map f,: M — L, y €N, defined
by fix)=fx,y), €M, s ACLP for almost every y € N .

Proof: We assume first that f is a function. Let I denote the family
of rectifiable curves in M X N for which (6.1) does not hold. Let I',c I",
y €N, be the subfamily of curves contained in M X {y}. It is sufficient
to show that M,(I)) =0 in Mx{y} for almost every y € N .

We denote

M(y) = inf /@Pda, y €N .

QEF(F)MX{)’}

Then M,(Iy) < M(y). Since M,(I') = 0, the measure of the set {y € N
M(y) > d} must zero for each d > 0. Hence M(y) = 0 almost every-
where and the proof is complete in case f is a function.

If L is diffeomorphic to an open set in R"™, the proof follows from the
first part by Lemma 6.5.

In the general case we cover L by coordinate neighbourhoods W;,
j €J . such that f|fYW;): fYW;)—W; is ACLP (Lemma 6.8). Let
(U;x V), 1 €1, be a countable refinement of ( f“l(Wj)) , J €J . Then,
for each i €1, f,|U; is ACL? for almost every y € V; by what we
have proved above. This completes the proof by Theorem 6.7.

6.10. Theorem. Let M be a Riemannian manifold and f: M — R
a continuous function which is ACLP in an open set U C M . Then there
is a sequence fi, 1=1,2,..., of C*-functions in M such that f;—f
uniformly in compact sets and, in addition, Df;— Df in LP in each compact
st AcU.

Proof: If M = R", the proof is carried out in a well-known way by
means of convolutions (cf. Lehto— Virtanen [1], p. 152). In the general case
partitions of unity are used.

6.11. Remark. A similar theorem holds for ACLP-maps, but we neither
state nor prove it, since we can avoid it (cf. Theorem 6.13).

6.12. Lemma. Let B={x € R" |a < |[x| < b}, for some 0 <a <b.
Let S, ={x€R"||x|=1r} for >0 and S;=2S8. Then, if f: B—S
is a C*map, the integral
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/det D(f|8,) do

S,

r

is independent of r, a <r <b.

Proof: Let e, ,...,e, be the standard orthonormal basis in R". Let
I: (R*)"— R be an alternating multilinear function with A(e; ,...,e,) =1.
We define a C'-vector field v(x) = > v'(x)e; in B by

vix) = ( —1'1A(f el,...,f’y(x)e,-,...,f'(x)e,,).

Then
__l(v(x),el,...,éi,...,e,,):A(v"(x)ei,el,...,e‘,-,...,e,,)
N
_J(f el,...,f’(x)e,-,...,f/(x)e,,)
and
(6.2) A(v@) vy, -y va) = A(f@) f@)vr - @) v)
results by linearity for any vectors »;,...,v, ; €R".
Let 2 €8,. Choosing for v;,...,v,_; in (6.2) an orthonormal set,

orthogonal to @, it can be seen that det D(f | S,)(x) is equal to the normal
component of wv(x) to S,. Hence the assertion follows if we show that
dive= Y Do =0 in B.

We may write

A(f 61 5o e e ,f/(l')ei_l 7f(T) afl(‘r)ei+l >t >f,(x)en) :

Hence, by direct calculation,

Dt = A(f'ey, ... f'en) ZJ(jel,...,f”(ej,e,-),...,f,...,f’e")

jFi

and
DDt =nd(fley, ..., flea) =0
since f’(x) maps R" into a space of dimension n—1.
6.13. Theorem. Let f: S*—S" be an ACL™map. If f is homotopic
to a diffeomorphism, then

/det Dfdo = + o, ;.
s"

Here Df may be defined by components, since S"c R"™.

Proof: Let A ={x €R""™'|1 <|x| <2}. By hypothesis there is a
continuous map h: 4 — 8" such that # | S" = f and themap ¢: S"—S",
defined by g¢(x) = h(2z), x €8", is a diffeomorphism.
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If % is a O%map, then the assertion follows from Lemma 6.12 and
Theorem 3.8. Otherwise, we first extend % to R"*' — {0} by

fl/lz]), if o] <1,
h(x) =
g(x/|z]), if x> 2.

Then A is ACL" in B={x €R"" |l < x| <1} since it is equal to
fop, where p: B— 8" is the radial projection (cf. Remark 6.4). In
addition, # is C!' in C = {x € R""' |2 < |z| < 3}. Using Theorem 6.10
we define a sequence of C*-maps h/: D—-R""' — {0}, D=AUBUC,
such that %; —7% uniformly in D and Dh,— Dh in L™metric in each
compact subset of B or C. The maps %;: D - 8" defined by &
= h;/|k;| have the same properties since |A;| — 1 uniformly in D and
D|hi| — 0 in L"-metric in each compact subset of B or C. Hence there
is a subsequence k,-j such that D(kij | §;) =D |8,) in L metric for
almost all r with § <r <1 or 2 <r < 3. This completes the proof
n the general case.

7. Quasiconformal maps

This section is devoted to the definition and study of some basic pro-
perties of quasiconformal maps of manifolds. Manifolds are assumed to be
of dimension > 2.

7.1. Definition. Let M and N be Riemannian manifolds of dimension
n . A homeomorphism f: M — N is called a quasiconformal map if there
is a constant K such that

(7.1) %Mn(F)SMn(F')SKMn(F)
for each family I' of curvesin M and itsimage I” = f(I'). In particular,
if (7.1) is satisfied, f is called K-quasiconformal.

A continuous map f: M — N is called quasiconformal into N if there
is an open Riemannian submanifold N’'c N such that f(int M) = N’
and f|int M : int M — N’ is quasiconformal.

7.2. Remark. If f: M — N is K-quasiconformal, then f-1: N — M,
is also K-quasiconformal. If, in addition, ¢g: N — L is K’'-quasiconformal
then gof: M —L is KK'-quasiconformal.

7.3. Theorem. Let N and N’ be Riemannian manifolds of dimension n
and f: N—N' a C-diffeomorphism. If the Riemannian metrics g and
g of N and N' satisfy
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mig < f*g' < M%

for some constants 0 <m < M < o, then f is (M|m)"-quasiconformal.
A conformal map s 1-quasiconformal.

Proof: This follows immediately from Theorem 5.3.

7.4. Theorem. Let M and N be Riemannian manifolds of dimension n .
Let f: M—N be a K-quasiconformal map. Then f 1is differentiable
almost everywhere and

(7.2) IDFI" < K J;

at every point of differentiability.

Proof: If M and N are open sets in R", the proof is given in Viisild
[1], Theorem 6.5. For the general case we may assume that M and N are
diffeomorphic to open subsets M’ and N’ of R", by means of (-
diffeomorphisms ¢g: M —-M' and ¢': N—N'. Then g ofog™ is
locally quasiconformal, hence differentiable a.e. This proves the first
assertion.

In order to prove (7.2.) we assume that f is differentiable at « € M .
Then ¢ and ¢ may be chosen so that they preserve the Riemannian
metrics at « and f(x) and, if M and N are sufficiently small, they are
(1+4¢)-quasiconformal with &> 0 arbitrarily small. This completes the
proof.

7.5. Theorem. Let M and N be Riemannian manifolds and f: M — N
a quasiconformal map. Then

(7.3) (f(B)) = / Jpdtyy

Lk
for each Borel set B C M . In particular, t,(E) = 0 tmplies TN(f(E)> =0.
A Baire function o in N 1is ty-integrable if and only if (oo f)J; is Ty
integrable, and

(7.4) /QdTN :/(QOf)deTM-
N

M

Proof: We first consider the case that M and .\ are open sets in R".
We apply a theorem of Lebesgue (Munroe [1], p. 285, Saks [1], p. 119) to
the set function u defined by w(X) = TN( f(E)) for Borel sets EC M.
It is easy to see that the derivative u' equals J; at each point where f
is differentiable. Hence (7.3) results if we know that 7y(#) = 0 implies
TN( f(E)) = 0. But this is proved in Viisild [1], Theorem 6.9.

If M and N are diffeomorphic to open subsets of R", we prove (7.3)
by means of Theorem 3.8, and remark for the general case that M and N
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may be covered by a countable family of coordinate neighbourhoods. By
Lemma 3.4 (7.4) follows from (7.3).

7.6. Theorem. Let M and N be Riemannian manifolds of dimension
n . Then every quasiconformal map f: M — N is ACL".

Proof: If M and N are open sets in R", this follows from Theorem
6.5 in Viisild [1] (cf. Remark 6.4). The general case is settled by means of
Theorem 6.7.

7.7. Definition. Let M and N be Riemannian manifolds of dimension
n and f: M — N a quasiconformal map. We define two non-negative
Baire functions 2 and ¢ in M by

(7.5) (M@)" = Jy(x),
(7.6) M) (14 d(x)) = |Df@)| x €M,

If f is K-quasiconformal, then (1 + 6)" < K by (7.2).
' 7.8. Lemma. If 1 <(1+6)"<K, then (1+06)"<1-+nKo.
Proof: This results immediately from the equation

Q4o —1=06(14 )" "+ ...+ 1+ +1).

7.9. Lemma. Let M and N be Riemannian manifolds of dimension n
and f: M- N a K-quasiconformal map. Then

(7.7) ( / 1+ 0) d) < vu((B)) Tl EY (rM<E> K / am)
E E

and

(1.8) (/B = ( / 21+ 5) drM/rM(E))n (va(B) — /'am)
E “ E

for each Borel set B c M .
Proof: By two applications of Hélder’s inequality we obtain

(V / A1+ 6)drM)n < / 1y ( / (1 4 o) drM‘)n—l
E E E ’

= TN(f(E))/(l + o) dTM‘ T_w(E)"_2 .
E

Hence (7.7) follows from Lemma 7.8 and (7.8) is an immediate consequence
of (7.7).

7.10. Lemma. Let U and V be domains in R" and f: U—-V a
quasiconformal map. Then there is a constant C such that for each x € U,
r>0,
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M < COm,
with
m o= min [f(y) —f®)],
(y—x =r
M = max [f(y) — f(x)],
y—x|=r

whenever Bx ,ryc U, B(fx),M)cV,

Proof: Let I" be the family of curves in V which join {z | |z —f(x)| < m}
and {z ||z — f(x)] > M}. Let I'=f-(I"). By Theorem 5.9 M,(I') = #.
and by Theorem 5.10

_Zl[ 1—n
M, (I") = wn (log ﬁ) .

m

Hence, if f is K-quasiconformal,

’ M\
%, < Ko, (log W)

1

K w,,\)l_"

This proves the lemma with (' = exp < -

n /

8. Dilatation

In this section we define the dilatation of a quasiconformal map. The
definition generalizes the concept of the complex dilatation in the two-
dimensional case (Lehto—Virtanen [1], p. 191). As a preliminary step we
study the dilatation of a linear map.

8.1. Definition. Let F be a euclidean space and E a vector space of
the same dimensionality. We denote by I(E,F) the set of invertible
linear maps w: E—F .

We establish an equivalence relation in the set of quadratic forms in £
by defining @ and @’ related if @ = AQ" for some 4> 0. Then the set
of equivalence classes of positive definite quadratic forms in E is denoted
by QE). If u €I, F), thenthe quadratic form ¢ defined by Q(x)
= |lw(x)|®, x € E, is positive definite. Its equivalence class in Q(&) is
called the dilatation of w and denoted by wu(u).

Let C(F) be the group of linear conformal maps c¢: F — F. Then
C(F) acts on I(E,F) by

m: CF)XIE,F)—IE,6F),

m(c,u) =cou.
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8.2. Theorem. Let F be a euclidean space and E a vector space of the
same dimensionality. Then the map

w: I, F)— Q(E)

determines a bijection of the quotient set of (B , F) by m onto Q(E).

Proof: Let w,v €I(E, F) satisfy w = cov for some ¢ € C(F). Then
[lu(@)| = [lc]| - [lv(x)]| for each x€FE, and u(u)= u(v). Conversely, if
this holds, then clearly uov~! € C(#). Since u is surjective, this com-
pletes the proof.

8.3. Definition. Let F be a euclidean space. Let GL(F) denote the
group of invertible linear maps a: F — F . Then, for each a € GL(F),
we define {(a) = |ja| - |a7!||. It has the following properties:

a) (ay) =1, for each a €GL(¥), and <{a) =1 if and only if

a €CF),

b) <{a) = <{a'), for each a € GL(¥),

c) {aob)y <<a)<by, for each a,b € GL(F).

8.4. Theorem. Let F be a euclidean space and E a vector space of the
same dimensionality. Then the function d' defined by

d'(u,v) =log (wovl), w,v€EIH,F),
s a pseudometric in I(E , F). It determines a metric d in QUE) by
d(u(w) , u(v)) = d'(u, v) w,v€lE,F).

Proof: The first assertion results immediately from a)—c) of Definition
8.3. Since {aob) = {a) = <boa) if <b) = (b1) =1, it is clear that
d is well defined (Theorem 8.2). Finally, d(,u(u) , ,u(v)) = 0 implies
uov € C(F) and hence u(u) = u(v). Thus d is a metric and the proof is
complete.

8.5. Remark. The metric d in Q(#) defined in Theorem 8.4 is in-
dependent of the choice of the euclidean space F as may be easily verified.
It can also be seen that Q(Z) has a natural manifold structure compatible
with d, such that u is differentiable.

8.6. Definition. Let M and N be Riemannian manifolds. Let Q(M)
= Q(T'M) be the tensor bundle of type Q over M (cf. Lang [1], p. 49).
Let f: M — N be a quasiconformal map. Then Df(x) € (T .M , T;,N)
for a.e. x € M (cf. Theorem 7.5). The dilatation of f is the section x» of
Q(M) defined by

#(a) = n(Df(@)

for a.e. x €M .
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In the local case where M = U is an open set in R", the bundle
QM) = Ux Q(R™ is trivial and the dilatation may be represented by a
map »: U—Q(R").

The Riemannian metric of M determines a canonical differentiable
section of Q(M) which is denoted by e.

8.7. Theorem. Let M and N be Riemannian manifolds. If f: M — N
18 a quasiconformal map, then its dilatation x is measurable. In particular,
d(x ,e) 1s a Baire function in M .

Proof: We consider only the local case M =U, N=7V in R*;
the general case is similar. The map Df: U —I(R", R") is measurable
by Theorem 2.10. Since w is continuous, % = u o Df is also measurable.
The last assertion follows by the continuity of d .

8.8. Remark. To prove that d(x,e) is a Baire function it is actually
sufficient to consider only I(%,F) and d’. This is all that is needed in
the sequel.

8.9. Lemma. The dilatation » of a quasiconformal map f: M - N is
related to 6 by

(8.1) d(x,e) <nlog (14+90) < (n—1)d(x,e) a.e.

where n denotes the dimension of M and N .

Proof: Let E be a euclidean space of dimension » and a: E—FE
an invertible linear map. We denote M = |ja]| and m = |ja~Y|~. Then it
is easy to see that

(8.2) m" M < |deta| <m M™'.

On the other hand M = {a>m and M" = |det a|(1 4 §)" by Definitions
8.3 and 7.7. Combining these equations with (8.2) we obtain (8.1).

Part 1I

In this second part of the paper we generalize certain results of Teich-
miiller, Wittich and Belinskij for quasiconformal maps in higher dimensional
spaces. We consider a quasiconformal map f: U—V, where U and V
are open submanifolds of R", n >2. We assume for simplicity that
0 €U and f(0) =0€ V. Let 6 be the Baire function defined in Definition
7.7. Then we prove:

Theorem. If the integral

o(x)
(%) / FR dv
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is convergent then the quotient

|f ()]

||

has a finite, non-zero limit at x = 0. In addition, the maps f,: S"~'— S,
0 <r<r,, defined by

B flrx)
RG]

converge to the set I of isometries g: S*~'—S""' in the following sense

Ji(@)

lim inf sup |g&) — f.(x)] = 0.
r>0 g€I ,egn—1
This theorem follows from Theorems 9.9 and 10.9. In the case n = 2
it was shown by Belinskij (cf. Lehto— Virtanen [1], p. 239) that the maps f,
converge to an isometry. This implies that f is differentiable at x = 0
(ibid., p. 243). We do not know whether this is true for n > 2.
By Lemma 8.9 the convergence of the integral (x) is equivalent to the
convergence of the following integral

(#%) /d(:;; ) dr,

where r = |z|, ¢ € Q(R") is the class of the canonical euclidean metric
in R" and #x is the dilatation of f (Definition 8.6) considered as a mea-
surable map %: U — Q(R"). The integral (:x) is meaningful also if e is
not the canonical class. Hence it gives a condition under which the theorem
may be applied after a change of metric in U . In particular, it shows that
the theorem is applicable if 2 is Holder-continuous.

Convention. In the rest of this paper the dimension »n > 2 will be
kept fixed. The Lebesgue measure of any n-dimensional manifold will be
denoted by 7 and the measure of manifolds of lower dimension by ¢ and u.

9. Radial convergence

9.1. Definition. Let S = {®x € R"||x| =r,} be the sphere of total
measure one, i.e. w5~ = 1. Let L denote the product manifold Sx R+.
A map ¢: L—-B— {0}, B={x€R"||z] <1} is defined by

px,t) =xryte v €S, teRF,

9.2. Theorem. The map ¢: L-—B — {0} is conformal. A quasicon-
formal map f of L into itself is proper, i.e., the preimage f~(C) of each
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compact set O C L 1s compact, if and only if there is a quasiconformal map
g of B into itself such that ¢ of =goq and g(0) =0.

Proof: The conformality of ¢ is easily verified by direct calculation.
Hence ¢ = @ofog is a quasiconformal map of B — {0} into itself.
If f is proper, ¢’ may be extended to a continuous map ¢g: B— B by
setting ¢(0) = 0. Since the family of all curves therough the origin has
zero module, it is clear that g is quasiconformal. Conversely, if there is a
continuous map ¢: BB satisfying ¢pof =gog and g(0) =0, it
is immediate that f is proper. This completes the proof.

9.3. Notation. Let f be a proper K-quasiconformal map of L into
itself. Since L is the product SxR+*, we may represent f by a pair of
continuous map ¢g: L—S and h: L—R. The set Sx{{}c L is
denoted by S, = S(t), for ¢ > 0. We define continuous maps ¢.: S— 8
and h: S— R for t >0 by

g,(x)zg(:c,t),h,(x):k(x,t), x€8.

We denote the oscillation of h, by A(f).

Let « € 8(t) be a point at which f has a non-zero derivative. Then the
angle between Df (TxS(t)) and Tf(x)S(h('x)) is denoted by ¢ . These
notations are retained in the rest of this paper.

9.4. Lemma.
/ Jig)do = 1

%
for almost every ¢t >0.

Proof: By Theorem 6.9 ¢, is ACL™ for almost every ¢ > 0. Hence,
it is sufficient to show that ¢, is homotopic to a diffeomorphism, by
Theorem 6.13.

By Theorem 9.2 there is a quasiconformal map f; of B into itself such
that gof=/f, 0@ and f,(0) = 0. If f; is differentiable at the origin, with
non-zero derivative, then ¢, tends to a diffeomorphism of § onto itself as
t — oo . Otherwise we replace f; by the map fi(x+a) — fi(¢) where a is
a point at which f; is differentiable. If @ is chosen sufficiently close to the
origin, then ¢, is changed homotopically and the proof is concluded as
above.

9.5. Lemma. There is a constant A such that

Jpleos ¥ do > 1 -—A/éda
59 5(1)

for almost every t > 0.
Proof: By Lemma 9.4
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YL 4 6 eos D do > 1
500
for almost every ¢ > 0. Thus by Holder’s inequality

/ n—1
1 g/(l + 0" do ( /z" |cos 9|M(=D do') ,

S(1) S(t)
On the other hand (1 4 6)" < K, and hence

140" "do <1+ nn—1) K"‘lféda
st 50
by Lemma 7.8. Thus
n—1
(14 6" do) <14 nK"? /6do‘
K10) 5()
and finally
Jrleos | do > 1 —n K™™' [ ddo.
E10) S(1)

9.6. Lemma. 7There is a constant B > 0 such that

Jylsin " do > B A(t)"
S
Jor almost every t>10.

Proof: By Theorem 6.9 h, is ACL" for almost every ¢ > 0. Let y,
and y; be points where A, attains its maximal and minimal values,
respectively. Let I' denote the family of curves y in S, joining (y,,t)
and (y;,f), such that Aoy is absolutely continuous and Dk o y)
=DhoDy. If h is ACL™, then M,(I') is greater than a positive
constant m depending only on n by Corollary 5.8. We assume that this
is the case.

Integrating Dh along y € I' we obtain

A#) = My, , t) — by, , B) S/Z(l + 0) |sin 9| ds .
4

Thus A(1 + 6) |sin &|/4() € F(I') and

[A(1 + 0) |sin 3|/A@#)]"do = m .
S()
This proves the assertion with B = m/K .
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9.7. Lemma. Let E = L(t,t), 0 <t <t , denotetheset SX[t,t']C L.
Then

(9.1) /der gt’—t+nK/6dt+2(A(t)—|—A(t’)).
E E
Proof: Let d be the distance between A(S,) and A(S,). Then by (7.3)

(9.2) d S/der < d -+ A@) + AF) .

E

It is obviously sufficient to consider the case d > A(t) + 4(t') .
Let y., ® €8, denote the curve y.s) = (x,s), s€[t,¢]. Then

/).(1—[—6)ds >d

Yx

for almost every z € S. Integrating over S we obtain

/2(1—[—6)dr >d.

E

Hence, by (7.7) and (9.2)

(9.3) A" < (d+ A@) + A@)) (t’ —t 4+ nK/ 8 dr) ¢ —t)" 2.

Since (9.1) follows from (9.2) if d <t —t, we may assume that
' —t <d, whence

d——A(t)—A(t’)ét'—t—{—nK/édr
o

by (9.3). Combining this with (9.2) we obtain (9.1).

9.8. Lemma. A proper quasiconformal map f of L into itself is uni-
formly continuous.

Proof: Let ¢ be a quasiconformal map of B into itself satisfying
gof=gog and g(0)=0. Let C' be chosen as in Lemma 7.10 for g.

We choose positive numbers « and b such that

g(B(2a)) c B(b), B(3b) C g(B) .
Let « € R* be a point with || =r < a. Then by Lemma 7.10

g(B(x,r)) c By, Cr'),
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where y =g(x), " =|y|. Let z be a point with [z — xl=0<r
and let ¢’ denote |g(z) —y|. Then

Bly, &'/0) c g(B(x , 9))

by Lemma 7.10 again.
Let I be the family of curves in ¢(B) joining S(y,Cr’) and
S(y, 0’/C). We denote f~XI") by I'. Then

pe 1—n
M () < o, (log ;;)
and

o' \-"
M, (") = o, (log 7)

\

by Theorem 5.10. Hence

r 1-n / 027" 1—n
K(Un (log _g) 2 Wy <10g 6/ >

it g is K-quasiconformal. Finally, this implies
1

& \* L
~,g02(~), x = K=",

r WA

Passing over to L by ¢ we find that f is, in fact, uniformly Holder-
continuous in qa“l(B(a)). This completes the proof since f is also uni-
formly continuous in the remaining compact set.

9.9. Theorem. If the integral f odv 1is finite, then the functions h, — t
L

. S converge uniformly to a constant limit function as ¢ — oo .
Proof: Since 2sin¥/2 >sind for 0 <9 <z, we have

cosd =1—2sin292 <1 — Lsin" @

if » > 2. Taking Lemmas 9.5, 9.6 and 9.7 into account this yields

t

%B/ A dt < (A + nK) / o dr — 2(1(0) — (b))
L{0,v)
for all t> 0. By Lemma 7.10 A(t) is bounded. Hence fédr can be
finite only if f A@)"dt is finite. But A(t) is uniformly continuous by
Lemma 9.8. Hence
lim A@¢) = 0.

t— 0
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This shows that if the functions h — ¢ converge, then the limit is constant
and the convergence uniform.
To complete the proof we choose, for each ¢ > 0, a # > 0 such that

odr < e

Litg» 1)

and A(¢) <e for ¢ >1¢,. Then by Lemma 9.7

I = [ Jedv<t—ty+nKe+4e.
L(t,1)
On the other hand, Lemma 9.5 yields
I>t—t,—4de.

Since the integral I differs from A(y,t) — h(y ,t,), for y €S, by
at most A(f,) + A(t) <2e, we obtain

|y, 8) — ¢t — By ,f)) +ty) < (4 +nK + 6)e

for all ¢>1t,. Hence the functions h — ¢ converge and the proof is
complete.

10. Angular convergence

10.1. Lemma. Let I C R* be a closed interval of length 1. If the
oscillation of b —t in SxUI is smaller than ¢ <1, then

(10.1) t(fEXI)) < o(E)l + (n+1)e - n K/é(lr,
SxI
for each Borel set E C S .
Proof: Let y., x €8, denote the curve ».(f)=(xv,t), t€I, in
SxI. Then we have
/}.(1+6)d.s >1—e
Yx

for almost every = € S. Hence

Al 4 8)dr = (I —¢)o(B) .
ExI

By (7.8) we obtain
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(10.2) ruwxm;{1~§y@wu—nK/am)
ExI

>0(E’)l—ncr(E)e—nK/6dt.

ExI

On the other hand, we have ‘r(f(S ><I)) <1+ ¢. Hence, applying
(10.2) to the set F =8 — E, we obtain

t(f(ExI)) <l4+e—oF)+nolF)e+ nK/adr
FxI
and (10.1) follows.

10.2. Definition. Let ¥ be a (n—2)-dimensional linear subspace of
R". Let ¢ and ¢, 0<¢; <2z, denote polar coordinates in the
orthogonal complement £ of F . For each point x € R* let y(x) and
z(x) be the components of « in K and F . Then the functions o, ¢
and z in R" defined by 9 =p,°0y, ¢ = ¢, oy, are called cylindrical
coordinates with axis F'. A point x € R" is also denoted by (g(x) . gl),
z(x)) .

10.3. Notation. Let @ and b be two distinet points of S (Definition
9.1). Let F denote the orthogonal complement of the plane spanned by «
and b, if a # —b. Incase a = — b, F may be any (n—2)-dimensional
subspace of R"™, orthogonal to @ and 0. Let o, ¢ and z be cylindrical
coordinates with axis ¥, chosen so that ¢(a) =0, 0 <x=¢b) <x.

Let >0 and 0 <¢ <2m. The set {x €8] [2(x)] <7r, ¢@) = ¢}
is denoted by C_, = C (r) and its (n—2)-measure by m = m(r). The
union UC (r), 0 < ¢ <, is denoted by A(r) or, briefly, 4 .

10.4. Lemma. Let ¢ be a Baire function in A . Then

/gdaz/d,u/gds
A4 Co Yy

where yy, y €C,, denotes the curve y,(t) = (e(y) ,t,2()), t€[0,a],
m A.
Proof: Let I =1[0,a]. Then the map f: CyxI-—>A defined by

f(?/;t):(e(y%t,z(?/)), yeco’ tel,

is a diffeomorphism. Hence

/ww=/@m@w=/w/mma@,
A Cox1I Co Ty
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where y,, y €C,, denotes the curve y, () = (y,t), t €I, in CoxI.
Since it is easy to see that

[(gof)J,ds =/st,

d

y Yy
this completes the proof.

10.5. Lemma. Let I < R+ be a closed interval of length 1 and let d
denote the distance between g(CoxI) and g(CyxI) in S. Then

(10.3) krr(f(AXx 1)) = o(4)1 — nK/édr
AxI
where k= d(a,b)/d .
Proof: Let A,, t€I, denote the set Ax{t}c AxI. If f|8; is
ACL"™, then

/}.(1 + 8)do = d m(r)

Ay

by Lemma 10.4. Since this is the case for almost every ¢ € I by Theorem
6.9, we obtain

/A(l—i—é)dr >dml.
AxI

Hence, by (7.8),
t(f(AXI)) = (dm/o(4))" (a(A)l — nK/édr).

AxI

On the other hand ¢(4) <md(a,b) and (10.3) follows.

10.6. Lemma. Let X be a compact metric space and a: X —R a
continuous function. Then the sets {x € X ||a(x)| <€}, ¢>0, form a
base for the neighbourhood system of the set A = a=%(0).

Proof: If the assertion does not hold, then for some neighbourhood U
of A there is a sequence (z;), 1=1,2,..., of pointsin X — U such
that a(z;)— 0. Since X is compact, we may assume that x;—z in
X — U. This leads to a contradiction with a(z) =0.

10.7. Definition. Let F be the set of all continuous maps f: §— 8§
which are homotopic to a diffeomorphism. We define a metric d in F by

d(f, g) = sup d(f(x) ’g(x)) ’ f,g EF.

x€S

The set of all isometric maps f: 8 — S is denoted by I.
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10.8. Lemma. The function a: F — R defined by
a(f) = sups[d(f(x) J@) —d@, 9], fEF,
x,y€

ts continuous and non-negative. If fE€F , then a(f) =0 if and only if f
18 an isometry.

Proof: The continuity of a is clear. Let f € F satisfy a(f) <0, ie.,
d(f(x) ,f(y)) <d(x,y) for x,y €S. Then f maps each pair of opposite
points in S into a pair of opposite points, since otherwise f is not surjective.
But f(— z) = — f(x) implies that d(f(x) ,f(y)) >d(x,y) for x,y €S
Hence f must be an isometry.

10.9. Theorem. If the integral [ 8 dx is finite, then

L

d(gs, I)—0
as t— oo.

Proof: The functions ¢., ¢ >0, form an equicontinuous family by
Lemma 9.8. Hence the closure X € F' of the set {g: |t > 0} is compact
by Ascoli’s theorem (Kelley [1], p. 233). Then, by Lemmas 10.6 and 10.8,
it suffices to show that a(g) —0 as t— oo.

Choose # > 0. Since f is uniformly continuous, we can find » > 0
and ! > 0 such that the oscillation of ¢ is smaller than /4 in each set of
the form C (r)xI (Notation 10.3), where I c R+ is a closed interval of
length 1.

Let a and b be distinet points of S, let I, = [¢,t+ 1] for ¢ >0,
and let ¢ be the oscillation of the function » — ¢ in SxI,. By Lemmas
10.1 and 10.5 we then obtain (cf. Notation 10.3) for large enough ¢

k:‘<0(A)l+(n—l—l)s, -+ nK/édr) ZG(A)l—nK/(SdT,

AxI, AxI,
where

kt < d(a ’ b)/(d(g‘(a’) s gl(b)) - 77/2) .

Since & -— 0 and fé dt—0 as t— oo, it follows that

AxI,
(10.4) liminfk > 1.
t—> o0
Hence
(10.5) d(gia) , gz(b)) —d(a,d) <1,

if ¢t is large enough. In addition, (10.4) and hence (10.5) hold uniformly in
a and b if o(A4) is bounded away from zero, i.e. d(a,b) > m for some
m > 0. Since the case where d(a,b) < m may be taken care of by using
the uniform continuity of f, the proof is complete.
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