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Preliminary Remarks

Contour integration can be used successfully to obtain integral operators
which transform an analytic function of several complex variables regular
in the neighborhood of the origin into a harmonic function. Because the
structure of analytic functions is richer than the structure of harmonic
functions, the study of such operators may serve as a tool for the investigation
of harmonic functions. In the following we shall be concerned with the
Bergman-Whittaker operator defined below (see [2], [3]).

F and H Spaces

Let us consider a neighborhood ' of the curve |{| = 1 in the (-plane,
G={l:1—e<{ <1l-+ee>0}
along with the neighborhood U of the origin in the u-plane
U={u u <o0,0>0}.

Let M denote the set of functions f(u,Z) of two complex variables u
and ¢, analytic in the Cartesian product (which depends on f) of the
two neighborhoods y and U; and possessing a development of the form

(1) fa, )= > amum
N<m<w l=—m
valid in U x Gy,

We say that two functions f defined in U; x Gy and g defined in
Ug X Gy are equivalent if f(u,l) =g(u,l) for (u,l) € (UsN U,) x
(GfN G,). This is an equivalence relation and the classes determined by
it form an algebra with respect to the usual addition, multiplication and
multiplication by scalars. We shall denote this algebra by F. In the
following, however, in order not to complicate the notation, we shall not
distinguish between a function f and an element of F determined by it.

In a similar way as above we define the linear variety H of classes
of complex-valued harmonic functions of three real variables x,y,z com-
patible with each other in a neighborhood of the origin. Both F and H
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can be endowed with a topology in a natural way. For instance, we can
introduce the notion of convergence in H by saying that h = lim %, if
there exists a fixed neighborhood of the origin on which a certain sequence
of functions equivalent to 4, converges uniformly to the function equi-
valent to h.

Bergman-Whittaker Operator

Let us consider the linear mapping By F - H given by the contour
integration formula

B 1 / ; d¢ hen h = h(z, y, 2)
af = 271 M_;f(u +9) =" €, for (v, y,z2) € Us
(2) . .
iy + = iy — 2
w=B+ X+ 2 X =0, L=, zr =

The mapping B; (continuous in the natural topology) is called the Bergman-
Whittaker operator.

Since the function f(u,l) € F has in the neighborhood of Uy x Gy
the development of the form (1), the monomials "™ m < n, form a
inearly dense set in the space F. The complex harmonic functions

T
Lo == By(u™ &™) = — [ w"i™ ' de, m' < n
2m
=1
are called the modified spherical harmonics. They can be represented also
in the form

= — " R" P (cos @)™

Here R, @, and ¢ are the spherical coordinates of the point (. y.z). P, .
are the Legendre polynomials (see [3]).

The spherical harmonics /.. are linearly dense in By(F). By a known
result of Bergman, B, is homeomorphic and onto H. This was used by
Bergman to introduce the operation of composition of the elements in H.
The composition #; * hy is defined as the unique element % € H,, such that

h = Bs(f1fs) »
h = By(fi), F=1.2.

With this operation H becomes a topological algebra. One can now study
the subalgebras of [/ which are isomorphic to the algebra of analytic
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functions of one complex variable and the corresponding subalgebras of
H. An example of such a subalgebra is furnished by the set of those func-
tions belonging to # which in a neighborhood of the origin can be developed
in the series of monomials of the form

(kP n=20,1,2,..., P <K,

K, P are fixed positive integers. This algebra denoted usually by fx po

was introduced and investigated by Bergman (see, for instance [3]).

Consider a fixed polynomial 7 of the variables w, S, (!

M
(3) Wu, &, 27t = w Z wy 5
K=m

such that »r > 1, —r <m < M <vr, w, =0, wy #0.
In the following we shall be concerned with the subalgebra Fy of F
containing the elements ¢ of the form

Hu, &) = t(y) = Z ag if*
K=0

where t() is a meromorphic function regular in the neighborhood of the
origin and

y =W, ).

We introduce the following:
Definition. The function % € H is called IV-meromorphic if

(4) h = By(t). t € Fy.
The W-meromorphic functions form a subalgebra Hy of H and
Hy = By(F) .

We define the order o of the W-meromorphic function to be the order of
the corresponding meromorphic function (). Let 7'(r,¢) denote the
Nevanlinna characteristic function, then

— log T'(r. t)
o = lim -
T—> o0 log r

Let us call the W-meromorphic function, resulting from the entire function
t(1)), the W-entire function. The formula (4) defines the [F-entire function
h(x,y,z) for all x,y,z , and the modulus of h(x.y,z) of the order ¢ can
be estimated by an exponential function of the variable o = (2 + y2 4 222,
Indeed, for each ¢ > 0, we have It(n)| < exp (15 2*) for | > N = N(e).
The continuous function #(y) is bounded on the disc | < N by a certain
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positive number M. Denoting B = (Z wi )T, B> 0, and taking into
account that K

max |u| = o
ls1=1

we obtain

1
h(x, y,2)] < o / t(n)!ds < — /max elnl®™ M)d

I =1

r(o+z) ro+ek
max (e? , M) ds < max (e , M)

[¢]=1

I

SIR

where &* = re. We can formulate this result as follows. For each & >~ 0
the W-entire function of order o satisfies the inequality

i, y,2)| < e

for sufficiently large o.
In the case of a W-entire function which admits a development in
spherical harmonics of the form

M, y, z) = Z Mk Lok

one can obtain an explicit formula for the order ¢ in terms of the coeffi-
cients «, x . Suppose that

= Z [/ 7!"
n=0

Hence
n M
"
Mar,g = (n Z (tom 5« -, phar) I I wKK ’

Jug=n K=m

MKug=1
In particular,

arn,nm = an(wm)n .

Substituting this into the known formula (see [7])

—  mnlogn
0 = lim T g
n— oo Iogla"f nm i

Similarly,

— n log n
o= lim —— -

-1 -
n-—> w0 log !anr,nM\
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If a # t(0) = a,, a complex, then the reciprocal —— = r, belongs

to Hy. By the Mittag-Leffler theorem, ty) —a
1 © 9 M )

I3 — o ¥;_1{37W“‘ . l

® w7~ 55 Lo awr pin) +10)

where p, are the convergence-producing polynomials, () is entire, M,,
are complex constants and A, (a) denotes the a-points of the function
t(n). By known theorems the order of 7, is ¢ and the series

converges for each &> 0.

For fixed 29, 3°, 2%, consider the rectifiable Jordan curve of integration
s, which does not pass neither through the origin in the (-plane, nor through
the poles of the integrand

M

vs

W=
for v = 1,2,..., Then there exists some neighborhood U of the point
(a9, 90, 2) such that the curve s' still does not pass through the poles of
g,.(¢) for all (x,y,z) € U. Since A, - o, the series (5) converges uni-
formly on. U x s! and the integration of it over s; can be carried out term
by term. Consequently, one obtains a harmonic element of 7. defined in
U. In the case when s! is the unit circle and 2° = y° =2°= 0 this
element belongs to Hy,.

In the following we restrict ourselves to the case when ¢(;) has only
simple zeros in the #-plane. The general form of the term which contributes
to the singularities of 7, is

P s o M, =M
Te' = 27.”,” lgv Sy 9, =9n = (7] _ A,,): sy, = My

v

We shall distinguish three cases depending on the form of the corresponding
expression

9 ! ,
g:JLM;,:(W}—oc)C’ VAU
1
i) m=r. Then g = P(E)° where
5

P() = P(w,y, 2 ) = (w48 + XT+ Z%) — ] <.
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Since x 7 0, there exists a neighborhood U of the origin 0 in the x, y, z-
space such that for (x,y,z) € U, g has only one simple pole { = 0 inside
the unit dise [{] < L.

iil) m=r7r — 1. Then g¢g= PE) , Wwhere
P(l) = [w(Z8 + XC + Z%) — &) + w, (28 + X + Z*) .

Since at the origin P has only a simple zero ¢ = 0, for (z,y, z) belonging
to the sufficiently small neighborhood U, P has exactly one zero in the
disc [{] < 1. At this point g has a simple pole.

~k
i) m=r—1—k 0<k<2r. Then ¢g= IJ_ZC) , where
M—m
P(2) =Y (B8 + XC+ 290w, — x P41,
u=0

Since at the origin P(£) has only one root of order k 4 1, for (x,y, z)
belonging to a sufficiently small neighborhood U, P has exactly & -+ 1
zeros in the disc |[{| < 1. Hence g has k + 1 poles in this disc if Z* = 0
and k poles if Z* =0, X 0.

In all three cases the element %) € H, can be represented in U as
a sum

7’5:) = R

1

i

where R is a harmonic element defined in the disc D c U by

1
Rzz% g,dé‘.

s
Here s is a sufficiently small curve about the simple pole &; such that
the pole b; of g for j #1 does not lie inside s;.

The question on the possibility of an extension of the harmonic element
R, is partially answered by the following theorems:

Theorem 1. Consider the set 7' of ordered pairs (p; ¢) = (v, y, z; §)
such that ¢ s 0 is a simple root of P(x, y,z,»). T is a three-dimensional
smooth manifold imbedded in E; x C. Let (29, 4 20, b)) € T, and let
T, be the component of T which contains (29, 42, 29, &;). The component
T, with projection

7‘[(9[), Y, 2, C) = (x7 Y, 2) € B3

is an unbranched covering manifold of (7).
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Proof. Consider the point (2', y’, 2’, {') € T,. By a theorem of Hurwitz
there exists a neighborhood U of (2/,y’,2) and a neighborhood V of
(" such that for (x,y,z) € U, P(x, y, z, ®) has exactly one simple zero in
V. Hence the projection = on 7,N (U x V) being continuous is a
homeomorphism and provides a coordinate system for 7.

Theorem 2. The harmonic element given in the neighborhood of
(@0, 90,20, b)) €T, by

1
Ri(x,y,2,0) = Ri(x, y,2) = 5 /g,,(o))dm

S

can be extended to the univalent harmonic function 7.
Proof. The extension of R; on 7T is given by the formula

_
(6) Rz, y, 2, ) = i / g,(w)do = Res. g,(») ,

where s is a sufficiently small curve about (. Since the right-hand side
of (6) depends only on (2, y, 2, {), the extension is univalent.

Theorem 3. Denote by S the set of (x,y,2, () € B3 x C for which
P(x,y,z 0) does not vanish identically and possesses a multiple root
¢ # 0. In this case it holds

P
P(r,y,z,0) =0, — P(x, . z,0)]

ly=-=10.

am =

Suppose that (¢/, 5,2, ) = (:)€S=SNT, ¢= (', y,%). Then

the extension Ri(w,y,z, {) is unbounded in the neighborhood of (gq; ').
Proof. Let

lim p, = ¢ , lim 2, = 2. (pn; Zn) €T .
Then
. M2
(M Rilpn; &) = Res, (Pl = iy = sy

where ¢, = 0, &) denote the roots of P(p.;®m) and B, denotes the
leading coefficient of P. One infers from the Hurwitz theorem that at
least one factor in the denominator of (7) tends to zero, while all the others
are bounded. Since ' = 0, our statement follows.

Consider now the element r, € Hy. We say that the point p € BB
is a singular point of r, if the extension of 7, along the curve (@),
0 <6 <1, joining the origin with p, is possible for 0 <6 <1, but
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for 0 <@ <1 it is not possible for any curve (@), y(0) = 0, »(1) = p.
Let S and 8® be the set of singular points for r, and %), respectively.
Let d, be the minimal distance from S® to the origin. Then d, > 0.
For each disc @,

SNE=(UsHne,

v

where the sum |J is finite. Hence

v

S = 8.

r=1

We set

ky, = min d(x) , k* = max d(~) ,

la|=1 joi=1

where d(x) is the minimal distance to the origin from the set of the singular

points of the element
1 M, d¢
Op) — — [
) 2m‘/ O — )

s

Since the integrand is homogeneous of degree r with respect to the variables
x, ¥, 2, we have the inequalities

(8) k* ]A’villr S dv S k* lAv}l/" H

where d, = d(4,).

In conclusion we obtain the following theorem characterizing the relation
between the order of the W-meromorphic function and the geometric
properties of the singularities of its reciprocal:

Theorem 4. The set of singular points of 7, is given by U S%.

If p is the order of the corresponding W-meromorphic function, then for
each ¢ > 0 the series

1
(9) Z d (ayr+
converges for each value of a # a, Also, if the series
1
o Lo

converges for three different values of a +# @, then it converges for every
value of @, and the order of the corresponding W-meromorphic function
is not greater than o.
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Proof. By the inequality (8) the series (9) and (10) converge simulta-
neously with the series

1 ~
X R o>0
and
1

e

v

[N

respectively. The results follows from the Nevanlinna theorem, see [7].

Stanford University
Stanford, Ca, USA.
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