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Introduction

Completely continuous elements of a commutative normed algebra have
been studied by M. Freundlich [4], who defined them as those elements of
the algebra for which the corresponding regular representations are compact
operators. A different definition of a compact element in a normed algebra
was given by K. Vala in [9]. According to his definition # is a compact
element of the normed algebra U, if the linear transformation x — uxu
is a precompact operator on U, This definition generalizes the notion of
a compact operator, for if we take as U the full operator algebra L(E)
on a Banach space FE, theorem 3 in [8] shows that the compact elements
of Ul are precisely the compact operators on E. A special class of compact
elements is formed by the elements w« € U for which the operator x — uau
has a finite-dimensional range. We call these elements finite-dimensional
(»éléments de rang fini» in the terminology of [9]).

In this paper we study compact and finite-dimensional elements in the
sense of Vala. The most decisive results are reached for C*-algebras, i.e.
uniformly closed operator algebras on a Hilbert space that are closed with
respect to the involution 7' — 7"*. An example in [9] shows that if the last
condition is omitted, the sum of two compact elements may fail to be
compact. However, the compact elements of a C*-algebra form a two-sided
ideal, which is the closure of the ideal of the finite-dimensional elements
(theorem 3.10). This is turn coincides with the socle of the algebra (theorem
5.1). Certain other, notably spectral, properties of compact operators
extend to compact elements (theorems 1.6 and 3.11). For a very special
class of (C*-algebras, namely the factors of von Neumann, the two-sided
ideal of compact elements — if non-zero — is minimal-closed.

The existence of non-zero compact elements imposes rather severe
restrictions on the algebra (cf. e.g. corollary 2 of theorem 2.2, and theorem
4.3). In particular, a factor containing non-zero compact elements is iso-
morphic to the full operator algebra on some Hilbert space. Therefore
results concerning the structure of the set of compact elements in a factor
follow from the classical theory of compact operators on a Hilbert space.
However, in section 7 we prove directly the above mentioned minimality
property of the ideal of the compact elements in a factor, for in this way
a new proof is obtained for theorem 3 in [8] in the case of a Hilbert space.
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1. General properties of compact and finite-dimensional elements

1.1. Let £ and F be real or complex normed spaces. Recall that
T € L(E , F) is a compact (resp. precompact) operator, if it maps the closed
unit ball of E onto a relatively compact (resp. precompact or,
synonymously, totally bounded) set. The following definition is due to
Vala [9]:

Definition. An element u of a real or complex normed algebra U is
called compact, if the mapping x — wau is a precompact operator on “U.
An element « of an arbitrary algebra U is called finite-dimensional, if
the range of the mapping « — uau on U is finite-dimensional.

Every finite-dimensional element of a normed algebra U is a compact
element of U, It is also clear that a compact (resp. finite-dimensional)
element of U is a compact (resp. finite-dimensional) element of every sub-
algebra of “U. This fact serves to justify the definition of a compact
element in terms of precompact instead of compact operators. In the case
of a Banach algebra this distinction is immaterial, since on a Banach space
precompact operators are the same as compact operators.

For the simple proofs of the following results see [9].

Theorem 1.1. (i) If » s a compact (resp. finite-dimensional) element
of U and v €U, ww and wvu are compact (resp. finite-dimensional)
elements of “U.

(ii) Ewvery compact idempotent is finite-dimensional.

1.2. The next theorem shows that often “U may be assumed to be a
Banach algebra, since any normed. algebra can be viewed as a dense sub-
algebra of a Banach algebra (cf. e.g. [5] p. 176). We first give a simple
lemma, from which the theorem immediately follows.

Lemma 1.1. Let E; be a normed space having E as a dense subspace.
Let ¢ be a bounded linear operator from E, into the normed space F. Then
@ 1s a precompact operator (resp. an operator with finite-dimensional range),
if its restriction to E 1s one.

Proof: Since the closed unit ball of E is dense in that of £, the
first statement follows from the continuity of ¢ and the fact that the
closure of a precompact set is precompact. The second is a consequence of
the fact that finite-dimensional subspaces of F are closed.
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Theorem 1.2. Let U, be a normed algebra and let U be its dense sub-
algebra. Then w € U is a compact (resp. finite-dimensional) element of U
if and only if it is a compact (resp. finite-dimensional) element of U,.

1.3. If Ul is a real normed algebra, it can be embedded (real) iso-
morphically in a complex algebra U, = U x U called its complexification,
in which the algebra operations are so defined that (x,y) behaves like
x -+ iy. Furthermore, U can be given a norm so that this embedding
x— (z,0) is an isometry, and U will be a Banach algebra if and only if
U is a Banach algebra (cf. [6], p. 6 and p. 8 theorem 1.3.2).

Theorem 1.3. Let U be a real normed algebra and let U, be its com-
plexification. Then w € U is a compact (resp. finite-dimensional) element
of U if and only if (u,0) is a compact (resp. finite-dimensional) element
of U

Proof: It follows from the proof of theorem 1.3.2 in [6] that the norm of
Ul is equivalent to the norm |(z, y)| = lj]] -+ [ly|. Thus we may consider
U, under this norm. Denote the closed unit ball of U by B and that of
‘U, by Bg Since B.c B x B, we have for u € ‘U

(w,0)Bgu,0) C (vu,0)B X Bu,0) = (uBu) X (uBu) .

Since the Cartesian product of two precompact sets is precompact, the
compactness of » in U implies the compactness of (u,0) in Uy
Conversely, if (u , 0) is a compact element of U, w is a compact element
of U, for then (u,0) (B X {0}) (u,0) is a subset of the precompact set
(w,0) Be(w,0) so that also wBu is precompact. For finite-dimensional
elements the theorem follows from the simple facts that subspaces and finite
direct sums of finite-dimensional spaces are finite-dimensional.

1.4, If “U is an algebra without a multiplicative identity, an identity
can be adjoined to U by embedding U via the canonical mapping
¥ — (x,0) in the Cartesian product U; of U and the scalar field. In
‘U, the algebra operations are so defined that the couple (v, 7) can be
treated like a formal sum « -+ 2. If ‘U is a normed algebra, U becomes
a normed algebra under the norm |[(x, 2)| = |z + [4!, and U will be
a Banach algebra if and only if U is a Banach algebra (cf. [6] p. 2).

Theorem 1.4. An element w € U is a compact (resp. finite-dimensional)
element of U if and only if (uw,0) is a compact (resp. finite-dimensional)
element of “U;.
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Proof: Denote B = {x € U ||| < 1}, B, = {x € U || < 1},
C={A€K||A <1}, where K is the scalar field (K=R or C). If
(x, 1) €B,, then |zl <1 and |A] <<1. Hence we have

(u>O)Bl(u>0)C(QL’O)(BXC)(?’L’O)

The latter set is equal to (wBu -+ Cu?) x {0}, which is precompact if u
is a compact element of “U{. The converse is obvious. For finite-dimensional
elements the proof is still simpler.

1.5. Generalizing a result of Freundlich ([4] p. 277) we obtain

Theorem 1.5. Let U be an infinite-dimensional algebra and w a finite-
dimensional element of “U. Then w s a (left or right) divisor of zero.

Proof: Choose elements z; € U, 1 < ¢ < n, such that {uau |1 <i <n}
is a basis for u“lu. For an arbitrary x € Ul we can write

n
ury = Z YR
i=1

or

n

u(”c — Z /'.,-a:i)u =0.

i=1

n
If o — Z 4w, were zero for every x, ‘Ul would be finite-dimensional

i=1
contrary to the hypothesis. Hence there is @ = 0 such that wuau = 0.
Then w is a left or right divisor of zero according as ua = 0 or ua 5 0.

1.6. Let U be a complex algebra with identity e. The spectrum
Spy(a) of an element « € U is defined as the set of those 2 € C for which
se — a is not regular. If ‘U does not possess an identity, we define the
spectrum  Sp,(a) of a € U as the spectrum of (a,0) in the algebra
obtained from U by adjunction of an identity. It is well known that this
definition is equivalent to the one given in [6], p. 28, in terms of quasi-
inverses (cf. [6] p. 27 and p. 32, theorem 1.6.9). If “U( is a real algebra,
the spectrum of « €U is defined as the spectrum of (a¢,0) in the
complexification U of “U.

Theorem 1.8. Let Ul be a Banach algebra. The spectrum of any compact
element of UL consists of a countable number of points, which can accumulate
only in the origin. The spectrum of a finite-dimensional element of U has
a finite number of points.
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Proof: In virtue of theorems 1.3, 1.4, and the remarks immediately
preceding them “I( may be assumed to be a complex Banach algebra with
identity e. Denote by Y. the centralizer of u € U, that is

Y.={x €U |ur =au}.

Then Y, is a closed subalgebra of “U( containing the identity. If (ie — u)™*
exists, it belongs to Y,, and since obviously

Spy(w) € Spy (u),
we have
Spuu) = Spy, (1) -

If u is a compact element of “U(, the mapping @ — uxu restricted to the
Banach space Y, defines the compact operator 2 —u?x on Y, The
spectrum of this operator is by theorem 1.6.9 in [6] equal to Spy (u?).

But the spectrum of a compact operator is countable and it can accumulate
only in the origin (cf. [7] p. 281). By theorem 1.6.10 in [6],

Spy,(W?) = (Spy, (W)} = (Spy(w))*.

Hence also Sp,(u) is of the type stated in the theorem. If, in the above,
u is finite-dimensional, Spy (v?) and hence also Sp,(u) is finite. This

follows from the fact that the non-zero portion of the spectrum of any
compact operator consists of eigenvalues and from a standard argument
showing that eigenvectors corresponding to distinct eigenvalues are linearly
independent (cf. e.g. [7] p. 281).

Corollary. Let U, be a Banach algebra having U as a closed sub-
algebra. If w is a compact element of U, then

Spy(u)\{0} = Sp (u)\{0}.

If, furthermore, “U; has an identity e such that e € U, then Spy (u) = Sp,(u})e

Proof: 1t is easily seen that

(1) Spy,(u) € Spy(u) U {0} .
It follows from theorem 1.6 and the fact that all spectra are closed that
0 Spy,(v) = Spy,(w)

and
0 Sp,(u) = Sp,(v) .



12 Ann. Acad. Sci. Fennice A. 1. 428

Hence by theorem 1.6.12 in [6]

Sp(u) € Spy,(u) .

Zero was included in (1) because U/ may have an identity which is not an
identity of “l(;, but it may be omitted in case U/, has an identity e such
that e € “U.

1.7. We summarize in the next lemma three well-known properties of
precompact operators, which we shall often use without explicit mention.

Lemma 1.2. (i) Any finite linear combination of precompact operators
on a normed space is a precompact operator.

(il) The composition of a bounded linear operator and a precompact
operator, in either order, is a precompact operator.

(iii) The set of the precompact operators on a normed space E is closed
in the norm topology of L(E).

Theorem 1.7. Let {w.} and {v} be sequences in a normed algebra U
with

m w, = u, limov, = ».

k— o k— o

Denote the mapping x — wav, by Uyx and the mapping x — uxv by U.
If Uy is a precompact operator for every k, U 1is a precompact operator.

Proof: Elementary properties of the norm give

Uk (@) — U@)|| = Jlmav, — uaw, + uxvy, — uav)] <

o — ] [l llell 4 llow — 2] Jleel il < 2 o] [fw — 2all + el fjone — o]

i

for o] <1 and %k large enough. Hence

lim ||U, — U] = lim sup ||(Ux — U) ()] = 0,

k— w0 k>»n x/<1

and the conclusion follows from lemma 1.2 (iii).

Corollary. The set of the compact elements of a normed algebra is closed.
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2. Ascoli’s theorem and irreducible operator algebras

2.1. The characterization of precompact operators given by Vala in [8],
underlying his definition of a compact element, is based on a new formulation
of Ascoli’s theorem. For the sake of completeness we reproduce this theorem
and its proof in a somewhat more symmetric form.

For this purpose, let A4 and B be arbitrary sets, (¥ ,d) a metric
space, and @ a mapping from A X B into F. Consider the following four
statements:

I Forevery y € B and every &> 0 there is a finite covering (4,);¢ 5
of A such that w,v €4; implies d(DP(u,y), Dw,y)) <e.

I For every x € 4 and every ¢ > 0 there is a finite covering (B;);. 5
of B such that w,z € B; implies d(®(x,w), D(z,z)) <e.

IIT For every &> 0 there is a finite covering (4,);cy of A4 such that
w,v€A; implies d(D(u,y), DP,y)) <e for every y € B.

IV For every &> 0 there is a finite covering (B;),. 7 of B such that

J
w,z €B; implies d(P(x,w), D(x,z) <e for every x € 4.

Theorem 2.1. (i) III implies 1.
(ii) IV emplies II.
(iii) II and III together imply IV.
(iv) I and IV together imply IIL.

Proof: By symmetry it suffices to prove (i) and (iii). But (i) is immediate,

so let us prove (iii). Given &> 0, let (4,),c; be a finite covering of A4
&€

such that »,v € 4; implies d(®(u,y), O(v,y)) < 3 for every y € B

(cf. III). Clearly, A4 and each A; may be assumed non-empty. For each
i €7 choose a; € A;. By II there is for each 4 € .7 a finite covering

‘ . €
(B))jey such that w,z € B, implies d(D(x;, w), D(x:,2)) < 5 Then all
intersections of the type N B]‘fi, where j; € j: , form the required finite

i€y
covering of B. Forif w,z € M Bj and x € 4, thereis k € 7 such that

i€y
z€A4, and w,z€ B}‘k. Hence we have
d(D(x,w), D,z) <dP,w), Py, w)) + d( Dy, w), D,z)) -+

-+ d(dj(x’i ’ z) s (D(T 7)) <

which means that IV holds.
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Remark. Theorem 1 in [8] follows from the above theorem, for if B
is a set of mappings from A into F and we set

D(x,y) = yx),

then the conditions I—IIT have the following interpretations:

I" The range of each mapping y € B is precompact.

II' For every x € A the set {y(x) |y € B} is precompact.

III’ The set B has equal variation (cf. [8] p. 4).

If each mapping y € B is bounded, B becomes a metric space with
the metric

oY1, ¥2) = Squ d(y,(@) , ya())
x€

and then IV means that

IV’ the function space (B, p) is precompact.

We note that theorem 6 in [1] is also an immediate consequence of
theorem 2.1. We reformulate it for not necessarily complete spaces:

Corollary. Let E,, E,, E, E, Y be normed spaces, let a: E, — E,,
d:E,—E, be precompact and b:Y — L(E,, E,), c¢:Y — L(E,, Ey)
bounded linear operators and denote

Z={n€Y ! (by)ea =deoc(n);.
Then the mapping 1 — (bn) o a is a precompact operator from Z into L(E, , Ey)

Proof: Denote A = {¢§ €E, |||&] <1} and B={(by)ca|d |y €Z,|n]| <1}
Since a is precompact, there is for every &> 0 a finite covering (4,);e 5
of A such that §& ,¢& € A4; implies [[B]]ja(%) — a(&)]| < e Hence the
condition ITI in the preceding remark holds for 4 and B. Since (byo)a =
doc(n) for 7 €Z, the precompactness of d yields IT" and the conclusion
follows from IV’, which holds by theorem 2.1.

2.2. For the first corollary of the next theorem we need the trivial
implication (i) in our formulation of Ascoli’s theorem. For the notion of
the irreducibility of operator algebras see [6] p. 48.

Theorem 2.2. Let E be a Banach space and U a strictly irreducible
subalgebra of L(E). If S € L(E) and the operator X — S8Xz from U into
E is precompact for some non-zero z € E, S is a compact operator.
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Proof: Denote by ¢ the mapping X — Xz from the closure U of U
into E. Then ¢ is a bounded linear mapping from one Banach space
onto another, for the strict irreducibility of u implies that the range of ¢
is all of K. Denote by B the closed unit ball of U and by B, that of E.
In virtue of Banach’s open mapping theorem ¢(B) contains a neighborhood
of zero, say B, = {x € E||jz|| < r}. It follows, in virtue of lemma 1.1, that
the set

1 1
S(By) = — 8(B,) c - S(g(B))
r r

is precompact, and the theorem is proved.

As in example 3 in [1], p. 49, the corollary of theorem 2.1 yields in a
special case the result, contained in theorem 3 of [8], that for precompact
operators § and 7' on a normed space E the operator X — SXT on
L(E) and hence its restriction to any subalgebra of L(E) is precompact.
As a consequence of the above theorem we have the following partial
converse:

Corollary 1. Let E and U be as in the preceding theorem. If
S,T €LE), T+#0, and the operator X — SXT from U into L(E) is
precompact, then S is a compact operator.

Proof: There is a unit vector x € E such that z = Tz == 0. Considering
the restrictions of the operators SX7, where X € U and |X| <1, to
the closed unit ball of E it is seen that theorem 2.1. (ii), the remark following
it, and theorem 2.2. yield the conclusion at once.

Corollary 2. Let E and U be as in theorem 2.2. If S is a compact
element of U, S is a compact operator on K.

The above corollary and the remark preceding corollary 1 yield the
following result:

Corollary 3. Let U be as in theorem 2.2. The compact elements of U
form a closed two-sided ideal of “U.

In a special case of corollary 1 7' may also easily be shown to be a
compact operator.
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Corollary 4. Let H be a Hilbert space and let U be a strictly irreducible
subalgebra of L(H), closed with respect to the involution T —T*. If
S,T €LH), S+#0, and the operator X — SXT from U into L(H)
is precompact, then T is a compact operator.

Proof: The continuity of the involution implies that the operator
X — X* — SX*T — T*XS* is precompact. By corollary 1, T* and
hence also 7' is a compact operator.

In the next theorem we summarize some results for finite-dimensional
elements and operators with finite-dimensional range corresponding to
theorem 3 in [8] and the corollaries of theorem 2.2.

Theorem 2.3. Let E be a real or complex linear space, S and T linear
operators on E, and U an algebra of linear operators on E.

(i) If S and T have finite-dimensional ranges, the mapping X — SXT
on U has a finite-dimensional range.

(i) If U ds strictly irreducible, T # 0, and the mapping X — SXT
on U has a finite-dimensional range, then S has a finite-dimensional range.
In particular, if U is strictly irreducible and S is a finite-dimensional
element of U, S is an operator with finite-dimensional range.

(i) If E s complex, U a complex strictly irreducible Banach algebra,
S # 0, and the mapping X — SXT on U has a finite-dimensional range,
then T is an operator with finite-dimensional range.

Proof: (i) The image of ‘U under the mapping X — SX7' is isomorphic
to a subspace of the algebra of all linear operators from T(E) into S(E),
hence finite-dimensional.

(ii) Choose z € E such that Tz £ 0. Since Tz is a strictly cyclic
vector, the set {SX7Tz|X € U} coincides with the entire range S(E) of S.
Hence, if the subspace {SXT|X € “U(} is finite-dimensional, S(E) must be
finite-dimensional.

(iii) Choose z € E such that Sz == 0. By theorem 2.4.6 in [6] the algebra
‘U is strictly dense on E ([6] p. 60). Hence, if T(E) were infinite-
dimensional, there would exist, for an arbitrarily large =, linearly inde-
pendent vectors ¥; ,...,y. € T(K) and operators X, ,..., X, € U such
that Xy, = 0;z. But then the set {SX7'|1 <14 <} would be linearly
independent, and since #n can be chosen arbitrarily, this contradicts the
finite-dimensionality of the subspace {SXT | X € “U(}.
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3. Compact elements in algebras of operators on a Hilbert space

3.1. In this paper H always denotes a complex Hilbert space (s {0})
and L(H) the algebra of bounded linear operators on H. A subalgebra
of L(H) that is closed with respect to the involution 7' — T'* is called a
*-subalgebra of L(H). A C*-algebra is a uniformly closed *-subalgebra of
L(H). According to an equivalent abstract definition a C*-algebra (or a
B*-algebra, cf. [6] p. 180) is a Banach algebra with involution such that its
norm satisfies the condition |jx|? = |lx*z|| (cf. [2] pp. 6 and 39).

For a set “/lc L(H) we denote

N ={Tc LH) | TS = 8T for every S €I},

and " = (‘)')'. A *-subalgebra U of L(H) is called a von Neuwmann
algebra, if U = U". Every von Neumann algebra is a C*-algebra (cf.
e.g. [5] p. 170).

3.2. Let U be a subalgebra of L(H) and E a projection in U or
in “U. Wedenote Ty = ET | E(H) and Uy = {T;|T € U}. Tt isreadily
seen that ‘U is a subalgebra of L(E(H)) and a *-subalgebra if U is one.
If “U is a von Neumann algebra, ‘U(j is a von Neumann algebra ([2] p. 18).

Let (H,);c; be a family of Hilbert spaces and, for each ¢ € .7, let “U(;
be a subalgebra of L(H;). Denote by H the Hilbert sum of the spaces H..
If T:€°U; and sup |74 < o, we define T = (T:) € L(H) by setting

T((x)ies) = (Tixi)iEJ .

The set of operators T' € L(H) of this type is an algebra called the product

of the algebras “U/; and denoted by T U If T=1{1,...,n}, we also
denote ieJ

TT U = U x oo U,

ieJ

If each “l/; is a von Neumann algebra, ]_| “U; is also a von Neumann
algebra (cf. [2] p. 21). es

3.3. In this and the next subsection we record a few simple properties
of compact and finite-dimensional elements in subalgebras of L(H).

Theorem 3.1. Let Ul be a subalgebra of L(H), T €U and E a
projection.

(i) If E€U and T is a compact element of U, Ty is a compact
element of “Uy.

(i) If E€U or E€UW, T(H)yc E(H), Ker(T)D (I — E) (H) and

&
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T is a compact element of Uy, then T is a compact element of “U. Analogous
statements hold for finite-dimensional elements.

Proof: The mapping ESE — Sy is a linear surjection from EUE
onto “Ug. Tt is isometric, hence injective, for

ISell = sup  [[ESx| = sup |ESEx]| = |ESE] .

[/ <1,x=Ex I« <1

Denote this (vector space) isomorphism by ¢. Then the operator

—1

X,V .+ EXE - TEXET — ETEXETE > (TEXET), — T,X, Ty
s precompact. This proves (i). To prove (ii) we note that the operator

X > EXE Y

> X, — TpX, T, — ETEXET | E(H) =

99—1

— (TXT); > ETXTE = TXT

is precompact. The proof for finite-dimensional elements is analogous.

Corollary. A projection E € U is a finite-dimensional element of U
if and only if Uy 1is finite-dimensional.

Theorem 38.2. Let H; be a Hilbert space and “U; a subalgebra of L(H;)
for i=1,...,n Then T = (T)),-;<, s acompact (resp. finite-dimen-
sional) element of U = U, x ... X U, if and only if each T; is a compact
(resp. finite-dimensional) element of “U;.

Proof: Let E; denote the projection of H onto H;. Then E;€ U’
and Uz can be identified with ‘U, For S = (S;) €L, denote
S;=(0;8)1<i<n. Then [S/j <[iS], so that the mapping S—S; is
continuous. Furthermore, the correspondence SJf — 8, 1s an isometry.
Thus, if each 7T; is a compact element of “U(;, it follows from lemma 1.2.
(i), (ii) that the operator

X— YT XT; =TXT
i=1
is precompact. To prove the converse, note that if 7 = (7)) is a compact
element of U, the operator
X —>X S] Ei — T(X S E,) T el T,’XT,' o Ei —> T.XT, on (l(i

is precompact. The proof for finite-dimensional elements is analogous.
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Theorem 38.3. Let T be a compact (resp. finite-dimensional) element of
the *-subalgebra U of L(H). Then T* isacompact (resp. finite-dimensional)
element of “U.

Proof: The operator X — X* —TX*T — T*XT* is precompact
(resp. has a finite-dimensional range).

3.4. Let E and F be projections in the *-subalgebra U of L(H).
If there exists a partially isometric operator U € U with initial projection
E and final projection F (equivalently, such that U*U = E and
UU* =F, cf [2] p. 333), then we say that E and F are equivalent
(with respect to U) and write E ~F. Wewrite £ < F, if E(H) C F(H)
(equivalently, E = EF = FE), and E < F, if there is a projection
F' €U such that E ~F <F (cf. [2] p. 225).

The term »relatively finite-dimensional projection» will refer to a projection
that is a finite-dimensional (or, equivalently, compact, cf. theorem 1.1 (ii))
element of a subalgebra of L(H) clear from the context.

Theorem 3.4. Let E and F be projections in the *-subalgebra UL of
LH). If E<F and F is relatively finite-dimensional, then E is also
relatively finite-dimensional.

Proof: There is a projection F’ € U such that B ~ F' = F'F. Hence
there is a partially isometric operator U € U such that F' = UU* and

E =E2=U*xUU*U = U*F'U = U*F'FU .
By theorem 1.1 (i) E is a compact element of U

We call a projection E in a *-subalgebra U of L(H) finite, if there
is no projection F € U such that F ~E and F 7<,: E, ie. F<E,
F =+ E. If U is a von Neumann algebra, it is equivalent to require that
Uy be a so-called finite von Neumann algebra (cf. [2] pp. 241 and 318).

Theorem 3.5. Every relatively finite-dimensional projection E in a
*_subalgebra U of L(H) is finite.

Proof: Suppose E is not finite. Then we have E = E; ~ E,, where
E, :<,: E,. Let U, €U be a partially isometric operator such that
U*U,=E, and U,U}¥ = E,. Then U, = U,E, €Ul is a partially iso-
metric operator, for which U¥U, = E, and U,Uj(H)C E,(H). Since
E2§ E, and U, | E(H) maps E(H) onto E,(H) bijectively, the in-
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clusion must be proper. By induction we obtain a sequence of projections
E,ZE,Z ... such that E,= EE.,E € EUE. Furthermore, the
projections E, are linearly independent. For suppose

(1) S B =0
i=1

Choosing non-zero vectors from the subspaces (B, — E, ) (H), 1 <i <n,
and applying the operator (1) to them it is seen successively that
Jy=...= A, = 0. Hence the space E U E is infinite-dimensional, which
means that E is not a finite-dimensional element of “I!.

3.5. In the following we summarize some spectral theoretic facts
needed in the study of the compact elements of C*-algebras.

According to a well-known theorem of Gelfand and Naimark ([5],
p- 232) any commutative C*-algebra “U with identity may be realized as the
algebra  C(‘)1l) of all continuous complex-valued functions on a compact
Hausdorff space “//l. The algebra operations in C(“)/) are defined pointwise,

involution 7 — 7 by setting T*(M) = T(M) for M €Vl and norm
by
T = sup [ T(M)|,

]
Me

where 7T € C(‘)]l) is the function corresponding to 7T € U, For details
we refer to [5].

In particular, let 4 € L(H) be a Hermitian operator and denote by U,
the minimal closed commutative *-subalgebra of L(H) containing 4 and
the identity operator I. It follows from proposition 1.3.10 in [3] that

Sprmy(d) = SPUA(A) .

Thus we may in this connection speak unequivocally of the spectrum
Sp(4) of A. In virtue of proposition 1.4.3 in [3] we may, in representing
‘U, as a function algebra C(‘1l), assume that /1l = Sp(A4). Thusa unique
element, denoted by f(4) of U, corresponds to each continuous complex-
valued function f on Sp(4).

The following formulation of the spectral decomposition of a Hermitian
operator is proved in [5], pp. 248—249:

Lemma 3.1. For every Hermitian operator A € L(H) there exists a
unique function P :R — L(H), called the spectral function of A, with the
following properties:
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1° P(2) 'is @ projection operator for every A € R.

2° P(A)P( /'l) for 2 < u.

3° P()»)T TP ) for every T € L(H) such that AT = TA.

4° The function A— P(A)x is continuous from the left for every x € H.

Let [a,b] be a closed interval containing Sp(4) and f a continuous

complex-valued function on [a ,b). Wedefine f(A) asin the preceding

discussion, where f will then be thought of as being restricted to Sp(A).

Then P(i) =0 for A <a and P(A) =1 for 2> b and we have
b

f f(AAP(2), in particular A = f AP(2),

where the mtegrals are of Riemann-Stieltjes type and exist with respect
to the norm of L(H

The next result is implicit in the proof of the preceding lemma given
in [5] (see also [7] p. 352). However, we give it an independent proof.

Lemma 3.2. Let A € L(H) be a Hermitian operator and A < R\.Sp(4
an open interval. Then the spectral function P of A is constant in A.

Proof: Choose ¢,d €4 and [a,b] D Sp(4) such that a <c¢ <d <D.
Then the projections E, = P(c) — P(a), E, = P(d) — P(c), and
E, = P(b) — P(d) are mutually orthogonal with sum equal to I. If
¢ < 3y <d, then there exists (i,] — A)~*€ L(H), and the invariance
of the subspaces E;H) under A implies that also 2, € R\.Sp(4’),
where A’ = A | E,(H). Next, if 7,€¢[c,d], set

d=min {1, — &l e <& <d}>0.

Using the spectral decomposition

b

A’ :/zdP’(l),

a

where P’(1) = P(1) | Ey(H), it is easily seen that [[4'x — Ap] > 0 |l for
every x € E,(H), which implies in a well-known manner that 7, € C\.Sp(4).
It follows that Sp(4’) = O, which is possible only if E, = 0.

3.6. Our next main target is to show that the compact elements of any
*_subalgebra of L(H) form an ideal. The way is via von Neumann algebras
and the spectral decomposition of compact Hermitian elements.

The following fundamental result is proved in [2], p. 228.
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Lemma 3.3. Let <A be a von Neumann algebra and E ,F € A
projections. There exists a projection G € AN A" such that FG < EG
and E(I — G) < F(I — G).

Theorem 3.6. Let A be a wvon Neumann algebra and E ,F € A
projections. If F is a finite-dimensional element of A and E < F, then
each of the mappings X — EXF and X — FXE has a finite-dimensional
range.

Proof: There is a projection F’' € A such that E ~F' < F. Let
U € A be a partially isometric operator for which F’ = UU* and

E =FE*=U*UU*U = U*F'FU .
Then each of the mappings

X - EXF = U*FFUXF
and
X > FXE = FXU*F'FU

has a finite-dimensional range.

Theorem 3.7. Let U be a *-subalgebra of L(H) and let E and F be
relatively finite-dimensional projections in “U. Then the mapping X — EXF
on U has a finite-dimensional range.

Proof: If Ul does not contain the identity operator I, let U, be the
direct sum of U and CI. Clearly, “U, isisomorphic to the algebra obtained
from U by the customary adjunction of identity. Thus by theorem 1.4
we may assume that I € U. Let <A be the von Neumann algebra generated
by U, ie. oA = U" (cf. [2], p. 2). By corollary 1 in [2], p. 44, U = A"
where 7! denotes closure with respect to the weak operator topology,
i.e. the locally convex Hausdorff topology generated by the seminorms
T—|(Tx,y)|, where z,y € H. It is well known (cf. [2], p. 34 or [5],
p. 441) that for fixed 7 the mappings X —-TX and X — XT are
weakly continuous. This along with the fact that a finite-dimensional sub-
space of any Hausdorff topological vector space is closed shows that

EAE =EUECEUE = EUE.

Hence E (and analogously F) is a finite-dimensional element of <A.
Now consider the mapping X — EXF on <A. By lemma 3.3 there is a
projection G € A N A’ such that EG < FG and F(I — G) < E(I — G).
Then
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EXF — GEXF + (I — G) EXF = EGXFG + E(I — G) XF(I — G).
In virtue of theorem 3.6 the mappings
X > EGXFG and X - E(I — Q) XF(I — G)

on A have finite-dimensional ranges. It follows that the mapping
X —>EXF on <A and hence also its restriction to U has a finite-
dimensional range.

Corollary. Any finite linear combination of relatively finite-dimensional
projections in a *-subalgebra U of L(H) s a finite-dimensional element of
U,

Theorem 3.8. Let U c L(H) be a C*-algebra and let the Hermitian
operator A be a compact element of U, Then A can be represented as a
series or finite sum of the form
(1) A=Y ikE.,
where each E, € U and 4, €R, andthe E, are mutually orthogonal relatively
finite-dimensional projections. The number of non-zero terms in (1) ts Jfinite
if and only if A is a finite-dimensional element of U. Ifthe series is infinite,
it converges in norm.

Proof: By theorem 1.6 Sp,(A)\{0}, which is the same as Spy)(4) {0}
(corollary of theorem 1.6), consists of isolated points. Let [a,b] be a
closed interval containing Sp(4) and having zero as an interior point, and
choose &> 0 so that ¢ < min {|a|,|b'}. Let P be the spectral function
of A. It follows from lemma 3.2 that the integral

—c b

/ JP(7) / AP (%)

a &

P
degenerates into a sum ' 1,E,, where E, isthe jump of P corresponding
n=1

to the point A, € Sp(A4). Since the integral
b

A ://‘.dP(/l)

a

exists with respect to the norm of L(H), it is easily seen that as & —0,
we obtain (1). Clearly, we may assume each 1,E. = 0 (if 4 = 0, the sum
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is void). Next we show that E, € U. Choose a continuous function
J:R—C such that f(2,) =1 and f(1) = 0 outside an open interval A
with 4 N Sp(4) = {%.}. Let U, be as in the discussion preceding lemma

3.1. Evidently,
b

E, =/f().) dP(1),

a

and on the other hand

b

/f(/’.)dP () = f(4) eU,.

a

Thus E. can be expressed as a limit of polynomials in A4, and the equation

1
(2) — AE, = E,

Jin
along with the continuity of the mapping 7 — TE, shows that these may

1
multiplied by N A without changing the limit. Therefore E, is a limit

of polynomials in 4 having no constant term, which proves that &, € U/,
The compactness of the element E, follows from (2) and theorem 1.1 (i).
Finally, the equation

AE, A = 12E,

combined with the fact that the projections E, are linearly independent
shows that the sum (1) must be finite, if 4 is a finite-dimensional element
of U, and the converse follows from the corollary of theorem 3.7.

Theorem 3.9. Let U be a *-subalgebra of L(H) and let S and T be
compact (resp.  finite-dimensional) elements of “U. Then the operator
X —SXT on U is precompact (resp. has a finite-dimensional range).

Proof: In virtue of theorem 1.2 we may assume that I isa C*-algebra.
Since S*S is a positively definite Hermitian operator and a compact
element of “U(, its spectral decomposition degenerates into the series or
finite sum

o o .
S *S == ‘>_‘ Ln En s
n

where each 2, > 0 and each E, is arelatively finite-dimensional projection
(theorem 3.8). It follows from the corollaries of theorems 3.7 and 1.7 that
the operator
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8] = ($%8)? = ¥ V L. E,

is a compact element of “U. Let S = U|S| be the polar decomposition of
S (cf. [2], p. 334). Then the operator X — SXS* = U|S| X |S|U* and
similarly the operator X — S*X§ (cf. theorem 3.3) is precompact. Hence,
if we write

S:%(S—f—S*)—@—i%(S—«S*):A—{—iB,

A and B are Hermitian operators and compact elements of U(. Similar
remarks hold for 7'. Thus there exist sequences {S.} and {7T.} in U
converging to S8 and 7 such that the corresponding operators X — S, XT,
on ‘U have finite-dimensional ranges (theorems 3.8 and 3.7). It then follows
from theorem 1.7 that the operator X —SX7 on U is precompact.
To prove the second statement, note that if S and 7' are finite-dimensional
elements of U, all spectral decompositions involved in the above proof

will be finite sums.

Corollary 1. Let U be a *-subalgebra of L(H).

(i) Any finite linear combination of compact elements of U is a compact
element of “lU.

(i) Any finite linear combination of finite-dimensional elements of U
is a finite-dimensional element of “U.

(iii) If U is a C*-algebra, any compact element of U is the limit of a
sequence of finite-dimensional elements of “U.

Proof: Statements (i) and (ii) are immediate consequences of theorem
3.9 and (iii) is contained in its proof.

Corollary 2. Every compact element T of an infinite-dimensional
C*-algebra U is a (left or right) topological divisor of zero.

Proof: Let {S.} be a sequence of finite-dimensional elements of U
such that lim S, = 7. Choosing a subsequence if necessary we may by

n—> o

theorem 1.5 assume that each S, is, say, a left divisor of zero. Choose
Z, €U so that ||Z)]=1 and S,Z,= 0. Then

lim TZ, — lim (T — 8,) Zy - lim S,Z, = 0.

n—> o n—> o n—-x

We summarize corollary 1 above, theorem 1.1 (i) and the corollary of
theorem 1.7 in the following theorem:
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Theorem 38.10. Let Ul be a *-subalgebra of L(H). Denole by <. the
set of the compact elements of U and by s the set of the finite-dimensional
elements of U. Then 9. and Iy are two-sided ideals of U, and 9. is closed.
If U 4s a C*-algebra, . is the closure of ;.

3.7. Next we apply the preceding theory to the spectral decomposition
of compact normal elements of C*-algebras. We show how the problem
can be reduced to the Hermitian case without appealing to the general
spectral theory of normal operators.

Theorem 3.11. Let U < L(H) bea C*-algebra and let the normal operator
T be a compact element of U. Then

SpL(H)(T)\{O} = Spu(T)\{0}

consists of a countable number of eigenvalues 3y, 2y, . ... Furthermore, T
can be represented as a series or finite sum of the form
(1) T = > B,

where each nmon-zero eigenvalue 21, of T occurs precisely once, E, is the
projection onto the eigenspace corresponding to the eigenvalue 1., the E,
are mutually orthogonal, and every E,. is a finite-dimensional element of “U.
If the series is infinite, it converges in norm, and lim A, = 0. The sum is

n—x

finite if and only if T is a finite-dimensional element of “U.

Proof: Write

1 1
T =5 (T+T+iy (I—-T%=A4+iB,

where 4 and B are Hermitian and 4B = BA. It was noted in the proof
of theorem 3.9 that 4 and B are compact elements of U (formally this
follows from the statements of theorems 3.10 and 3.3). In virtue of theorem
3.8 we can write 4 = > &F;. Setting & = 0 and denoting by F, the

J
projection onto the orthogonal complement of the Hilbert sum

2 © FiH) = A(H),

izl
we have 4 = ' &F;, where H is the Hilbert sum of the subspaces
i=0
Fi(H). Similarly, B = ) nG It is clear from lemma 3.1 3° and the

k>0

definitions of F, and @, that F;G. = G\ F; for all j,k >0, which
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means that each F;G, is a projection. For j > 1, F; is a finite-dimensional
element of U, and since the G) are mutually orthogonal, F;G. =
F;G.F; # 0 only for a finite number of indices ki, ..., k{;j. We get two
sequences of projections

(2) F,G,, F,G,, FG,,...
and
(3) Fle}, FIG,,}_),...,FIG,‘;, FzG,,,g,...,Fszrzh, F3Gk§,...

Since for k> 1 G is a finite-dimensional element of U, it can occur
only a finite number of times in (3). Choosing alternately an element from
each sequence we get the sequence

(4) E,, By,...,E.,...

of mutually orthogonal projections, which are finite-dimensional elements
of U for n>1. If E,= F;G:, we set 1, =& + im.. Then

T =Y ik,

k>1
in the sense of the norm topology. This follows from a straightforward
convergence argument based on the fact that the projections in (4)
eventually build up any F; or Gy, j,k > 1, and that for sets of pairwise
orthogonal projections F; and F]' <F, j=n,...,n+p,

n-4p , ntp

i <. | ! . F
il 2 SJFj‘,; < 2 & Fjl .
j=n j=n

Clearly, the 4, can be assumed distinct and non-zero with the under-
standing that for 7' = 0 the sum will be void. Since

H=Z®EH(H)1

n>0
every x € H can be written as

v = > Ex.
n>0
If A,o —Tx=0 we have
E.(Jpx — Ta) = (Ao — Ap) Enx =0,

so that B,z = 0 for n # p. Hence z = E,x or x € E,(H). Conversely,
each A, # 0 is an eigenvalue of 7' such that the corresponding eigenspace
contains E,(H). By the corollary of theorem 1.6 or by proposition
1.3.10 in [3],
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SpL(H)(T)\{O} = Spy (T)\{0},

and in virtue of theorem 1.6, or directly by the convergence in norm of the
series (1), lim 4, = 0 if the number of eigenvalues is infinite. Next we
show that ">~

Sprey (T) C {2 | m =0}

To this end, suppose 1 = 4, forevery n > 0 andset 6 = min |2 — 4,/ >0

Then n=0
o — T2 = 3 [ABox — ABuaf? = Y 0 [Baal® = 8 [l
n=>0 n>0

This inequality combined with the normality of 7' implies that Al — T
has a bounded inverse. Thus 1 ¢ Sp v (T). Finally, once the representation
(1) is established, the last statement follows as in the proof of theorem 3.8.

4. Decomposition of relatively finite-dimensional projections

Rickart [6] calls an idempotent e in an arbitrary algebra U minimal,
if e‘lle is a division algebra. We shall, however, adopt a different usage
and call a projection E in a subalgebra U of L(H) minimal, if E + 0
and ‘U contains no non-zero projection F S E. If E is a projection in a
subalgebra U of L(H) and dim (E°UE) = 1, we say that E is relatively
1-dimensional.

Obviously, a relatively 1-dimensional projection is minimal. The converse
is true of every von Neumann algebra <A. For if E is a minimal projection
in A, Eg and 0 are the only projections in <A, and since a von Neumann
algebra is generated by its projections ([2] p. 4), <A consists of the scalar
multiples of Ep. Since <Ay is as a vector space isomorphic to EAE (see
the proof of theorem 3.1), we have also dim (EAE) = 1.

In a general C*-algebra, however, a minimal projection need not even
be relatively finite-dimensional. This can be seen e.g. by considering the
commutative C*-algebra U of all continuous complex-valued functions
on the interval [0, 1] (viewed as a Hilbert space operator algebra, if so
desired, cf. section 3.1). The only projections (i.e. Hermitian idempotents)
in ‘Ul are the functions identically 1 or 0. The former is a minimal projection,
but not a finite-dimensional element of (.

Theorem 4.1. If E +# 0 is a relatively finite-dimensional projection in
the C*-algebra U, there exists a relatively 1-dimensional projection F in U.
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Proof: Since the dimension of EUE is a positive integer and E € E°UE,
there is a non-zero projection F € EUE such that dim (FUF) is minimal.
Suppose F’ = 0 is a projection in FUF, F’ s F. Then

{0} # F'"'UF' c FUF c EUE .

Since F'= F'F, but F’ == F, we cannot have F € F'UF’. Thus
dim (F’UF’) < dim (FUF), contradicting the minimality of dim (FUF).
It follows that F is the only non-zero projectionin FUF. Clearly, F'UF
is a C*-algebra consisting of finite-dimensional elements, each of which

can be expressed as a linear combination of projections belonging to
FUF (theorems 3.3, 3.10 and 3.8). Therefore dim (FU/F) = dim (CF) = 1.

Theorem 4.1 combined with theorems 1.1 (i) and 3.8 yields the following
result:

Corollary. If the C*-algebra Ul contains a non-zero compact element,
U contains a relatively I-dimensional projection.

Theorem 4.2. If E == 0 is a relatively finite-dimensional projection in the
C*-algebra U, E is the sum of a finite number of pairwise orthogonal relatively
1-dimensional projections of “U.

Proof: By theorem 4.1 there exists at least one relatively 1-dimensional
projection F € E°UE. Since FE = EF =F, we have F < E. The
‘number of pairwise orthogonal relatively 1-dimensional projections
F, € E°UE (equivalently, F; < E) is bounded by dim (E°UE). Let
(F)1 < i = beafamily of such projections, chosen so that n is maximal. Since

E' =E — Y F;
i=1
is a relatively finite-dimensional projection orthogonal to all the F; and
E'“UE' c E°UE, theorem 4.1 implies that E’ = 0.

Remark. Using the above theorem we could decompose the relatively
finite-dimensional projections appearing in the statements of theorems
3.8 and 3.11 into sums of pairwise orthogonal relatively 1-dimensional
projections thus arriving at spectral representations even more closely
reminiscent of the classical case of compact operators.

4.2. A von Neumann algebra A is called discrete, if it is isomorphic
to a von Neumann algebra ‘% such that “%’ is commutative. If <A is not
discrete for any non-zero projection E € A N A’, A is called continuous.
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Any von Neumann algebra is canonically isomorphic to the product of a
discrete and a continuous von Neumann algebra (cf. [2] p. 122). It follows
from corollary 3 in [2], p. 229, that no continuous von Neumann algebra
contains a minimal projection. This fact together with theorem 3.2 and the
corollary of theorem 4.1 yields the following result:

Theorem 4.3. Let A be isomorphic to <A; X Ay, where <A, is a discrete
and A, a continuous von Neumann algebra. Let

(T)iz1,2 € Ay X A

correspond to the compact element T of <A. Then T, = 0. In particular,
no continuous von Newmann algebra contains a non-zero compact element.

5. Characterization of the socle of a C*-algebra

In an arbitrary algebra “U( the sum of the minimal left (right) ideals is
called the left (right) socle of “lL{. If ‘Ul contains no minimal left (right)
ideals, it is natural to define the left (right) socle of U to equal {0}. (Note,
however, that in Rickart’s terminology, [6] p. 46, the corresponding socle
in this case fails to exist.) If the left socle is equal to the right socle, it is
called simply the socle of “U. Lemma 2.1.12 in [6] combined with the next
lemma shows that the socle of a C*-algebra is always defined (possibly
equal to {0}).

Lemma 5.1. If O =£ {0} is a left or right ideal of « C*-algebra, then
2 £ {0}

Proof: We give the proof for a left ideal. If 7' € I\ {0}, then 7*T €
and |(T*T) (T*T)| — (T*T)*(T*T)| = |T|s = o.

Theorem 5.1. The socle of a C*-algebra U coincides with the set of the
finite-dimensional elements of “U.

Proof: Any minimal left ideal of U has the form “U(4, where
dim (AUA) =1 (cf. lemma 5.1 above, lemma 2.1.5 and its corollary in
[6]). Thus every element in the socle of “U is a finite sum of finite-
dimensional elements, hence a finite-dimensional element of “U( (theorem
3.10). Conversely, every non-zero finite-dimensional element 7T of U
(and trivially 0) belongs to the socle of “U(, for it follows from theorems 3.3,
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3.10, 3.8 and 4.2 that 7T can be expressed as a finite linear combination of
relatively 1-dimensional projections, and any such projection £ belongs to
the minimal left ideal “UE of U (cf. lemma 5.1 above and corollary 2.1.9
in [6]).

6. Compact elements and irreducible representations of C*-algebras

6.1. In connection with C*-algebras we mean by a homomorphism a
mapping that preserves the *-algebra structure.

Theorem 6.1. Let U, and U, be C*-algebras and II:U —“U; a
homomorphism. If w is a compact element of Uy, Il(w) is a compact element
of II(l). The corresponding result holds for finite-dimensional elements.

Proof: The algebra U, = II(“l(}) is closed in “U(, (cf. [3] corollary 1.8.3,
p. 18), hence complete. If B, denotes the closed unit ball of U, it follows
from the open mapping theorem that there is an r > 0 such that

II(B,) D B, = {x € U vl <r}.
Since I7T is continuous (cf. [3], p. 7), the set

1 1
I(w) ByIT(w) = — I(u) B;I1(x) C o, IT1(uByu)

7

is precompact. Hence II(u) is a compact element of “U(,. The assertion
concerning finite-dimensional elements is immediate.

6.2. Let Ul be a C*-algebra and I1 a representation of U on the
Hilbert space H’ (i.e. a homomorphism from U into L(H')). The repre-
sentation I7T is said to be (strictly, resp. topologically) irreducible, if the
algebra TI(“l() is (strictly, resp. topologically) irreducible. By corollary
2.8.4 in [3], p. 45, the strict and topological irreducibility of U are equi-
valent, so that we may without ambiguity speak simply of drreducible
representations of C*-algebras.

Theorem 6.2. Let U be a C*-algebra, w a compact (resp. finite-
dimensional) element of U, and IT an irreducible representation of UL on
the Hilbert space H'. Then II(u) is a compact operator (resp. an operator
with finite-dimensional range) on H'.
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Proof: By theorem 6.1 and the above remark I7(u) is a compact (resp.
finite-dimensional) element of a strictly irreducible operator algebra, and
hence a compact operator by corollary 2 of theorem 2.2 (resp. an operator
with finite-dimensional range by theorem 2.3 (ii)).

Theorem 6.3. Let U be a C*-algebra and w # 0 a compact element of
U. There exists a Hilbert space H' + {0} and an irreducible representation
II of “U on H' suchthat II maps the ideal . of the compact elements of
U onto the ideal LC(H') of the compact operators on H'.

Proof: Tt follows from proposition 2.7.1 in [3] that there exists a Hilbert
space H’ and an irreducible representation I7:“U{ — L(H’) such that
II(u) # 0. By theorem 6.2, II(.)c LC(H’). On the other hand, by the
same theorem and corollary 4.1.10 in [3], LC(H') c II(‘U(). Since I1(7,)
is a non-zero closed two-sided ideal of I7(°l() ([3], corollary 1.8.3), and
hence of LC(H’), corollary 4.1.7 in [3] shows that [1(7).) = LO(H').

Remark. It follows from theorem 6.2 that if every element of a
C*-algebra Ul is compact, U is a so-called CCR-algebra (»C*-algébre
liminaire» in the terminology of Dixmier, cf. [3], p. 86). In any C*-algebra
‘U the ideal of the compact elements of “U( is contained in the maximal
closed two-sided CCR-ideal of U (cf. [3], proposition 4.2.6). In general
this inclusion is proper, for example always in the case of an infinite-
dimensional commutative C*-algebra with identity (cf. [6] lemma 2.4.4).

7. Compact and finite-dimensional elements in factors

7.1. A von Neumann algebra <A c L(H) is called a factor, if
AN A = {J[|1€C}. Since for a factor <A the only projections in
AN A are 0 and I, lemma 3.3 shows that for any pair of projections
E,Fed, either E<F or F< E. The following analogue of the
Euclidean algorithm is a consequence of corollary 2 in [2], p. 228. It is
given explicitly in [5], p. 456.

Lemma 7.1. Let <A be a factor and E ,F € A projections such that
E < F. Then
F =>E + E,,
i€J
where Ey < E, each E, ~ E, and all projections on the right are mutually
orthogonal.

The next lemma is proved in [5], p. 460.
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Lemma 7.2. Let <A be a factor and E , F € A projections such that E
is finite and 0 + E < F. The index set 7 in the preceding lemma is finite
if and only if F is a finite projection.

7.2. For non-zero elements of a factor the converse of theorem 3.9 is
valid (theorem 7.2). We first prove an auxiliary result.

Theorem 7.1. Let E and F be non-zero projections in the factor A.
If the operator X — EXF on A is precompact, E and F are finite-
dimensional elements of A.

Proof: Suppose first E < F, which means that £ ~F;, < F for a
projection F, € A. There is a partial isometry U € <A such that
F,=UU* and

E=U*UU*U = U*F,FU .

Hence the operator X — EXE is precompact, and £ is a finite-
dimensional element of 4. By lemma 7.1 F may be written as the
orthogonal sum

where E, ~E and E,< E. Let U; € <A be a partial isometry having
E; as initial and F as final projection. Every finite subset of the set
{(BU;F |i € 7} is linearly independent. For if

n

(1)  EUF =0,

k=1

it follows by successive applications of the operator (1) to non-zero vectors
from the subspaces E,(H) that A4, = 4, =...= 4, = 0. Since the pre-
compact operator X — EXF maps the unit ball of the subspace EAF
onto itself, EAF must be finite-dimensional. By theorem 3.4 E, and
all the E; are relatively finite-dimensional projections, and since the above
argument shows that the index set .7 is finite, F is in virtue of the corollary
of theorem 3.7 a finite-dimensional element of <4. In the case F < E the
conclusion follows from the above proof and the precompactness of the
operator X — X* > EX*F — FXE.

Theorem 7.2. Let S and T be non-zero elements of the factor A. If
the operator X — SXT on A 1is precompact (resp. has a finite-dimensional
range), S and T are compact (resp. finite-dimensional) elements of A.
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Proof: Suppose first that S and 7 are Hermitian. Since 8 # 0,
there is a closed interval [e,b], not containing zero, such that
E, = P, (b) — P;(a) # 0 for the spectral function P; of S. Let P, be
the spectral function of 7', choose an arbitrary closed interval [c,d] not
containing zero, and denote E, = P,(d) — P,(c), P, (1) = P,(4) | Ey(H),
T"=T|E,H). If 6=min{c|,|dl}, an application of the spectral

decomposition
d

T — / AP (2)

c

shows that |7zl > d|z]| for all « € E,(H). Since 6 > 0, this implies that
T’ has a bounded inverse. Since 7" € Ay and (7)™ commutes with
every operator on FE,(H) that commutes with 7",

(I € (Ag)” = Ay,

Thus there exists 7" € &4 such that (7)1 = T . Therefore
E, = TE,T"E,, and similarly we can find S € </ such that
E, = SE,S"E,. Hence the operator

X > E,XE, = SE,S"E,XTE,T"E,

is precompact, and it follows from theorem 7.1 that FE, is a finite-
dimensional element of <A.
Given &> 0, we can choose a Riemann—Stieltjes sum X approxi-

e
mating 7T such that |7 — X'| < -, and that in the corresponding partition
g | i 2 }. (=} }

€
the lengths of the intervals adjacent to zero are less that R If 27 is the

sum obtained from X by discarding the terms corresponding to these
intervals, ||T' — 2’| < e, and the foregoing argument shows that the
projections appearing in X’ are finite-dimensional elements of <A. Thus it
follows from theorem 3.10 that 7' is a compact element of 4. Let

(1) T = > JF,

be the spectral decomposition 7' (cf. theorem 3.8). Since E, < F, or
F, < E,, to each non-zero F, corresponds a non-zero partial isometry
U, € A whose initial projection is dominated by F, and final projection
by E,. Since the F, are mutually orthogonal, it is readily seen that the
operators E,U,F, are linearly independent. Therefore, if the operator
X — SXT and hence the operator
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X — B, XT = SE,S"E, XT

has a finite-dimensional range, the number of non-zero terms in (1) must be

1
finite, as otherwise the set consisting of the operators N U, would be

n

mapped onto an infinite linearly independent set. Since the operator
X — X* SX*T - T*XS* =TXS

is precompact (resp. has a finite-dimensional range), the above proof shows
that S is also a compact (resp. finite-dimensional) element of <A. In the
general case the operator X — S* SXT*T is precompact (resp. has a finite-
dimensional range) and S*8S = 0, T*7T = 0 are Hermitian. Tt was noted
in the proof of theorem 3.9 that 'S| and |T| are compact (resp. finite-
dimensional) elements of <A, if S*S and T*T are so. Since in the polar
decompositions § = US| and 7 = V|T| the partial isometries U and
V beleng to <A (cf. [2] p. 5), the conclusion follows from theorem 3.10.

Remark. Theorem 7.2 cannot be extended to an arbitrary von Neumann
algebra. To see this, let H be an infinite-dimensional Hilbert space and
‘Il c L(H) an infinite set of mutually orthogonal nonzero projections, one
of which, say E, has a finite-dimensional range. Then A = " is a
commutative von Neumann algebra. The operator X — IXE = EXE
on <A has a finite-dimensional range, but I is not a compact element
of the infinite-dimensional algebra A.

7.3. An argument similar to the proof of theorem 3.4 yields

Theorem 7.3. Let ) be a two-sided ideal in the *-subalgebra U of
L(H). If E and F are projectionsin U, F €9, and E < F, then E € ).

Theorem 7.4. If A is a factor, the ideal 7 of the finite-dimensional
elements of <A is contained in every two-sided ideal of A,

Proof: Let ) be a two-sided ideal of <4 and 0 = T € 9. Since
T*T +# 0, there is a closed interval [c,d] not containing zero, such that
E = P(d) — P(c) # 0 for the spectral function P of T*7T. Asin the proof
of theorem 7.2 we can find an operator B € <A such that E = T*TEBE.
Thus E €Y. Let F €Y be a non-zero projection. Since K < F or
F < E, theorem 7.3 shows that £ € ); or F € 9. In any case, < contains
a non-zero relatively finite-dimensional projection. Since every relatively
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finite-dimensional projection is finite by theorem 3.5, it follows from
lemma 7.2 and theorem 7.3 that ) contains every relatively finite-
dimensional projection. Hence in virtue of theorem 3.8 we have ;c .

Combined with theorem 3.10 the above theorem gives

Corollary. The ideal of the compact elements of the factor <A is contained
wn every closed two-sided ideal of <A.

7.4. It is well known that the operators with finite-dimensional range
on a Hilbert space H form a minimal and the compact operators on H
a minimal closed two-sided ideal of L(H). Since L(H) is a factor, theorem
7.4 and its corollary show that the former ideal coincides with the ideal
of the finite-dimensional elements of L(H) and the latter with the ideal of
the compact elements of L(H). Thus theorems 3.9 and 7.2 yield
independently of Ascoli’s theorem the following special case of theorem
3 in [8] (resp. of theorem 2.3):

Theorem 7.5. Let S and T be non-zero operators on H. The operator
X — SXT on L(H) is compact (resp. has a finite-dimenstonal range) if and
onlyif S and T are compact operators (resp. have finite-dimensional ranges).

Remark. A factor is either discrete or continuous, and every discrete
factor is isometrically isomorphic to the full operator algebra on some
Hilbert space (cf. [2], pp. 121 and 8). Hence, in virtue of theorem 4.3, the
existence of non-zero compact elements in a factor <A implies the existence
of a Hilbert space H’ such that <A is isometrically isomorphic to L(H').
Thus, if we take for granted the fact that the sets of the compact elements
of L(H') and the compact operators on H' coincide, the study of the
compact elements of factors is reduced to the classical theory of compact
operators on a Hilbert space. In particular, the corollary of theorem 7.4
is a consequence of this theory.
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