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Introduction

The duality for the cohomology of sheaves arose first in connection with
the Riemann-Roch theorem. The proof of the classical Riemann-Roch
formula for a compact non-singular analytic curve X depends on the fact
that the spaces

HY(X;<L) and HYX; L1 Q w)

are dual for all invertible sheaves <£ on X. Here o denotes the sheaf
of germs of holomorphic differential forms on X. This duality theorem
was generalized by Serre for locally free sheaves of finite type on compact
analytic manifolds (Serre [5]). His proof depends on the use of distributions
for the construction of resolutions of sheaves.

Later, Grothendieck generalized the duality theorem in several ways
(cf. Hartshorne [3] for the algebraic case). An essential point of his method
is the notion of residual complex which replaces distributions. On the other
hand, Serre observed that his proof may be extended to coherent analytic
sheaves which are not locally free, provided it can be shown that the ring
of germs of C*-functions at a point of C" is flat over the ring of germs of
holomorphic functions. Malgrange has proved this by means of division
of distributions, thus extending Serre’s duality theorem (Malgrange [4]).

In this paper, we prove the duality theorem for coherent analytic
sheaves, without division of distributions following a suggestion of Grothen-
dieck according to an oral communication by Malgrange. The proof depends
on localisation and on spectral sequences for passing to the global case.
In addition, we calculate the cohomology groups with compact supports
locally by an inductive argument. Hence distributions are wholly dispensed
with.

1. Ext with supports

Let X by a topological space and @y a sheaf of rings on X. Let 7
and <G be ©y-Modules.

Let ¢ be a family of supports on X (@, p. 133). We denote by Hom, o
(7,°G) the subgroup of Hom, (7, <G) which consists of homomorphisms
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with support in @. In the abelian category of ©y-Modules, each object
has a injective resolution (G, p. 261). Hence the derived functors of

CG I— Hommox (7, <Cj)

exist. In fact, let )" bearesolution of <G by injective @x-Modules. Then
the cohomology groups H"(Hom, o (7,7))) are independent of the

resolution )'. They depend functorially on 7 and ¢, and are denoted
by Ext! o (7,G). Clearly Bxt) o (7, G) = Hom, o (7,G), since the
latter is left exact.
In the case 7 = @y we have
Hom, o (Ox,C) = I (G)
and hence

Ext}, o, (Ox,G) = Hy(X; ).

In what follows we are mainly concerned with two families of supports.
First, if ¢ consists of all closed subsets of X, we obtain the ordinary
Ext groups

Exty, (Z,<G)

(cf. @, p. 263). In this case the symbol ¢ is traditionally omitted.

In the second place, we shall consider the family ¢ of all closed compact
subsets of X. If X is a locally compact Hausdorff space, then the family
¢ is paracompactifying (G, p. 150).

Let U be an open subset of X. Then the restriction map

Hom, (4, () — HomOXI g FU,G0)
induces homomorphisms of derived functors
Exty (7, G) — Exty 1y (YU, GIU).
Thus
U Bxth o (71U, GI0)

becomes a presheaf which is denoted by extg (4, <)

Let 11 be an open cover of X. For each presheaf < of abelian groups
on X, we denote by C(1l; <£) the alternating cochain complex of the nerve
of 1 with coefficients defined by <£. This complex may be augmented
by a canonical homomorphism “£(X) — C°(11; <£). The cohomology groups
of C'(W;<£) are denoted by H'(11; <£) .
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Proposition 1.1. Let 7 and G be ©y-Modules. Then, for each open
cover W of X, there is a spectral sequence E with

Er = Cr(1; eX'DqOX (4, C(;))

converging to Ext, (7,G).

Proof: Let )" be an injective resolution of <(j, and denote by <L
the complex of sheaves C)(/mnox (7,°)). Let us consider the double com-
plex ¢ with

Cr = Or(11; <L9)

(cf. @, p. 210). The first spectral sequence of € converges to H'(C"(11; L)),
and

"B = CP(W; HY(<L'))

where H2(<L') denotes the presheaf U — HY(I'(U;<L")). Clearly HY("L') =
exth (7, G) .

On the other hand, the sheaves L7 == (s,., (7,°)) are flabby (6,
p. 264). Then the second spectral sequence of € degenerates, and the
augmentation

T(EL) — O (1 <L)
induces an isomorphism on the cohomology of simple complexes
Exty, (7, ) 53 HY(C (15 L)).

Hence the first spectral sequence of O has the desired properties.

In the rest of this section, we shall assume that X is a locally compact
Hausdorff space. Hence the family c¢ is paracompactifying. If U is an
open subset of X, we continue to denote by ¢ the family ¢/U of compact
sets contained in U.

Let <£ be a sheaf of abelian groups on X. For each open subset U
of X, we set L (U)= I(U;<L). Each section s € I'(U; <L) may be
continuously extended to X by zero. Hence there are natural injections
L(U) = L(V) for open sets VD U. Thus £, may be considered as
a precosheaf.

Let 1 be an open cover of X. For each precosheaf 9 of abelian groups
on X, we denote by C.(11; A) the alternating chain complex of the nerve
of N with coefficients defined by . This complex may be augmented
by a canonical homomorphism Cy(1l; A) — A(X). The homology groups
of C.(1; A) are denoted by H.(U; YA).
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Let <£° be a complex of sheaves on X. Let us consider the double
complex O with

Cr = O_, (1; <L9) .
The first filtration of € is regular, giving rise to a convergent spectral
sequence with
"EPt = O_,(; Hi(<L))) .
Here H(<L)) denotes the precosheaf U i— HY(I(U;<L").

The convergence of the second spectral sequence is not obvious. We
shall only consider the case in which the sheaves <£? are c-soft.

Lemma 1.2. Let U = (U)<;<, be a finite open cover of X, and let
<L be a c-soft sheaf on X. Then the complex
C.(0; <L)

s acyclic in dimensions p > 0, and the augmentation map induces an iso-
morphism

Hy(; L) — I(L) .

Proof: Let S, be the family of (p-1)-tuples s = (¢, ..., 7,) such
that 0 <14, <iy <...<<% <n. For each s€S, we set

Us, = L‘Tin...ip = Uio n...n Uip s

and denote by L, = <L; .,

(G, p. 140). Then the sheaves <£,, as well as their direct sums

the sheaf <Ly, extension of LU, by zero

seSP

are c-soft (G, 1I. 3.5). For each p > 0, we define the differential
d:C,; <L) — (()P_l(ll; <L)

P
by d<L,= > (—1)*ji where
k=0

NI 4 cf n
JE - ~[-io...ip - -Lio...ik...ip

is the inclusion map. In addition, the inclusions <£; — <£ define an aug-
mentation map Cy(U; L) — <L.

We claim that the complex C.(11; <£) is a resolution of <£. Let z be
a point of X, and let s = (4, ..., ?,) be the sequence of integers ¢ such
that x € U;. Then <C.(11;<£). is the alternating chain complex of the
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p-simplex s with coefficients <£.. This proves the exactness of the aug-
mented complex of c¢-soft sheaves
, d d i :
0—Co(; L) > ... > C;L) L —0.
Applying the functor I, we obtain the exact sequence
0—C,(11; L) —...—0; <L) — I (L)—=0
(G, p. 154). This concludes the proof.

The discussion of the double complex C.(11; <£,) may now be completed:

Theorem 1.8. Let 11 be an open cover of a locally compact Hausdorff
space X. Let <L be a complex of c-soft sheaveson X. Then thereis a spectral
sequence K with

HR = C_, (1; H1(°£)))

converging to H (I'(X; <£)).
Proof: Let B be a finite subfamily of 11. Then the second spectral
sequence of the double complex

Oy = C.(R;<L)
degenerates by Lemma 1.2. Hence the augmentation map

where V = U®, induces an isomorphism on cohomology.
The complex C° is the direct limit of the subcomplexes C§ , and also

I(X;<L) =lm I'.(V;<£).
=
By the exactness of the functor lim, we infer that the augmentation map
—

C" — I(X; <L)
induces an isomorphism on cohomology
H(C™) 5 H(TW(X; <L) .
Hence the first spectral sequence of C'° has the desired properties.
Now we return to the situation at the beginning of this section. Let U
be an open subset of X. There is a canonical injection

Hom, o v (F1U,<G|U) — Hom,, o, (7,6)
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which induces homomorphisms of derived functors

¢, OX
Hence

becomes a precosheaf which is denoted by ext] Ox(— G). Clearly, this
precosheaf is HY V(s (F,))) for any injective resolution )" of <7 .
Since the sheaves (..., (7,7)) are are flabby, and hence c-soft, we

may apply Theorem 1.3 to the complex (s (7,%)) obtaining

Corollary 1.4. Let 7 and ¢ be Wx-Modules. Then, for each open
cover W of X, there is a speciral sequence E with

B = Cp (s extl » (¥, G))

converging to Ext, o (7,<F).

2. Composition product for Ext

Let 7, , and 9C be ©x-Modules. For any families of supports ¢
and v, the composition of homomorphisms defines a linear map

7,90

Homq,,ox (7 ,G)® Homw,ox ( (?, 7 )—>Hommy,,ox (-

We propose to show how this map induces a canonical composition product
for the groups Ext with supports (cf. Cartier [2]).

Let 7" and )" be injective resolutions of 7 and C(f in the category
of ©y-Modules. We define a complex Hom, o (7",7)) b

0
< C
Hom{ o ( 7, ]—r om_, (7P, Jetr) .

The differential is given by
Af = @1 fr 4 (=1 e,

for f=(f?)€Hom! , (V",°)). The g-cycles of this complex are chain
maps of degree ¢ from " to ¢)", and g¢-boundaries are those which are
homotopic to zero.

We shall show that the complex Hom_ , ( 0", V) is cohomologically

equivalent to Hom_ o (7,%)).
We first prove
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Lemma 2.1. Let <Nl be a sub-Module of an Ox-Module . Let
be an injective QOx-Module. Then each ©y-Module homomorphism f: N — 9
may be extended to a homomorphism g: N — 9 such that supp g = supp f.

Proof: Let U be the complement of F = supp f in X. Denote by
), the sheaf which induces 9|U on U and the zerosheafon F (G, p.
138). Tt is clear that /iy isa sub-@x-Module of U and f(Ny) = 0.
Since Ny NN = Ny, it is possible to extend f to a homomorphism
Ny UN—D by defining f'=0 in “Ny. Then, for each extension
g: N —9 of f' it is true that suppg = F. This completes the proof.

Returning to our previous notation, we now easily see by means of
Lemma 2.1 (cf. Cartier [2], Théoreme 1) that the canonical homomorphism

Hom,, o, (@ ,9)—Hom_ o 7,9

induces an isomorphism on cohomology

H(Hom, 9,9)) 3 Ext

%Ox( (7 ’ Cq) :

q

¢ 0x
Now let X' be an injective resolution of the third @x-Module ).

Then the composition defines a map

Hom, (7",7) @ Hom,, o €7, K)— Homfpm,,ox(f?' , K

which is compatible with the differentials. From what has preceded it will
be seen that this induces products

YOy

Ext? o (7,°0) @ Bxtl o (G, 90 —Ext]l o (7 ,9).

It is clear that this composition product for the groups Ext with supports
is associative.

In the rest of this section we shall consider the case in which ¢ is the
family of all closed subsets of X and y = c. We also assume that X
is a locally compact Hausdorff space. Then we have the composition pro-
ducts

Ext} (7 ,°C) ® Bxtlo, (G, V) —Extlg (7,90
which clearly define a pairing
extd (7,6) ® ext{ o, (G, ) — eXtﬁJ(S?X (7,90
from a presheaf and a precosheaf to a precosheaf in an obvious sense.

Recalling the spectral sequences of Proposition 1.1 and Corollary 1.4,
we may now state
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Theorem 2.2. Let 7 ,G , and 9C be Ox-Modules. Then, for each

open cover 11 of X, there is a pairing of spectral sequences B @ K — E
compatible with the composition product of abutments

Exto, (¥,9G) @ Ext, o, (G, ) — Ext; o, (7, 90)

such that the pairing of E,-terms
o ext?j‘x(;.% , C@)) B C_Pz(ll; eX‘DZfOX (C(; ,90)—=C

(115 ext85 (7, 00))

s a cap product on cochains and chains (e.g. Spanier [6], p. 254).

Proof: Tet 9°,), and X' be injective resolutions of 7, <G, and
respectively. Let (..., (7°,)) denote the complex of sheaves defi-
ned by U —Homy (9'|U,)|U). The sheaves Vol (7)) =
.I_I-C)(r/aﬁzox (P2,%9) are flabby. Hence the double complex O} =
c; ()(am'cx (9,°))) may be used for the construction of the spectral
sequence of Ext, (7,<).

For the same reason, the spectral sequences of Ext, ox (G, 90) and

b

Ext; o, (¥, 9() may be defined by means of the double complexes (' =
o (Xambx (7, °K)) resp. O3 = C.(U1; <')(9”¢;)X (97,°K').). Then a cap
product on cochains and chains induces a pairing of double complexes

C; ® Oy —=C5 .

Since a cap product is compatible with augmentations, this pairing defines
a pairing of spectral sequences which is compatible with the composition
product of abutments. This completes the proof.

3. Cohomology of the sheaves Q%

From now on we shall assume that X is a complex analytic manifold
of complex dimension 7, and denote by @y the sheaf of germs of holo-
morphic functions on X. Since X is a locally compact Hausdorff space,
all the results of sections 1 and 2 may be applied here.

Let Q% denote the sheaf of germs of holomorphic p-differential forms
on X, in particular @y = Q% . There exist canonical resolutions of the
following type

0— Q% - EF > EF » . > E 50
(cf. GR, p. 184). Here E§! denotes the sheaf of germs of exterior differ-
ential forms of class C* and of bidegree (p,q) on X. The differential
d" is the complex exterior differentiation operator of type (0, 1).
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Since the sheaves ‘©& are fine, these resolutions may be used for the
calculation of the cohomology groups of Q%:

HY(X; QF) = H(I'(¢R),
HY(X; Q%) = H(I.(¢R).
We shall apply these formulae when X is a polydomain in C", i.e.

X=U=U,x...xU,, where U; is a subdomain of C for
1 =1,...,n We first recall the following well-known result (GR, p. 185).

Proposition 3.1. Let U be a convex polydomain in C". Then
H(U;@,) =0 for ¢=>1.

In order to calculate the cohomology groups with compact supports of
a convex polydomain U in C", we consider the complex

” ” ”

0—DP > PPt 5 > D0,

where 9P = I',(U; ‘ER). Derivating partially the components of a dif-
ferential form we obtain the differential operators

i 1 PP s hp1 1=1...,n.

Further we define for each 7 =0,1,...,n a differential operator d, :
PPt s i+l [y

d o =>d5 N\Nojp.
j=1

In particular, d, =0 and d, =d".
Finally, we recall that the integral operators

1 P A _
T,@(z)*—/"“ . Laz p aF

T 2w

s i

have the property T;0,¢ = ¢ = 0; Ti¢p for o € Drt §=1,...,n (GR,
p. 25). Note, however, that the support of 7;¢ is not compact in general.

Lemma 3.2. If ¢ € 4Pt satisfies dip =0 and does not involve
dz, \ ... N\ di, then ¢ = djy for some o € D171,

Proof: If ¢ =0, there are no non-zero differential forms ¢ satis-
fying the conditions, and the assertion is trivially true. For the general case,
we proceed by induction, writing

p=a-+dzs N p
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where x and f do not involve dZ. Then

0=dlp=d_ o+ da \ @iz —dp)

implies ;5 = d; ;. Applying the operator 7T;, we obtain
x="T.di \f=d_ T

Let o be a C®-function depending on z; only, such that w =1 in
a neighbourhood of the support of «, and w = 0 for z; outside a compact
subset of U;. Then

x=ox=d;, ; (T;p)

where w78 € P11,
Let us consider the difference

¢ — di(T:f) =dz N\ (B — 00 T:f)) .

If ¢ does not involve dz A ... A dZ, then f, and hence y = f —
2 (wTf), cannot involve dz, A ... A dZ_,. In addition, d/p = 0 implies
d!_;y = 0. The induction hypothesis then showsthat y = d;_, ¢ forsome
0 € LP17% Thus

g = dl(T:f —dz A 9).

This completes the proof.

For the next lemma, we denote by H;, 2 =0,...,n, the set of func-
tions f € C*(U) which are holomorphic in the variables z;,...,z, or
equivalently, satisfy d;f = 0. In particular, H, is I'(U; Q).

Lemma 3.3. If ¢ €™ satisfies [fp =0 for all f€ H;, then ¢ =
d; w for some w € L™t

Proof: If i =10, then [fp =0 for all f€C*(U) implies ¢ =0,
and the assertion holds trivially. The general case is proved by induction
on .

Let o be a O®-function depending on z; only, such that w =1 in
a convex neighbourhood C'~' x V; X C"* of the support of ¢ and
o = 0 for z outside a compact subset of U..

Writing ¢ = dZ A «, we then obtain

di (T, x) = dz; \ 0;(oT;«)
—wdi N x+owdzi N Tio =¢ + 0w Tigp.

Hence it suffices to show that 3,0 T; ¢ = d;f for some f € L™"~ 1
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We claim that /f 3w Tip = 0 for f € H, ;. For each pair of complex
numbers (, ¢’, the function

1

Zi— &

’

1 = P
g::,(z):ﬁfaico(zl,...,g,...,z,.)

is integrable, and
/f?iniQ?:/J(Z,C)dC A dZ
where

J(C,C’):/g«;;"}”'

Now g¢... € H;, and hence J({,(’) =0, if { is not in U;. By analytic
continuation this implies J(¢, ¢') = 0 for ¢ outside the convex set V.
On the other hand g... = 0 if ' € V,, since 0w = 0. Hence J({, %) =0
for all 7 € C concluding the proof of /f 3w Tip = 0.

The induction assumption then implies diw Tip = d;_, 8, and hence
d;B, if the term of B which does not involve dz; is omitted. This completes
the proof.

Let C(U) denote the vector space of all continuous complex-valued
functions defined in U. With the topology of uniform convergence on
compact subsets of U, the space C(U) becomes a Fréchet space. Its
topological dual consists of measures with compact support on U (Bour-
baki [1], p. 73).

The space I'(U; @y) of holomorphic functions on U is a closed sub-
space of O(U). Hence it is a Fréchet space. Its topological dual is denoted
by I'(U; @y)'.

Proposition 3.4. Let U be a convex polydomain in C". Then
HY(U; Qp) =0 for p £n, and H}U; Qy) is canonically isomorphic
to I'(U; @)

Proof: Lemma 3.2 with ¢ == implies HE(U; 2f) =0 whenever
P FEn.

To show that HI(U; QF) is isomorphic to the dual of I'(U; ©p) we

first define a pairing
U, O, @ 4™ —C
by (f, ) = [fe. By Lemma 3.3 this induces an injective map
H(U; Qy) — I'(U; Q).
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To prove the surjectivity, we consider a continuous linear form
w: I'(U; ©p) — C . By the Hahn-Banach theorem, u may be extended to
a continuous linear form on C(U). Hence there is a compact measure g

on U such that
u = [ siu

for each f in I'(U; @g). To complete the proof, we show that there is a
C*”-measure with the same property.

Let ¢ denote the distance from the support of u to the boundary of
U. Let ¢ be a C”-function of a real variable such that

and &(x) =0 for x > #*/2n, and define a C®-function o by
o@) = (5 P) . . . e(z0?).

Let f be a holomorphic functionin U. Then, by the mean value theorem

R
f) =/ w(z — 0 f(Q) dv

where 7 is the Lebesgue measure, at each point z of supp u. Hence

¥(z) = / ws du

where w.({) = w({ — z), is a C*-function such that

J/fdﬂz /fqﬂir

and supp ¢ is a compact subset of U. This completes the proof.

4. Duality for coherent sheaves

In this section we continue to assume that X is a complex analytic
manifold of dimension 7. Our aim is to give a generalization of the duality
of Proposition 3.4 for coherent sheaves. This is done in two cases: in Theorem
4.5 for compact manifolds and in Theorem 4.6 for Stein manifolds.

In the preceding section we have seen that the exterior product of
differential forms induces a map

Hr(X; Oy) @ HIX; Q%) — HP+H(X; Q%) .
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It is not difficult to show that this agrees, up to sign, with the composition
product

Exth  (Oy, Ox) @ Ext! o, (Ox, Q%) — ExtZ5l (O, 2%) .

In case p = 0 each product defines the natural I'(X; ©y)-module structure
of Hy(X; Q%). This is the only case which will be needed in the following.

The sections of €% may be considered as measures on X. Those
with compact support are of finite total mass. Hence the integral
defines a linear map [.(X;¢y)—C. Since [d'¢p = [dp =0 for
@ € I'(X; €%"™") by Stokes’ theorem, this map may be factored through
H"(I'(X; €%)). The induced homomorphism H?(X; Q%) —C will be
referred to as the frace map.

Let 7 be an @y-Module. By composing the trace map and the com-
position product, we obtain a pairing

Hr(X;7) @ Extigh (7, Q%) —C.

In case X is a convex polydomain in C" and 7 = @, this pairing
defines an isomorphism of Ext7 (@y, Q%) onto the topological dual of
HP(X; @y) by Proposition 3.4. In order to prove this duality in other cases,
we extend the pairing to spectral sequences. For this purpose, C is con-
sidered as a degenerate spectral sequence whose only non-vanishing terms
are BE"=C, r>1.

Let 11 be an open cover of X. By Corollary 1.4, there is a spectral
sequence converging to H_(X; £Q%), such that

Bt = C_,(0; h1(2%))

where A%(&%) denotes the precosheaf U i— HI(U; Q%). To the trivial
open cover, which consists of only one set X, there corresponds the de-
generate spectral sequence EY = H!(X; Q%), r > 1. The augmenta-
tion map

Co(I; RY(L2%)) — HI(X; %)

may be extended to a natural homomorphism of these spectral sequences
since 1l is a refinement of the trivial open cover. The trace map
o7 (X; Q%) — C may also be regarded as a homomorphism of degenerate
spectral sequences. Composing these homomorphisms, we obtain

Proposition 4.1. Let W1 be an open cover of X. Then the trace map
H}(X; %) — C may be extended to a homomorphism of spectral sequences
such that the homomorphism of E,-terms

Co(WL; 17 (2%)) —~ C
is the swm of the trace maps Ho(U; %) — C where U €1 .
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Let 7 be a coherent analytic sheaf on X. We recall that there is
a natural way of introducing a topology into the vector space of sections
I'(U; 7) over any open subset U of X, so that this becomes a Fréchet
space (GR, pp. 237, 239). If 7 = @, then the space of sections has the
topology of uniform convergence on compact subsets. The maps I'(U; ) —
I'(U; <€) induced by a homomorphism of coherent sheaves F—( are
continuous, as well as the restriction maps I'(U; 7) — I'(V; J) for open
sets Vc Uc X. This implies the continuity of the differentials of the
complex C'(1;7) for any open cover 1 of X.

In order to deal with the duality of topological vector spaces, we re-
produce two lemmas of Serre [5].

Lemma 4.2. Let E,F, and G be Fréchet spaces. Let w: B — F and
v: F — G be continuous linear maps such that vo w = 0. Let w': F'— E’
and v : Q' —F' denote the adjoint maps of w and v.

Then, if im w and imv are closed, H = ker v[im w s a Fréchet space,
and its topological dual H' is isomorphic to ker '[/im v'.

Proof: Since the quotient of a Fréchet space by a closed subspace is
a Fréchet space, the first assertion follows immediately.

Let f: F—C be an element of keru’. Then f(imu) = 0. and f
defines a continuous linear form %2 on H. If f€im v, then f(ker v) = 0,
and hence h = 0. Inversely, if & = 0, then f isinduced by a linear form
g, on imv. By the open mapping theorem, g, is continuous. Hence it may
be extended to a continuous linear form ¢ on ¢ by the Hahn-Banach
theorem. Then f = '(g) €im»’. Thus ker«/imv" may be identified
with a subspace of H'.

On the other hand, each element of H’ defines a continuous linear
form on ker v, and this may be extended to F by the Hahn-Banach
theorem. Hence each continuous linear form on H is induced by an element
of ker«’. This completes the proof.

Lemma 4.3. Let E and F be Frichet spaces and w: E—F « con-
tinuous linear map. If the dimension of F[imw is finite, then imu 1is
closed in F.

Proof: Let ¢ denote F/imwu with the natural Hausdorff topology,
andlet v be aright inverse to the projection F — (. Then v is continuous,
and E x G is a Fréchet space. The map w = (u,v) from E X ¢ to F
is surjective, and hence open by the open mapping theorem. Since
wl(im u) = E is closed, imw is closed in F.

We now prove a preliminary form of the duality theorem.
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Proposition 4.4. Let X be a holomorphically convex open subset of C".
Let 7 be a coherent analytic sheaf on X such that there is a finite free re-
solution

l)—)‘((>§k—>(@£k~1—> . _><(’,§o(_> J 0.
Then Extt, (7, Q%) =0 for p #n and the pairing
HYX; 7) @ Exto (7, 2%) —~C

defines an isomorphism of Ext:OX(7, Q%) onto the topological dual of
I(X; 7).

Proof: We assume first that 7 = @y. Let 1l be a countable family
of convex polydomains covering X. By Proposition 1.1, there is a spectral
sequence E converging to H'(X; @y), such that

Byt = Cr(U; 1)

where h%(,) denotes the presheaf U i— HY(U; ©y). Since H1(U;Wy) =0
for ¢ > 0 whenever U is a convex polydomain, we have Ef? =0 for
g > 0. On the other hand, each E%’ is a countable product of Fréchet
spaces, hence a Fréchet space.

By Corollary 1.4, there is a spectral sequence J converging tc
Ext, o, (O, Q%) = H(X; Q%) such that

KN = C_ (W5 F(2%)) .

From Proposition 3.4 we infer that E}?=0 for ¢ # n, and hence
BNt = HYT(X 2%).

Composing the pairing £ @ E — E of Theorem 2.2 and the homo-
morphism £ — C of Proposition 4.1, we obtain a pairing of spectral
sequences

E® KE—C.

By Proposition 3.4 this pairing defines an isomorphism of £ 7" onto the
topological dual of ER’. Since HP(E,") = B}’ = Hr(X;(y) =0 for
p >0, Lemma 4.2 implies that HP(E") = EI" =0 for p <0 and
E = H*(X; Q%) is isomorphic to the dual of HO(E,") = HYX; Cy).
This proves the proposition in case 7 = .

To complete the proof, we proceed by induction on the length £ of
the resolution of 7. The case k = 0 is settled by the additivity of the
functors H' and Ext,.

Let us assume that the assertion is true for the kernel <7 of the epi-
morphism @% — 7. The sequence of sections

0— I'(X; () — I'X; Cy) -~ I'(X; 7) -0
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is exact, since X is holomorphically convex. By Lemma 4.2 its dual
sequence
0— I'(X; 7) — I'(X; Cy) — I'(X;°G) — 0

is also exact. By comparing this with the exact sequence of Ext,, we see
that the assertion holds for 7.

Theorem 4.5. Let X be a compact complex analytic manifold of di-
mension n. Let 7 be a coherent analytic sheaf on X. Then Ext; g (#, Q%)
is canonically isomorphic to the dual of HP(X; 7).

Note that the space HP(X; 7) is of finite dimension.

Proof: Since 7 is coherent, for each point « of X there is an open
neighbourhood U such that Z|U has a finite free resolution (GR, p. 138).
Let 11 be a finite family of holomorphically convex coordinate neigh-
bourhoods with this property covering X.

Let us consider the spectral sequences E and E of H'(X; /) and
Ext; o (7, 2%) with respect to 1. Composing the pairing of Theorem 2.2
with the homomorphism of Proposition 4.1, we obtain a pairing of spectral
sequences K ® K — C. Since finite intersections of holomorphically
convex open sets are holomorphically convex, we infer by Proposition 4.4
that this pairing defines an isomorphism of

B = Cy(lL; extl o (7, 25))

.0x

onto the topological dual of Ef’ = CP(ll;7F), and that the other terms
vanish. Then Lemma 4.2 implies that

Ext! 2 (7, %) = Ey7" = Hy(1l; extl o (7, 2%))

cUx ‘e, Ox
is isomorphic to the dual of HP(X;7) = EE* = HP(l1; 7) provided the
differentials of the complex C'(11; ) have closed range. But this follows
from Lemma 4.3, since HP(X; 7) is finite dimensional by the compactness
of X (GR, p. 245).

Theorem 4.6. Let X be a Stein manifold of complex dimension n.
Let 7 be a coherent analytic sheaf on X. Then Extl, (7, Q% =0 for
p #n and Ext], (7, Q%) is isomorphic to the topological dual of H(X; .

Proof: The topology of a Stein manifold has a countable base by de-
finition. Hence X may be covered with a countable family 1 of open
holomorphically convex coordinate neighbourhoods U with the property
that #|U has a finite free resolution. The proof is then completed as in
the first part of Proposition 4.4, noting that HP(X; 7) =0 for p >0
by Cartan’s Theorem B (GR, p. 243).

Department of mathematics,
University of Helsinki.
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