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DISTORTION THEOREMS FOR qUASICONFORMAL MAPPINGS*

The idea that quasiconformal mappings transform infinitesimal circles

into infinitesimal ellipses with bounded eccentricity is quite familiar. It is

certainly a, consequence of Mori's estimate, [7], for a K-quasiconformal
mapping w : f(z) of a plane domain D onto a plane domain D': if
16-6l :lr1 -Cl, if thedisk {z:lz- fl <16-6l} liesin D, and
if the disk {w: lw - f(C)l = l/(å) - f(C)l} lies in D', then

l/rfl - f(c)
lr?il - rG)

Gehring, [4], has shown that a definition of quasiconformality can be

based on these notions. An orientation preserving homeomorphism f of. a

plane domain D is K-quasiconformal, L < K, if and only if

= 
e*K

la - ii ; '

is bounded in D, and a.e. ( 1{.

A substantially different approach to quasiconformal mappings is

through the Beltrami equation

(1.r) f; : r,f,,

satisfied weakly by each K-quasiconformal mapping /, with 7 measurable,
l+lr

lX@)l Stc < | a.e. in D, ;i: K . Conversely, [2], [5], given such

X,, there exists a weak solution / of (I.1), v'hich is K-quasiconformal and

unique in the sense that if g is another solution, I o g-' is conformal in
g(D). If we assume that D is the finite plane, then the image /(D) will
also be the finite plane, and the allowable normalizat'ion /(0) : 0, /(I) : I'
assures lhat f is unique. We will denote this unique, normalized solution
of (1.1) by f'.

* Research sponsored by National Science Foundation Grant NSF 5990 Stanford
University.
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Various investigations have centered on determining the maximum for
the critical ratio

(1.2) D lf ._lT)
tu 

lf7?) - fG)

Pt: Pr(o, K): sup tffi

.t-Plane

- Pr(a, , K) is the solution to

although it is clear that without some normalization the ratios will be un-
bounded even in the class of conformal (1-quasiconformal) mappings. X'or
example, we may denote by ff, the following problem: Eor a ) l,
K > l, i,n the class Q, of K-quasiconformal, mapp,i,ngs q of the unit d,i,sk

onto itsel,f, with q(0) : 0, fi,nil,
lol

tel.i-t-'i 
1?i

Shah and Fan, [0], solved problem If, by the method of parametric
representation, [9], in the following implicit form: If 4 is defined by

do(€)

låil1 - §il§ + "l '

the equation

tNJ,

( 1.3)

then y

( 1.4)

v
f clrl- -1ogK.J rq(m)

A related problem was to determine the supremum of the numbers
Hr(C), among all J(-quasiconformal mappings /. X'or this purpose, Lehto,
Virtanen, and Väisälä, 16], solved (for a: l) the follov-ing normalized
problem, which we denote by trflr, Xor a > l, K ) l, i,n the class Q, of
K-quasiconformal mapp'i,ngs V of the fdnite plane onto i,tself, with g(0) : O,

E(r) : t, ti,nd,

Pz: Pz(a , K) : sup { lq(f)l : 16l : a} .

This problem is of course equivalent to the problem of maximizing the
ratios -E in (f .2), for / K-quasiconformal in the finite plane, rvith

I r - rl
l'--+l : ".llt _ Lt

It comes as only a mild surprise that the solutions to problems -l[t
and -l[, are the same. In this note, we calculate Pr(a , K) it a reasonably
explicit form. We then establish the equivalence of the problems from an
abstract viewpoint, and finally show that y: Pr(a,-K) also solves (1.4).
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Our first task, however, will be to derive an integral representation for the
hyperbolic density, which will be needed in the computations.

2.1. Hyperbol,ic il,ensi,ti,es and d'istances.' For a domain E consisting of
theextended z-planeminus za points {21 ,22,..,2"}, n}3, werepresent,

the universal covering surface by the upper half plane {Im(ru) } 0}, and
Let z: J(w) be an analytic covering. We define the hlperbolic density
puinEby

(2.1)

where f is a local inverse for J.
both J and the branch f. The
for points Z' , Z" in E, b;r

/I* (f (r)) ,

The right side of (2.L) is independent of
lryperbolic distance o E, is then defined

(
or(Z' , Z") : inf. I pt(z)ldz ,

/
where the infimum is taken over the class of arcs Z joining Z' an:,ld Z"
in E, for which the integral has meaning.

In the special case Eo: {zr,22, zs} : {0, 1, oo}, n : 3, a suitable
covering "I is the familiar elliptic modular function, [8]. We calculate the
hyperbolic densit5z gs", hereafter referred to simply as g, and the corre-

sponding hyperbolic distance o, for certain pairs of points.

2.2. The Integral Re'presentation: Let D be the domain obtained by
deleting from the a-plane the real slits {z ( 0} and {z } t}. X'or s : reio

e D, -n < @ < n, set f; : \G eio'2. \Ve consider the Jacobian elliptic

function e : sn(u , {i), doubl5z periodic in z. In D, we may regard
its primitive periods 4K(z),2iK*(z) as single valued anal;ztic continuations
of

clt
(2.2) K(z)

In this section, we use the symbol * to denote replacement of the argument,

z by the argument, l-2, and ' to denote differentiation with respect to
z, hence (K*)' : - (K')*-

It is well known lhat C: sn(r.r , /ä) maps the interior of the parallelo-
gram P, whose vertices are + K *iK*, conformally onto the 6-plane
minus four analytic arcs, with

t
.l



/de\z
\a") 

: (l - f'zX1 - zlz) .

The area_of the parallelogram P is easily seen to be 4Im(iK*E):
4 Re (K*.[). We therefore find

(z.s) 4Re(K*.K) : l,l o,ru,:,{Jlftl'a,o

[ [ o'tct

-J.J It-(rl l-ze,l(-PlaDo

| [f doG):i,!r,L [-flflf -zr
x'or tho last step it must be remembered that in the transformat ion § : I | (2,
each point in the 6-plane is covered twice.

If z : J(w) is the elliptic modular function, then a local inverse in
{Im(z) > 0} is given by
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[8], and hence in {Im(a)

(2.4) a

: lK(K')* + K*K, l/Re(I{*,K).
'We contend that

(2.5) K(K',1* + K*R' : nl4z(r - z) ,

and. since both sides are ana\rtic in D, it is sufficient to check for 0 < z I l,
where we have the explicit representation (2.2). We use the classical formula
[3]for 0<r<1,

dK{rz) E(r,) (1 - rz) K(rr)
dr

K(r) ,

/r*(#)
K*K',lllKl,
W

_ ,iK*(r) I

we have

*(#\
K1KX1'

R"(/(t

f (r)

o),

I

I

:l

r(L - rz)

n(z):/ffi
where
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Setting z - 12, we find

d,K(rz) d,r fr(z) (1 - z) K(z)
T7t \4^ dr ilz Zz(L - zl

hence

K1K',1x * K',K* -
K1A* zK*) + K*(E (1 z) K)

Zz(L - z)

KE*+K*E_KK*: z4t-4 '

Apptying Legendre's formula, KE* + K*E - KK* : nlZ, (2.5) follows
at once.

We thus obtain, from (2.3), (2.4), and (2.5), for Im(z) > 0

(zo) e@):{e#tt*rYfuÅ"
Since both sides of (2.6) are unchanged if z is replaced by L-2, the for'
mula holds for Im(z) I 0, and by continuity for z t' 0, L, a.

2.3. An inequali,ty: X'or 0 <r < l, the real ratio p, defined. by

- i,nf(rz) nK*(rz)p\r): z zl{(r,
is equal to the modulus of the ring domain obtained by deleting from the
unit disk the real interval [0, r]. p is strictly decreasing, with limits
co, 0 at 0, I respectively, and its inverse will be denoted by p-'.

The important inequality ([6], page 6),

s(z) > s(- lzl)

may be derived from (2.6) as follows: we first observe that for any circle C,

and any complex number w, the integral

rdill;-I lc-wl
depends only on the distance from w to C, increasing as u)---> C from
inside, and increasing as w ---> C from outside. If we denote by Ca the
circle

Ir_
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and if w is on C,, it then follows that

,[ h=l welm.
I t- 

-l
lo t+rl

€ - Reie in (2.6), and settingBut introducing polar coordinates
z - reiE, we find

1 :
e@) #l+f

fi
r 7aa r

- %, JEcl

(1-åXl_r)
(€ -z)

Rdo

1r--s1,

t,i f o*
znJ R

0

Rd@

@1

L-R{e

t-rt fou f W,et r< z lz.l [-_, t:n1-r'o cn,e -11ri
We draw two conclusions: first, that the negative real axis is a geodesic

for o, and second that if a; : lzil,

(2.7)

Hence to obtain a formula for the right hand side of (2.7), we may integrate
p along a, lhenegativerealaxisbetween -4, and -ar. On a,-i,f'(z)>O
and Re(/(z)) : t, hence lf'@)l - - if'("), and Im(/(z)): - i,(f(z) -t).
We find

_l_i
I z\

J s@)idrl J rm (f("))
oo, o(

f feqdt
I L- fct)

ltog(1 - f(-,)) 
]

, 1-f(-ur)
rog 

L - f(,-a)

Ao

dL
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Since the mapping f satisfies the identity

I 11\
L-f@)-f\r -'/ '

log
p({r + or)-'t')

,"({ 1 * ar}-trz1

2.4. Teichmiiller's Theorem: A fundamental theorem of Teichmiiller,

[1I], [f], asserts: Gioen zo, woe Eo, K > l, there euists g e Q2 wi'th,

E@d:w, i,f and, only if o(zs,wo) llogK. As a second application of
(2.6), we use the results of Ahlfors and Bers [2] to proYe the »only if»
part of this theorem. We suppose that E - f', and there is no loss in
generality in assuming that 7 is continuous with compact support. X'or

0 <t <L let f(z,t):f'L(z). Then lemmas l9 and 2L of l2) apply, and
we ma,y assert l}r,at f(z,l) is d.ifferentiable in f, and

0f(2. t\
(2.e) ;t : (Pb,)(w) - w(Pb,)(r); 1D : f (2, t) ,

where

we conclude

(2.8)

and P is the Hilbert transform,

I f f tL I \(2.11) (Ps) (*): ; J J s@ (u 
=-) 

do G).
§ - plane

Since f, : I, we obtain from (2.L0) the simple inequatity

k
(2.L2) **plb,(w)l<L_W,

while (2.11) yields easily, with (2.6), the inequalit;r

(2.10)

(2.13) l!g)(la) - w(Ps)(I)l -
r»(w-L) tI sE)do(€)

rr I J å(å ?.u) (€ 1)
-'
.. - plane

2 suplgl

a@r '
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As a competing path from z :l(",0) fo q@):l(", t), we take the
trace of f(z,t):0 <, < l. Evidently, using (2.9), (2.13), and (2.12\,

o(2, v@))
0f(2, t)

at

f acat t+tlc1r t+lc
< J ,-tw:1og r-tklr-log r-k:tosK

3.1. Probl,em*, * now c&n assert that

(3.1) Pr(a, K) : lt-'(Kp({t a o}-ttz;)l-' - I ,

or equivalently, in view of (2.8),

o(-a, -Pr) : log K .

n'or let P{ be defined by the right hand side of (3.I), which is to sav

o(-a, -P{): log K, P{ ) a .

By the »if» part of Teichmiiller's theorem, there exists g* € 02, with

1
n

I

0

dt

Consequently,

(3.2)

On the other hand, given qeQr,l€i:a, rve find from (2'7) and
Teichmiiller's theorem, o(- lp(4)1,- a) < o(q(€), §) < log K : o(- P{, -aL
It follows that lg(1)l < Pf , hence P, I Pt, and with (3.2), the formula
is verified.

3.2. Problem -l/r; X'or the mapping g* of Section 3.1, and large integers

n, let, E" be defined for lzl < 1 by

V"@) : f"(E*(nz))fa",

where /, is a conformal mapping of {9*((): l(l ( ra} onto { f"i 3o"),
normalized bV å(O) : 0, ,f,(I) - I' By virtue of this normalization, the

{f.) are a normal family in Eo, and any limit function is necessarily the
identity. By construclion, po € Qr, and therefore

y4_!19
q"(L ln)

Pr) !f"@*(-a))
- . f"(v*(1))
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Letting n --> @, we conclude

(3.3) P, ) lim V"?Pr)l: l-Prl : Pz.

On the other hand, ary g € Q, can be extended by reflection and rota'
tion to a mapping po Q Qr, and with corresponding ratios equal. It follows
that Pr l Pr, and with (3.3), the equivalence of problems .0[. and I[,
is established.

3.3. Remarlc;Returning to (1.4), we see from (2.6) and (f .3) that

tlmT@): Q(-n) ,

and hence, as expected,

f" o* i' r"

J *'tq : J o?*)d* : 
-l ,o?)dt

: o(-a, -Pr) : log K .

Sta,nford University
California, USA
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