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DISTORTION THEOREMS FOR QUASICONFORMAL MAPPINGS*

The idea that quasiconformal mappings transform infinitesimal circles
into infinitesimal ellipses with bounded eccentricity is quite familiar. It is
certainly a consequence of Mori’s estimate, [7], for a K-quasiconformal
mapping w = f(z) of a plane domain D onto a plane domain D’: if
£ — ¢ = |np — ¢, if the disk {z: |z — (| = |&§— |} lies in D, and
if the disk {w: jw — f({)| = |f(§) — f({)[} liesin D', then

If(&) —f(C)] S
fn) — f(

IA

0)

Gehring, [4], has shown that a definition of quasiconformality can be
based on these notions. An orientation preserving homeomorphism f of a
plane domain D is K-quasiconformal, 1 < K, if and only if

&) — £0) |

D) = lim |

I—J=r
n—=3Si=r
r—> 0

is bounded in D, and a.e. < K.
A substantially different approach to quasiconformal mappings is
through the Beltrami equation

(1.1) =zl
satisfied weakly by each K-quasiconformal mapping f, with y measurable,
1Lk

l7(2)] <k <1 ae. in D, = K. Conversely, [2], [5], given such

1—Fk
x4, there exists a weak solution f of (1.1), which is K-quasiconformal and
unique in the sense that if ¢ is another solution, fog=! is conformal in
g(D). If we assume that D is the finite plane, then the image f(D) will
also be the finite plane, and the allowable normalization f(0) = 0, f(1) =1,
assures that f is unique. We will denote this unique, normalized solution
of (1.1) by f~

* Research sponsored by National Science Foundation Grant NSF 5990 Stanford
University.
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Various investigations have centered on determining the maximum for
the critical ratio

1) — 1(0)
E= o —f0)

although it is clear that without some normalization the ratios will be un-
bounded even in the class of conformal (1-quasiconformal) mappings. For
example, we may denote by N, the following problem: For a >1,
K >1, in the class @, of K-quasiconformal mappings ¢ of the unit disk
onto itself, with ¢(0) = 0, find

(1.2)

Shah and Fan, [10], solved problem N, by the method of parametric
representation, [9], in the following implicit form: If # is defined by

—[—x
(1.3) () // ET — 5:|§+x|

then y = P;(a, K) is the solution to the equation

y
dzx
(1.4) / =log K .

wn(x)

A related problem was to determine the supremum of the numbers
H((), among all K-quasiconformal mappings f. For this purpose, Lehto,
Virtanen, and Vdiséld, [6], solved (for a = 1) the following normalized
problem, which we denote by N,: For a > 1, K > 1, in the class Q, of
K -quasiconformal mappings ¢ of the finite plane onto itself, with ¢(0) = 0,
@(1) =1, find

Py = Py(a, K) = sup {|g()| : [§] = a}.

This problem is of course equivalent to the problem of maximizing the
ratios R in (1.2), for f K-quasiconformal in the finite plane, with

§—1¢

n—27_

It comes as only a mild surprise that the solutions to problems N,
and N, are the same. In this note, we calculate P,(a , K) in a reasonably
explicit form. We then establish the equivalence of the problems from an
abstract viewpoint, and finally show that y = P,(a , K) also solves (1.4).
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Our first task, however, will be to derive an integral representation for the
hyperbolic density, which will be needed in the computations.

2.1. Hyperbolic densities and distances: For a domain E consisting of
the extended z-plane minus n points {z;,2,,..,2,}, n > 3, werepresent
the universal covering surface by the upper half plane {Im(w) > 0}, and
let z = J(w) be an analytic covering. We define the hyperbolic density
og in £ by

df(z)|
(2.1) 0x) = | T s,

| dz
where f is a local inverse for J. The right side of (2.1) is independent of
both J and the branch f. The hyperbolic distance og, is then defined
for points Z', Z" in K, by

mmm=M/mwm

14

where the infimum is taken over the class of arcs y joining Z' and Z”
in E, for which the integral has meaning.

In the special case Ej:{z, 2, 2} =1{0,1, ©},n =3, a suitable
covering J is the familiar elliptic modular function, [8]. We calculate the
hyperbolic density ¢z, hereafter referred to simply as ¢, and the corre-

sponding hyperbolic distance o, for certain pairs of points.

2.2. The Integral Representation: Let D be the domain obtained by
deleting from the z-plane the real slits {z < 0} and {z > 1}. For z = re"
€D, —n <0 <a, set Vz= \r ¢92. We consider the Jacobian elliptic
function ¢ = sn(u , V, z_), doubly periodic in . In D, we may regard
its primitive periods 4K(z), 2iK*(z) as single valued analytic continuations
of

1
dt
(2.2) K(z) = 0/ e LR
K*

() = K(1 — z).

In this section, we use the symbol * to denote replacement of the argument
z by the argument 1—z, and ' to denote differentiation with respect to
2, hence (K*) = — (K')*.

It is well known that ¢ = sn(u, 4/z) maps the interior of the parallelo-
gram P, whose vertices are -~ K -+ (K*, conformally onto the I-plane

minus four analytic arcs, with
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dt\2
(g;f) = (-1 209,

The area of the parallelogram P is easily seen to be 4Im(EK*K) =
4 Re (K*K). We therefore find

(2.3) 4 Re(K*K) = / / do(u) =

L — 21 — 28
£-plane

T2 // ’I—SHEHE~ZI

For the last step it must be remembered that in the transformation & =: 1 /L3,
each point in the &-plane is covered twice.

If 2= J(w) is the elliptic modular function, then a local inverse in
{Im(z) > 0} is given by

f(&) = iK*(2)|K(2)
[8], and hence in {Im(z) > 0}, we have

d <zK*> (zK*)
=\ ) M™%
_ |K(KE*) — K*K'|[|K|?

Re(K*R)/| K2
= |K(K')* + K*K' | |Re(K*EK) .

(2.4) o(z) =

We contend that
(2.5) K(K')* + K*K' = zn[42(1 — z),

and since both sides are analyticin D, it is sufficient to check for 0 < z < 1,
where we have the explicit representation (2.2). We use the classical formula
[8]for 0 <r <1,

dK(r?) E(r?) — (1 — 12) K(r?)

dr r(1 — 72)

where
1

/ (1 — %) qt
o= o=
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Setting z = 72, we find

dK(r?) dr  E(z) — (1 — 2) K(2)
dr dz 2(1 — 2)

K =

hence
K(E* — zK*) + K*E — (1 — 2) K)
22(1 — 2)
KE* + K*E — KK*
- 22(1 — 2)

K(K')* + K'K* =

Applying Legendre’s formula, KE* + K*E — KK* = n/2, (2.5) follows
at once.
We thus obtain, from (2.3), , and (2.5), for Im(z) > 0

{lz} L2 // do®) |7
(2.6) 0(z) = €L — &g —zlf -

Since both sides of (2.6) are unchanged if z is replaced by 1—z, the for-
mula holds for Im(z) # 0, and by continuity for z 0, 1, oo.

2.3. An inequality: For 0 < r < 1, the real ratio u, defined by

— ixf(r?) 7K *(r?)
wr) = "5 = 9K

is equal to the modulus of the ring domain obtained by deleting from the
unit disk the real interval [0,r]. u is strictly decreasing, with limits
o0, 0 at 0,1 respectively, and its inverse will be denoted by u=2.

The important inequality ([6], page 6),

e(z) = o(— I2))
may be derived from (2.6) as follows: we first observe that for any circle C,
and any complex number w, the integral
|dZ|
& — w]

depends only on the distance from w to C, increasing as w— C from
inside, and increasing as w — C from outside. If we denote by Cy the
circle

1
:m@;0§0§2n,
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and if w is on C,, it then follows that
ldg) / ldCl
& —w| = l
1 + r

But introducing polar coordinates & = Re®® in (2.6), and setting
2 = re'”?, we find

_L_[ZI dR/'l &)(1—=z)

Cr

RdO
[1—&p?

2l /dR/ 1 RdO
T 2 1 1 | |1 — REOP
r /dR/ |z
“ow ) RJ] 1 ]

0 CRr |
|—r[/dR/
<

Cr

0(2) (E—2)

9 l 1

|d
! & —
| 1 —|— r
We draw two conclusions: first, that the negative real axis is a geodesic
for ¢, and second that if a; = |z,

(2.7) 0(21 5, %) = 0(—ay, — @)

Hence to obtain a formula for the right hand side of (2.7), we may integrate
o along «, the negative real axis between —a; and —a,. On «, —if’'(z) >0

and Re(f(z)) = 1, hence |f'(2)] = — if'(z), and Im(f(z)) = — i(f(z) —1).
We find
d
| o - %m&gg
B F f(—ndt
~ s
~ log — -0y | |
i 1 — f(—a,)

= loe 75 )




STEPHEN AGARD, Distortion theorems for quasiconformal mappings 9

Since the mapping f satisfies the identity

1 —lf(z) :f<1 iz)

we conclude

o p({1 + ag}~1) ‘
DTN IR

(2.8) o(—ay, —ay) =

9.4. Teichmiiller’s Theorem: A fundamental theorem of Teichmiiller,
[11], [1], asserts: Given z, w,€ E, K > 1, there exists ¢ € Q, with
@(z) = w, if and only if o(zy, wy) <log K. As a second application of
(2.6), we use the results of Ahlfors and Bers [2] to prove the »only if»
part of this theorem. We suppose that ¢ = f* and there is no loss in
generality in assuming that y is continuous with compact support. For
0<t<1 let f(z,¢) = f*(z). Then lemmas 19 and 21 of [2] apply, and
we may assert that f(z,t) is differentiable in ¢, and

of(z, t)
(2.9) S = (Ph)(w) — w(Ph)(1); w = £ 1),
where
(2.10) N p—c) f-(z t) Cw = fe 1),

1 — t2x7 f
and P is the Hilbert transform,

1 1

1
(2.11) (Pg) (w) = -, f / o) (5 - §_w) o (8) .

%-plane

Since f. = f,, we obtain from (2.10) the simple inequality

(2.12) sgp]b.(w)[ < 1 e
while (2.11) yields easily, with (2.6), the inequality

(&)dao(&) ‘
5—w (E—1)

w —_ 1
(2.13) 1<Pg><w>—w(Pg)<1>|=] / / =

&-plane

2 suplg|
= o)
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As a competing path from z = f(z, 0) to ¢(z) = f(z, 1), we take the
trace of f(z,£): 0 <¢ < 1. Evidently, using (2.9), (‘) 13), and (2.12),

f(e, t
oz, 9le) = / ot ) | 70

[ 2kdt 14 tk]* 1

T = 8T ke — 081

3.1. Problem N,: We now can assert that
(3.1) Pyfa, K) = [ (Ku({l + a}y )12 — 1,
or equivalently, in view of (2.8),
o(—a, —P,) = log K .
For let P§ be defined by the right hand side of (3.1), which is to say
o(—a, —P¥)=1log K, P¥ > a.
By the »ify part of Teichmiiller’s theorem, there exists ¢* € @, with
¢*(—a) = —P7 .
Consequently,
(32) Py > |¢*(—a)| = |—P}| = P} .

On the other hand, given ¢ € Q,, |£| = a, we find from (2.7) and
Teichmiiller’s theorem, o(— |p(&)],—a) < a(p(£), &) <log K = o(—P¥, —a).
It follows that |p(&)| < P¥, hence P, < P§, and with (3.2), the formula
is verified.

3.2. Problem N,: For the mapping ¢* of Section 3.1, and large integers
n, let ¢, be defined for |z| <1 by

= falg™*(nz))[an

where f. is a conformal mapping of {@*({): || <n} onto { f. < aa},
normalized by f.(0) = 0, fu(1) = 1. By virtue of this normalization, the
{f.} are a normal family in E,, and any limit function is necessarily the
identity. By construction, ¢, € @;, and therefore

‘tp,. —aln)| ff \

P, > | |
= ga(l/n) | fn

= |fu(—Ps)
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Letting n — o0, we conclude
(3.3) Py > lim |fu(—Py)| = |—Py| = P,.

On the other hand, any ¢ € @, can be extended by reflection and rota-
tion to a mapping ¢, € @,, and with corresponding ratios equal. It follows
that P, < P,, and with (3.3), the equivalence of problems N, and N,
is established.

3.3. Remark:Returning to (1.4), we see from (2.6) and (1.3) that

and hence, as expected,

Stanford University
California, USA
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