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§ 1. On the use of step-functions in S,

We wish to discuss in detail a method of extremalization which is based
on the use of step-functions. Let us consider a subclass of univalent functions,
the class S, which although rather simple, displays features typical of
extremum problems. This class consists of the normalized functions

(1) f) =2z + a2+ .. .,

regular in the open disc [z| < 1, and of which the boundary rotation is
bounded by the number kx, where 2 <k < 4. According to PAATERO,
the functions of S; are univalent [3].

The functions of the class S, can be generated by means of functions
y of bounded variation in the following sense:

The class S, consists of those functions f which satisfy the Poisson-
Stieltjes equation

2

fe / g
| — f— - I a—— [, i l "
(2) 1+ Zf’(z) 3 0 p— dy(g) , lz] <1,
where
27 27
(3) /dw(qv):?:/dw(tr)ék, 2<k<4.
0 0

In what follows, @, denotes the space of all functions y of bounded
variation, defined on the interval I = [0. 27] and satisfving the conditions
(3).

By using the relation (2), the coefficients «, in series (1) of f(z) can
be expressed as functionals a,(y) of the generating function . Thus, for
example

) -

~ ~

27

. 2 .5
6ag(y) = | / 6""‘(11/'(@) + / e dy(g) .

0 0
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For every y € @, there is accordingly a unique f € S, and this mapping
@, — 8, is surjective. The maximum of the absolute value of coefficient
a, in S, (p fixed) can thus be determined by maximizing the functional
Ay) = lap(p)| in Dr.

From now on, @, is regarded as a metric space, with the metric o
defined by

o(p1, wo) = sup [py(@) — vale) | .
g€l

The functional A(y) is then continuous. This is easily seen for instance by
using a connection which expresses the a-coefficients by means of certain
c-coefficients (cf. TammI [6]):

r
I[p(p - a,,, == 2_ elp — v+ Dy,
p=1
(6)

CI; — /.()_ipqr dl/‘((//) (a,l — 1, p = 1, 2, .. .) .

0

By partial integration, we get the formula

2z

(7) Cp(p1) — Cplye) = — ip/BGipl' [wi(@) — welg)] dy .

0

from which, together with the fact that the a-coefficients are polynomials
of the c-coefficients, there follows the continuity of the functional A.
Let now 2}, denote the subspace of @, which consists of step-functions.
Since 2} is dense in @, it is tempting to see whether the functional A4
can be maximized in X In fact, if there exists
max A(c) = A(5),

€ X
we have

max A(y) = A(s),

wed
as a consequence of the continuity of 4, and the fact that Y, is dense
in @ In cases p =3 and p =4 we show in fact, by applving the
methods of calculus, that the maximum of A(y) in X, really exists, and
its value can also be found. This will be done in §§ 2 and 3. It should be
noted that this also leads to a differential equation of Schiffer-type for the
extremal function.

Naturally, there can be extremal generating functions also in the comp-

lement @, — X}, although our method does not give them. In the deter-
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mination of extremal ¢ € 2}, we use a special variation, applicable only
to step-functions (cf. 2 §, n:o 1). Consequently our elementary necessary
condition for the extremum is not applicable for characterization of possible
extremal generating functions which are not step-functions.

§ 2. A necessary condition for the step-function maximizing |a;|

1. Variation of the points of discontinuity
Let yy € X be the step-function which has non-zero jumps A, 4, . . .,
Ay at points ¢y. @s, . .., ¢n. By (3),

N

N
(8) d,=2 Y A, <k,

where 2 < k < 4. The variation used in the following is effected by
shifting the points ¢, and keeping jumps 1, fixed.

We turn to the case of ag. It is well known that no restriction is involved
in assuming a; to be real and positive. We introduce the notations
(9) t, = € (r=1,2,...,N).

v

Then, by applying the formulae (4) to step-function yy, we get

N
] 2 ay(yn) = Z If’ .

(10)
N A4\ N oA,
l o< oam = (3 ] <3
r=1 %y r=1
By use of the abbreviation
’ N N
(11) H(ly by ooty = (DA L)+ 1,12
the function to be maximized is
(12) Agty, boy « « - ty) = 12a3 (yN)
= H(ty, by ... ty) + HUT 05 1)

For maximal yy € X the conditions

04, 84,

e . —1,2.....N
ap, ' an, =124
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necessarily hold. In view of (11), (12) and the assumption /1, = 0, these
conditions are easily reduced to the form
2a, 1

2@W+ﬁ—7~—F=0 (w=1,...,N).

w 14

These equations are of the fourth degree with respect to #,. The extremal
step-function has thus at most four points of discontinuity ¢,, i.e.

N <4,
On the other hand
2 <N for b > 2.

This is seen as follows. Let ;5 denote the positive jumps and A the ab-
solute values of the negative jumps of yy. By (8) we have

DAF =S Ar=2, S AF Y A7 <k,

from which

(13) Sap < —1.

k ' —_
5+ L YoA; <

|

If k=2,247 <0. Then every A, = 0, and we are dealing with the
convex case, which has been completely studied by LOWNER [2]. We are
here interested solely in the non-convex case, where at least one A7 > 0
and thus £ > 2. Both of the sets {Af} and {A;} are then non-empty,
and hence N > 2.

It should finally be noted, that a function f €S, generated by a step-
function yy € 2; has a polygonal image domain. The term »extremal poly-
gon» is employed for the image-polygon of function f € S;, generated by
an extremal step-function.

The results are collected below.

Theorem. The pre-tmages t, (u == 1,2.....N) of corner points f(t,)
of an extremal polygon satisfy the equation

1 2a, )
(14) .(1,13(,2) = —22 -4 _:_ o 20/22 22—
or
(15) —2205(2) = 21+ 2a2% — 20,0 — 1 =0,

In the non-convex cases, 2 << k <4 number N of the corners of the extremal
polygon satisfies the inequalities

(16) 2< N < 4.
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2. Determination of the extremal step-function

The necessary condition g¢,(z) = 0 considerably reduces the number
of alternatives for the extremum case. Let us examine the different possi-
bilities N = 4, 3 or 2. The last case of these is the easiest, and will be treated
later on. If N = 4, all the pre-images ¢, are roots of the equation gs(z) = 0.
If N = 3, this equation has also a root which does not belong to the system
of pre-images. Such a root of gs(z) = 0 is termed a free root of this equation.
It should be noted, that the symmetric structure of (14) implies, that

with z, also 3 is a root. This means that if the absolute value of the

free root differs from one, then two free roots necessarily exist. Thus in
the case N = 3, all the roots of gy(z) = 0 necessarily have the absolute
value one. — Apart from case N == 2, accordingly, we have only the case
in which all the roots of g(z) = 0 have the absolute value one.

For study of the last mentioned case, the numbers 1 -4 .1, are esti-

k
mated. For k << 4 there holds — — 1 <1, and thus, from (13)

2
ok
Jv ;:5—-—].31,
1 — A7 >0.

Since obviously 1 - A} > 0 we have generally
(17) 8, =1-+4,>0 =12 ....N).

Bxpression (10) for the coefficient «; can now simply be rewritten in the
quantities (17).

Denote the roots of gs(z) = 0 by 2.2, 35 7. As was stated above,
in cases N =3 and N = 4, all these numbers have the absolute value
one: lz,0 =1 (»=1,...,N). The pre-images f, are among these num-
bers z, If the coefficients of (15) are written as symmetric polynomials
of the roots z, we have

Dy R ~ | | . -~
20y = — (2, + 25 + 23 — %) -
0 = 2% + 2023 + 233 — %% T

20y == 212973  Za¥3%q -

l — 1 = 222524 .

On the other hand, for real @, and for «,. we get from (10)
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‘ea3~<zJ FHY AL,
N
]2d222/1”t”'

1

N
If ¥ =3, the sum Z does not include the free root of equation gy(z) = 0.
T

It is of use to complete this sum, making the following agreement:

N

(19) In Z take /1, =0 if z, is a free root.
1

For a; and a,, this allows of the following presentation, which is valid
in both cases N =3 and N =4

4

4
60,3 = (Z ..11,41)) Z
4

le

1

l 28, = Y ,z,
1

Expression (20) of ag is now simplified by applying (18):

(20)

(21) bay =) 0,7 .

In view of agreement (19), condition (17) is clearly true also if z z, is a free
root; in this case ¢, = 1. Therefore, it can be deduced from (21) that

4
0 < 6ag < 0,lz,2
1
4 4
=>4,=>
1 1

:4+i4=6;
1

as; < 1.

From this we conclude, in view of (22), that values N =3 and N — 4
do not give maximum for a,.
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In the remaining case N = 2 we have by virtue of (13)

k k
G=df s b A= =

We omit the easy calculations needed to give
1
(22) max dy = (k% -+ 2).

The extremal step-function, for which «; > 0. has the jumps at the points

¢, =0, @=1m.

3. Differential equation for an extremal  [f(z)

The above procedure, starting from the inequalities (17), was first
applied by ScHIFFER and Tamw1 [4] for maximizing a,. 1t has been repeated
here as a preparation for the following considerations. in which a differential
equation for the extremal f(z) will be derived. As stated above. the step-
function generating f(z) has N =2, I+ 1, = 2. = 1, ty = — L

We start from the Poisson-Stieltjes presentation (2). In the step-function
case this assumes the form

f(2) N, +z
23 ] AL z "7"— = % — _J_I” .
( ) f (:) UI'ZI fv - 2

We desire to rewrite the right side of (23) by applying the roots z, of the
equation g,(z) = 0. It should be noted that although we are aware that
the maximum case for @, is N = 2. simultaneous consideration is given
below to all the cases N = 2,3, 4. as an exercise for the study of a, in
§ 3. By application of the same technique to the case of «, there is obtained
the result (50), from which the value of N. which belongs to the extremal
polygon, can be deduced.

According to agreement (19). formula (23) can be written in all the cases
N = 2,3. 4 in the form

P~

t,—(:)
[T

(24) 1+ 2

We write the sum on the right of (24) as follows

4 . ~
(25) S,
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Develop the first term in the brackets by using the relations (18):
(Fta)(E—2)(z—2) (2 —2) =28 — (—2 + 25 + 25 + 2)??
T (=22 + 225 + 22 — 22y + 292 — 257) 2P
— (=22 + 29257 — 25247 — %) 7 — 4Zatet
=2 — (=2 + 2+ 2+ 25+ 2)8 — 22 (—2 2 2 2y oz 22

2 1 1 1 1

— 225252 (*—~—~-A~ — —)zAzzzz
17273~4 17273~4
2 2 2 2y e

2
=2t — (=22 — 20,) P — 22(—2 — 24,) * + <; + Zag)z + 1.
1

The other three terms within brackets in (25) are treated in a similar fashion,
multiplied by corresponding 4, and added. The [ J-expression in (25)
then assumes a form which can be further simplified, in view of (20), as
follows:

+ 2(4@; 4 6ay — 4a3)22 + 2(2ay, + 2a,)z + 2
= 2(z* + 4a,2® + 6ag2? + daz + 1) .

The final form of equation (23) is thus

(l 4a, o
f//(z) 22 ‘; —+ B + 6@3 -+ 4(122 - 32)

14z = T R

f(2) :zzg;(z)

Summary. Let f(z) € Sy be the function generated by a the step-function
yn(g), which is extremal with respect to the coefficient az > 0. Let the points
of discontinuity of wn(g) be ¢, (u=1,...,N <4). The pre-images

— — ol
z—tﬂ—e'u

of corner points f(t,) of the extremal polygon satisfy the necessary condition

— 20z — 2= 0.

1
(26) 90 = 5 +
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The Poisson-Stieltjes presentation for f(z), generated by wy(p), reads

Here the numbers z, are the roots of equation (26). If N < 4 some of the
numbers z, are free roots of equation ¢s(z) = 0. This means that they are
not among the pre-images t, (u =1, ..., N) mentioned above. The numbers
A, belonging to the free roots z,, are taken to be = 0.

Equation (27) can also be written in the form

28 1425 = —
(29) 7o T 5
where
1 4a, _
(29) 6113(2) = ; + ':— + 60/3 —)— 4“22 "+— 22 .

It is emphasized that we are here led to differential equation (28), which
also results from application of the method of interior variation (SCHIFFER-
TammI [4]) in class Sk The fact that the step-function-generated extremal
f €8, satisfies the differential equation (28) is thus already implied by the
most trivial necessary extremum conditions of calculus.

§ 3. The coefficient a,

1. Differential equation for an extremal f(z)

It will now be shown that the above procedure is also applicable to the
next coefficient, a,.

From (6) it is first deduced that
24y = ¢; — 3¢, — 2¢5.

| N,
l C, = / e_m” /Zw(()l) - Z _f;l— .

0

(30)

We will also need the expressions of coefficients «, and a,, and have

~
0 < 240y = (

d
+
]
|4
-2
~1
|
M=
B

(31)

o
S
|
4> -
\I“/N —
+ .
~[1=
|

B ag

20y =
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For further treatment, it is of value to express the different sum-expressions
in terms of the coefficients. By virtue of (31),

N A
- = 2a s
20,
o N, 5
(3‘2) Z 72‘ = 6a3 — —l(l«_, s
1 v
N, ,
= 12a, — 18ayu, + Sas .

The following notations similar to the former ones will be used:

N N N N
, ] Hity by, o oooty) = (O ALY 33 A8, > A 425 A,
(33) T i T T
] A,= 2 Re {24a,} = H(ly, by, ... ty) + HT (7 IRY .

A necessary condition for an extremal step-function can again be derived
by use of the necessary extremal conditions of calculus. Hence. we neces-
sarily have
04, 641, (3 i 2 3ay 20, 1 )
— = Byt 20,2 B ]
at” tu 3 "u + 2 o " f” f’-’ [;3’

It has accordingly been found that pre-images f, of corner points f(t,)
of the extremal polygon are among the roots z, (v =1....,6) of the

v

equation
1 2a, 3aty
(34) Gue) = 5+ b 3EE - 20 = B =0,
or
(35) —23g,(2) = 28 + 26,2° + 3A32* — Bay® — 26z — 1 = 0.
Consequently
(36) 2<N <6 2< k< 4).
If N < 6, then (34) has also free roots z, which do not belong to the pre-
images, denoted by 1, If for a free root z, there holds 'z, - 1. then

the symmetric structure of (34) indicates that together with =z, the number

3 is also a free root.
v

Again, it is desired to make use of the symmetric expressions of all the
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roots z, (v =1,...,6). Thus, an agreement is made which allows of

N 6
replacing Z in (44) by Z:

v

6
(37) In Z take I, =0 if 2z, is a free root.
1

To arrive at the connections between the coefficients (31) and the
symmetric expressions of z, mentioned, compare the left and right sides
of the identity

(38) —280,(2) = 2% + 20,25 + 3dgzt - Buy® — a5z — 1
e — ) () -2 () (2 — %) (2 — %)
=8 — O + Ut — U3 4 Gy — Uz + Gy
= hg(z) .

Here, coefficients €, have the foliowing symmetric expressions:

6
(,»'5:2:,.

v=1
3 6
v ) .
(’4 - Z “u Z T
n=1 v=y+1
4 5 6
R S S
. 3 L T L T Tyt
(39) =1 u;—l y=y-+1
5 [
=
— s = s = ~—1 ~—1
C2 T ¥17273747576 ~n Z R
n=1 p=y =1

[
-
|l

6

A e I -1

~1°2¥3%4%5~6 Z A
=1

Co = 21292524757, -

Comparison of the coefficients in (38) now indicates the connections, which
can be regarded as necessary extremum conditions

20—‘2 - ‘_Cs :

3d, = (.

(40) 0 = 0,
—3a; = Oy,

—2a, = —-Cy,

-1 = (.
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It is readily found, that the first and fifth condition (40) are equivalent,
and similarly that the second and fourth condition (40) are equivalent to
each other. — The first equation (40) gives

6
(41) 20, = — Oy = — ) 2,
r=1
1 ~
Now, if |2,/ = 1, then 2, = o If |z,] ## 1 there also exists a free root
1 1
2o =50 Z, = S Thus we can write (41) in the form

61
P
According to the last equation (40) this is the same as
6 1
20y = 212525242576 Z Z =
and we have arrived at the fifth condition (40). — The equivalence of the

second and fourth condition (40) is proved similarly. Hence, four indepen-
dent necessary conditions are left:

[ 26, = — C;,
3a, = C,,
(42) J a3 4
] 0= O,
| -1= ¢,

Our final aim is that of utilizing (40) in rewriting the Poisson-Stieltjes
presentation for the extremal f(z) given by the extremal yy(¢). In the
case of @, the general form (23) of the presentation concerned. can be
written

O AR
. . 1 =
(43) L4epg =4
Here again, use is made of agreement (37). — Initially, it should be noted
that
(44)
b 2z + z —1
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For evaluation of the [ ]-expression, we will first rewrite its first term.
Let us denote

(45) %6(2) = (24 2) (2 —2) (2 —723) (z — 24) (z — z5) (2 — %) -

This polynomial is closely connected to the polynomial 7%g(z) defined by
(12). We write

] ho®) = 3 (17 0,2 (C=1),
(46) i Y ) i
| (@) = 3 (=17 8,7 Co=1),

I

and will express coefficients bv by the aid of coefficients C,. The only
alteration needed to get C, from C, is to change the sign of 2; in C,. —
In simplification of the expression of C, we need the connection

6 1

which follows from the considerations connected with (41). Consequently:

Cs= — 22 + G,

N 6

Uy = — 221221;_6’04:‘021(‘—21 -+ C5) + Oy,
p=2
5

C~’3=——2212 uZz + O,
w= 1/——u+l

= - zl[—~12~ ) ,LZZJ—FC

u=1 p=,+1

= — 2 [—a(— 5+ C) + O]+ (.

— 1§ 1 »—1
Cy = — zzg2gtatste(— 227 Z + Z Z

=2 w=1 r=(+1
6 5 6
- ~ 1 ~=1 ~=1) =1 ~—1
= gt | — 227N — A Y ) Y Aty

r=1 w=1 pr=y+1

= — Oy [— 2271 (— 27t 4 )] — (s,

j J— ~=1 '—1\
O = — 22925247576 (— 227 -+ Z

r=1

— () .01 (O
—_— (0 .-4/-1 (/1 )

CO = (;0 .
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Hence quite a simple expression for hg(z) results, when still applying the

necessary conditions (40):
Ze(z) =28 — (— 2z + G528 4 [— 2z (— 2 + C5) + C] 2#

+{2%[— z(— 7 + C5) + Cf + O3} 2
+{— Col— 27— 27" + 05)] — Oy} 22

—(Cy- 27t — () 2 — G

=28 4 (22 + 2a,) 2°
+ (222 + 4ayz; + 3d,) 24 - (223 + a2 + 6dgz) 2P

4 (2272 + dapzt + 3ag)2? + (2271 4 2a,)z 4 1.

The first term in the [ J-expression of (44) is thus

he(z) Ay = A;28 + 2(z, 4y + @y41)25

2

P4

+ (2234, + 4dyz Ny + BAn)2A + 2230, + 20,850, + Bdgz ;) 2B

N 1;11 Al Al 1 A
P23 ey — + Bagdy | 2+ 2\ a2 -y
A % /

“1

By cyclic permutation, and addition the [ ]-expression of (44) assumes the

form

A, + dzi 1,) 28
1

—
—
I
M=
%,
L
|
[N
—~
A=
Q(\!

6 6 6
L @Y 2, FAa Y g L, Ba Yy 1)
1 1 1

6
2 37 > 3
S, 4 Bay Yz, ) 2
1

6/ 6 6
TEEI D SR R >,
1 . 1

6
now be expressed in the coefficients a, by using

All the sums Z can
1

expressions (32) and agreement (37). This finally gives
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[1=2224 22, + @-2)°
+ [2(6ay — 4a3) + 4a, - 2, - 3dy - 2] 24
+ 2[12a, — 18,d; + 8d3 + 2a5(6d; — 4@3) + 3dy -+ 24,] 2
+ [2(6a5 — 4a3) + 4ay - 2a, + Bag - 2] 22
+ 2(2ay + Ay 2)z + 2
= 226 | 83,2% + 18@42% + 24a,2% 4 18ag2% - 8uyz + 2.

The right side of (43) has thus assumed the form

6 = > -
bR ey
y=1 Zv -z —z g4(’:)
5 L _ g da, 1
23 b 4a@y,2® -+ gz -+ 12ay - ot e T

94(2)

Theorem. Let f(z) € Sk be an extremal function for the coefficient ay > 0,
which is generated by a step-function yy(@) with the points of discontinuity
@, (w=1,...,N). The pre-images 1, = e« of the corner points of the
extremal polygon satisfy the necessary condition

1 2a, 3ag _ _
(48) 9a(2) = e + o T 3ag — 20,22 — 2% = 0.

The Poisson-Stieltjes presentation for f(z) is

Here z, are the roots of equation (48) and for the corresponding A, , agree-

ment (37) holds. Equation (49) can be written in the form
') O4(z)

50) 1 + I = .

( 7o )

where
1 da, 9y

(51) Oy2) = 5 + — — —— — 124y — 9dzx — 4,22 4 23,
z z z

2. On determination of max a,

Result (50), which was proved to hold for every extremal function

f(z) generated by step-functions is the same as that obtained from formulae

well known in the theory of variation of univalent functions [4]. We con-
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sider it important to have arrived at the result (50) without any application
of the variational theory mentioned.

In [5] SuIFFER and Tamui, were able to determine a sharp upper bound
for |a,!. This was done by starting from the Poisson-Stieltjes presentation
(49), and the necessary condition (50). Comparison of the right sides of these
equations provides the necessary conditions (15) and (16) of [5]. From these,
maximalization follows laboriously by a proper use of Schwarz’s inequality.
— It should be remarked, that on the ground of the present paper, the con-
ditions (15) and (16) of [5] appear to be direct consequences of the necessary
conditions (42). Thus our conclusion is:

The sharp wpper bound of |ay| in the class Sy follows already from the
necessary condition (48).
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