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Introiluction

Completely continuous elements of a commutative normed algebra have
been studied by M. X'reundlich [4], who defined them as those elements of
the algebra for rvhich the corresponding regular representations are compact
operators. A different d,efinition of a compact element in a normed. algebra
was given by K. Vala in [9]. Accoröng to his definition u is a compact
element of the normed. algebra 1/, if the linear transformation r--->,u,n,tl
is a precompact operator on ?,1. This definition generalizes the notion of
a compact operator, for if we take as ?l the full operator algehra L(D|
on a Banach space .8, theorem 3 in [8] shows that the compact elements
of '11 are precisely the compact, operators on E. A special class of compact,
elements is formed by the elements u e 'L(. for which the operatot tr ---> url,c
has a finite-dimensional range. We call these elements finite-d,imensional
(»6l6ments de rang fini» in the terminology of [9]).

In this pa,per we stud.y compact and finite-dimensional elements in the
sense of Yaia. The most decisive results are reached for C*-algebras, i.e-
uniformly closed. operator algebras on a Hilbert spaee that, are closed u'ith
respect to the involution T ---> T*. An exarnple in [9] shou's that if the last
coird"ition is omitted, the sum of trro compact elements may fail to be
compact. However, the compact elenrents of a C*-algebra form a trro-sided,
ideal, which is the closure of the id.eal of the finite-dimensional elements
(theorem 3.10). This is turn coincides rvith the socle of the algebra (theorem
5.1). Certain other, notabl;' spectral, properties of compact, operators
extend. to compact elements (theorems 1.6 and. 3.11). For a very special
class of C*-algebras, namely the factors of von Neumann, the two-sided.
ideal of compact elements - if non-zero - is minimal-closed..

The existence of non-zero compact elements imposes rather severe
restrictions on the algebra (cf. e.g. corollary 2 of theorem 2.2, and theorem
4.3). In particular, a factor containing non-zero compact elernents is iso-
morphic to the full operator algebra on some Hilbert space. Therefore
results concerning the structure of the set of compact elements in a factor
follow from the classical theory of compact operators on a Hilbert space,
However, in section 7 we prove directly the above mentioned minimality
property of the id,eal of the compact elements in a factor, for in this lvay
a new proof is obtained for theorem 3 in l8l in the case of a Hilbert space.
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l. General properties of compact and finite-dimensional elements

1.1. Let E and -F be real or complex normed spaces. Recall that
T e L@, -F) is a compact (resp. precompact) operator, if it maps the closed
unit, ball of E onto a relatively compact (resp. precompact or,
synonymously, totally bounded) set. The following definition is due to
Vala [e]:

Detinition. An element tr, of a real or complex normed algebra ?l is

called compact, if the mapping r --->'u,n'u, is a precompact operator on '11.

An element u of an arbitrary algebra ?l is called. fini,te-il,i,rruensional, if
the range of the mapping tr --->'ur,1t on .)l is finite-dimensional.

Every finite-dimensional element, of a normed algebra ?l is a compact
elenrent of 'Ll. ft is also clear that a compact (resp. finite-d.imensional)
element of .}l is a compact (resp. finite-dimensional) element of ever;, sub-
algebra of 11. This fact serves to justify the definition of a compact
element in terms of precompact instead of compact operators. In the case

of a Banach algebra this distinction is immaterial, since on a Banach space

precompact, operators are the same &s compact operators.
For the simple proofs of the following results see [9].

Theorem 1.1. (i) If u i,s a compact (resp. finite-d,imensional) element

,f 1t and, u e 'U, ua and, au o,re comgtact (resp. fi,ni,te-d,i,mensi,onal)
elements of 11.

(ii) tuery compact'id,empotent is fini,te-d,imens'ional,.

1.2. The next theorem shows that often ?l may be assumed. to be a
Banach algebra, since any normed algebra can be viewed as a dense sub-
algebra of a Banach algebra (cf. e.g. l5l p. 176). We first give a simple
lemma, from which the theorem immed.iately follou.s.

Lemma 7.1. Let E, be a normeil space hau'ing E as u' ilense subspace.

Let q beabounded, linearoperatorfrom E, i,ntothenorm,ed,space E. Then

E is a precompact operator (resp. an operator with fi,ni,te-d'i,mens'i,onul, range),

i,f i,ts restricti,oru to E is one.

Proof: Since the closed unit ball of .E is dense in trhat of Er, the
first statement follows from the continuity of E and. the fact that the
closure of a precompact set is precompact. The second is a consequence of
the fact that finite-dimensional subspaces of -n' are closed.



I{lnr Yr,rNpN, Compaet and finite-dimensiona} elements

Theorem 1.2. Let 1.1, be a normeil, algebra anil,let 1t be'i,ts d,ense sub-
algebra. Then u e 1t is a compact (resgt. fi,ni,te-di,mensi,onal) element of 'Ll
if and, only if i,t i,s a compact (resp. fi,ni,te-d,imens'i,onal) element of 'Llr.

I.3. If 'll is a real normed. algebra, it can be embedded (real) iso-
morphically in a complex algebra 1lc :'U x'Ll called its comgileri,fication,
in which the algebra operations are so defined. that (r , y) behaves Iike
r + iy. Furthermore, 'Ll can be given a norm so that this embedding
x ---> (r, 0) is an isometry, and 'll" will be a Banach algebra if and only if
'Ll is a Banach algebra (cf. [6], p. 6 and p. 8 theorem 1.3.2).

Theorem 7.3. Let 'Ll be a real normeil, algebra and, let 'LL" be its com-
pleri,fication. Then u e 'U ,i,s a compact (res1t. fini,te-d,i,mensi,onal,) element
of 'U if and, only i,f (u,0) ,i,s a compact (resp. findte-ili,mensi,onal,) element
of '11".

Proof : It follows from the proof of theorem 1.3.2 in [6] that the norm of
')1" is equivalent, to the norm f(r ,y)l: llrll + llyll. Thus we may consider
'11" under this norm. Denote the closed unit ball of '/l by B and that of
'11" by Bc. Since B"C B x B, lve have for u e 'L(

(u,0) B"(u, 0) c (u,0) B x B(u, 0) : (uBu) x (uBu).

Since the Cartesian product of two precompact, sets is precompact, the
compactness of a in 'Ll implies the compactness of (u ,0) in 'llr'
Conversely, if (u ,0) is a compact element of '11", u is a compact element
of 'll, for then (u ,0) (B X {0}) (u ,0) is a subset of the precompact set
(u ,0) Br(u ,0) so that also uBu is precompact. For finite-dimensional
elements the theorem follows from the simple facts that subspaces and finite
direct sums of finite-dimensional spaces are finite-dimensional.

f .4. If 'll is an algebra without a multiplicative identity, an identity
can be adjoined, to 'U by embed.ding 'Ll via the canonical mapping
r ---> (r ,0) in the Cartesian product ?1, of '/1 and. the scalar field. In
7, the algebra operations are so defined that t'he couple @ , i) can be
treated like a formal sum ,, + ),. If '/l is a normed. algebra, ?1, becomes

a normed algebra und.er the norm ll(r, i)ll : llzil * li,, and 11, will be

a Banach algebra if and only if ?l is a Banach algebra (cf. [6] p. 2).

Theorem 1.4. An element u € 'll
element of 'L( i,f and, only ,f (u , 0)

element of 'L(r.

is a compctct (resp. fini,te-dimensi,onal'S
'is a, compact (resp. fin'ite-di,mensiono,l)
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Proof: Denote B: {* e'/1 ljlrll < l}, Br:{r e '11, lli"ll < 1},

C:{1€KIlrl <l}, where K isthescalarfield (K:R or C). If
{r , 1) e B' then llrll < t and lrl < l. Hence we have

(u,0) Br(u,0)c (u,0) (A x C) (u,0).

The latter set is equal to (uBu t Cuz) x {0}, which is precompact if u
is a compact element of ?1. The converse is obvious. X'or finite-d.imensional
elements the proof is still simpler.

1.5. Generalizing a result of X'reundlich (t+l p. 277) we obtain

Theorem 1.5. Let 'L( be

dimens'ional element of 'Ll .

Proof : Choose elements fi;
is a basis for utl(u. For all

Ifn
contrary
Then 1t

an ,infinite-dimensi,onal algebra and u a f,inite-
Tlten u 'is u (lrft or ri,ght) diu'isorcf zero.

n

)-
L-)i:1
to
is

€'ti1, 1 < i I n, such that {u,tiy | 1 < i < n)
arbitrar)' r e '''Ll \ve can u,rite

n
\-\

i:1

u(* 
,å 

)"iri) %- o .

Lifri \\rere zero for ever)' t:, 'Ll would be finite-dimensional

the h;rpothesis. Hence there is ct, * 0 such that ua,n, + 0.

a left or right divisor of zero accordirg as ua - 0 or ua, + 0.

1.6. Let 'Lt be a complex algebra with identity e. The spectrum
Epu@) of an elemerft, a € ''Ll is defined as the set of those l, € C for which
),e - a is not regular. If. 'Ll does not possess an identity, rre define the
spectrum Spu@\ of a e 'll as the spectrum of (a , 0) in the algebra
obtained from '21 by adjunction of an identit;-. It is yell knov'n that this
definition is equivalent to the one given in [6], p. 28, in terms of quasi-
inverses (cf. 16l p.27 and p.32, theorem 1.6.9). If 'L( is areal algebra,
the spectrunr of a e 'L( is d.efined as the spectrum of (a ,0) in the
complexification '?1" of '/1.

Theorem 1.6. Let 'L( be a Banach algebra. The spectrurn of any com,pact

element of 'LL cons'ists of a countable number of points, which can accumulate
only in the origin. The spectrum of a finite-di,mens,ional element of 'll has
a fini,te number of points.
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Proof : In virtue of theorems 1.3, 1.4, and, the remarks immediately
preced.ing them 'l/ may be assumed to be a complex Banach algebra with
identity e. Denote by I" the centralizer of u e?1, that is

Y":{reltlur:ru\.

Then Y, is a closed subalgebra of ?l containing the identity. If ()'e - u)-L

exists, it belongs to Y,, and. since obviously

Spu(u) c Spr,(ul ,

we have
Bpu@) : spr,(u) .

If u isacompactelement of 'Ll , themapping n-+uru restrictedtothe
Banach space I, d.efines the compact, operator fr->uzr oL yu. The
spectrum of this operator is by theorem 1.6.9 in [6] equal to Bpr"(u').

But the spectrum of a compact operator is countable and it can accumulate
onl;r in the origin (cf. [7] p. 281). By theorem 1.6.10 in [6],

Bpr,(u'): (§Py,(%))z : (SPu@\z .

Ilence also ,Spr(u) is of the type stated in the theorem. If, in the above,

z is finite-dimensional, Bpr.(u') and hence also Bpu(u) is finite. This

follows from the fact that the non-zero portion of the spectrum of an;,
compact operator consists of eigenvalues and from a standard. argument
showing that eigenvectors corresponding to distinct eigenvalues are linearly
independent (cf. e.g. [z] p. 281).

Corollary. Zer 'Ll, be a Banach algebra hauing 1t as a closed, sub'
algebra. If u i,s a comltact element of 11, then

§py,(z)\{o} : §pr(zr)\{o} .

If ,furthermore,'Ll, hq; ani,d,entity e suchthat e e 'll, then Bpu,(u) : Spu(u).

Proof.' It is easily seen that

Spy,(zc) c Spu(u) U{0}

11

(1)

It follows

and

from theorem 1.6 and t,he fact that all spectra are closed that
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Hence by theorem L.6.L2 in t6]

Spu(u) c Bpu,@) .

Zero was included in (l) because 'll may have an identity which is not an
identity of 'Llr, but it may be omitted in case '11, has an identity e such
that e e 1t,

1.7. \Ve summarize in the next lemma three well-known properties of
precompact operators, which we shall often use without explicit mention.

Lemma 1.2. (i) Any finite l'inear combi,nation of precomltact operators
on a norrned, space 'is a precomgtact operator.

(ii) The com,position of a bouniled, linear oyterator and, u precompact
operator, i,n either oriler, ,i,s q, precompact operator.

(iii) The set of the precomgtact operators on a norn'ted, space E is closed,

i,n the norm topology of L(E).

Theorem 1.7. Let {un) and {ro} b" sequences i,n a normed, algebra 'Ll
wi,th

)i2"* 
: ", r;m un : a '

Denote the mapping n-->u1gas b! U6 anil the mappi,ng n--->uuu by U.
If U* is a precornpact ogterator for euery k, U is a precoru,pact operator.

Proof: Elementary properties of the norm give

i1u*(x) - U(")ll : llul"rox - ltnl)p { urup - uru1,l I
tlu-ullllorllllrll * lloo - olillzllllrll <2llullllu*- utl * lallilc'r - z,ll

for il"il < t and, k large enough. Hence

lim llt/,, - all : lim sup ll(U* - U) (r)ll : s,
k+o &+o ilrl<I

and the conclusion follows from lemma 1.2 (iii).

Corollary. The set of the comgtact elements of a normecl algebra ,i,s closed,.

Ann. Åcad. Sci. Fennicre
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2. Ascoli's theorem and irreducible operator algebras

2.1. The characterization of precompact operators given by Vala in [8],
underlying his definition of a compact element, is based. on a, new formulation
of Ascoli's theorem. X'or the sake of completeness we reproduce this theorem
and. its proof in a somewhat more symmetric form.

For this purpose, let A and B be arbitrary sets, (P , d) a metric
space, and @ a mapping frorn .d xB into .F. Consider the following four
statements:

I X'ore.ler.\- g €B andevery e>0 thereisafinitecovering (Ar),rs
of A such that u,ue A; implies d,(@(u,y), iD(a,y))<e.

II Forevery re A and,every s>0thereisafinitecovering (B)irl
of B such that w,ze Bi implies d(@(r,w), @(r,z))1e.

III For eyery s ) 0 there is a finite covering (Ar),.t of -4 such that
u,ue Ar implies d,(tD(u,y), @(o,y))<e for every geB.

IV For every e > 0 there is a finite covering (Bi)irS of B such that
u,zeBi implies d(<D(r,w), @(r,z)) {e for every re A.

Theorem 2.1. (i) IrI 'impl'ies I.
(ii) IV ,implies fI.
(iii) II q,nd III together i,rnply IV.
(i") I and IY together i,mply flf.

Proof : By svmmetry it suffices to prove (i) and (iii). But (i) is immediate,
so let us prove (iii). Given e 2 0, let (A,),rt be a finite covering of .4.

suchthat u,uez{; implies d,(<D(u,y), @(u,y)) ai fo" every ye B
(cf. III). Clearlv, A and each A; may be assumed non-empty. X'or each
i, e J choose ri e Ai. By II there is for each i, e J a finite cover.ing

13

{Bi)ie Ji such that u,z €

intersections of the type

covering of B. For if LD ,

fie Ah and w,z€

d(@(r,u), @(*,2))

+ d,(@(rn , z) , @(* , z))

u,'hich mea,ns that I\r holds.

,[] 
Bi,, x'here i, e J, form the required, finite

z e n B:. arld x e A, there is k e J'suctr ttrat
ieJ 

rl

Ilence \\'e have

d(@(r , w) , @(rk , u)) + d(@(rk ,'u,) , @(*r , z)) r-
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Remark. Theorem f in [8] follows from the above theorem, for if B
is a set of mappings from -4 into -F and. we set,

@(* , Y) : A(n) ,

then the conditions I-III have the following interpretationsr

I' The range of each mapping y e B is precompact.
II' For every z € -,4 the set {A@) | A e B} is precompact.

III' The set B has equal variation (cf. [8] p' 4).

ff each mapping y e B is bounded, B becomes a metric space wit'h

the metric

P(h , Y) : ::l d(Y,(*) , Yz@)) ,

and. then IV means that
IV' the function space (8, S) is precompact.

we note that theorem 6 in [l] is also an immed.iate consequence of
theorem 2.1. We reformulate it for not necessarily complete spaces:

Corollary. Let Er, Er, Er, E n,

d, : E, n E E be precon?,pa,ct a?Ld b

bounded l'inear opera,tors and denote

Y be ?Lormed spaces, let a : E'+ 82,

: Y --> L(Er, Eu)) c i 7' --> L(Er, Er)

Z : {tt e Y | (br1) o a : d. c(rl)\.

Then the mapyti,ng rl * (bri o a i,s a precompact operator from Z i,nto L(EL , E4)

Proof: Denote A : {E e r, I ll6ll ( l} and B : {(bq). alA i:,t e Z,llrtll < r}.
Since o is precompact, there is for every e ) 0 a finite covering (At),rt
of A such that, €1, {,ze Ai implies llblllla(fr) - o(6r)ll < e. Hence t'he

condition III' in the preceding remark holds for A and B' Since (bq ')a :
d."(ri for r7 e Z, the precompactness of d yield.s II'andthe conclusion

follows from IV', which holds by theorem 2.1'

2.2. Eor the first corollary of the next theorem we need the trivial
implication (ii) in our formulation of Ascoli's theorem. X'or the notion of
the irreducibility of operator algebras see [6] p. 48.

Theorem 2.2. Let D be a Banach space and, 1l a stri,ctly i,rred,uci,ble

subalgebra of L(E). # S € L(E) and' the oyterator X --+ SXz from 1l i,nto

D 'i,s precompact for sorne non-zero z e E, S i,s a compact ogterator.
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Proof : Denote by g the mapping X ---> Xz from the closure 'tl of 'l(
into E. Then g is a bounded linear mapping from one Banach spa,ce

onto another, for the strict irreducibility of .7 implies that the range of g
is all of ,O. Denote by B the closed unit hall of ? and by B, t}rat of E.
In virtue of Banach's open mapping theorem g(B) contains a neighborhood.
of zero, say B" : {r e D lllrll < r}. It follows, in virtue of lemma 1.1, that,
the set

§(Br)
I:
r

1

§(8,) c ; §(r(B))

is precompact, and. the theorem is proved.

As in example 3 in [l], p. 49, the corollary of theorem 2.1 yields in a
special case the result, contained in theorem 3 of [8], that for precompact
operators § and T on a normed space .E the operator X -> §Xf on
L(E) and hence its restriction to any subalgebra of L(E) is precompact.
As a consequence of the above theorem we have the following partial
conYerse:

Corollary 1. Let E and, 1l be as in the preceil,ing theorem.

S , T e L(E), T + 0, and, the operator X --> BXT from 1l into L(E)
precompact, then S ,i,s a compact operator.

Proof: Thereisaunitvector z€-E suchthal z:Tr* 0. Considering
the restrictions of the operators §X7, rvhere X € ?l and liXll ( l, to,
the closed unit ball of E it is seen that theorem 2.1. (ii), the remark following
it, and theorem 2.2. yield the conclusion at once.

Corollary 2. Let E and, 'LL be as 'i,n theorem 2.2. If S is a compact
element of 11, ,S 'is a compact operator on E.

The above corollary and. the remark preceding corollary I yield the
following result:

rf
fs

Corollary 3. Let 'L(

form a, closeil tao-si,ded,

fn a special case of
compact operator.

be a,s i,n tlteorem 2.2. Tlte compact elements ,f 'ld
i,deal ,f 'L(.

corollary 1 f may also easily be shown to be a,
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Corollary 4. Let H be a Hi,l,bert space and,let 'U be a stri,ctly irred,ucible
subalgebra of L(H), closed, wi,th respect to the inaolution T --->T*. If
§ , 7 € L(H), § + 0, and the operator X ---> BXT from 'Ll ,i,nto L(H)
,is precoru,pact, then T is a conr,pact operator.

Proof: The continuity of the involution implies that the operator
-.{ -> X* -> §X*? -> ?xX§* is precompact. By corollary l, f* and
hence also 7 is a compact operator.

In the next theorem we summarize some results for finite-dimensional
elements and operators with finite-dimensional range corresponding to
theorem 3 in 18] and the corollaries of theorem 2.2.

Theorem 2.3. Let E be a real or compler linear space, S anil T l,i,near

operators on E, and, 'Ll an algebra of li,near operators on E.
(i) If S and, T haue finite-d,i,mensional ranges, the maltping X --> SXT

on 1l has a fini,te-d,i,mensional range.
(ii) If 'Ll i,s stri,ctly irred,ucible, T + o, a.nd, the maltping X ---> SXT

oru 'Ll has afi,nite-d,,i,mensional ra,nge,then S has afinite-dirnensional re.nge.

In particular, if 'Ll is stri,ctly i,rreduci,bl,e and, S i,s a finite-d,imensi,onal
element of 'Ll, ,S is an operator with fini,te-d,i,mensi,onal range.

(iii) ,ry E ,i,s compl,er, 'Ll a compler str,ictly irred,ucible Banuch algebra,
B + 0, and, the mappi,ng X -+ §Xf on 'Lt has a fi,ni,te-d,imens,i,onal range,
then T is an operator wi,th fi,nite-d,imensionu,l, rq,nge.

Proof : (i) The image of 'll s1fler the mappirlg X ---> SXT is isomorphic
to a subspace of the algebra of all linear operators from T(t) irlto B(D),
hence finite-dimensional.

(ii) Choose z €.8 such that Tz I 0. Since Tz is a strictly cyclic
vector, the set {SXTz I X € ?1} coincides with the entire range §(Z) of §.
Ilence, if the subspace {BX?IX e'll} is finite-dimensional, §(Z) must, be
finite-dimensional.

(iii) Choose z € -E suchthat §z + 0. By theorem 2.4.6in [6] the algebra
'Lt is strictly dense on E (t6l p. 60). Hence, if f@) were infinite-
dimensional, there would exist, for an arbitrarily large za, linearly inde-
pendent vectors Ur,...,y"ef(t) and operators Xr ,...,Xn €'ll such
that X;yi : ö;iz. But then the set {SX," I | < i,( z} .rvould be linearlv
independ.ent, and since n cay: be chosen arbitrarily, this contradicts the
finite-d.imensionalit;' of the subspace {SXf I X €'/1}.

16
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3. Compact elements in algebras of operators on a Hilbert space

3.1. fn this paper ä always d.enotes a complex Hilbert space (l {0})
and. L(H) the algebra of bounded linear operators on ä. A subalgebra
of L(H) that is closed with respect to the involution T ---> T* is called. a
*-subalgebra of L(H). A C*-algebra is a uniformlSr closed. *-subalgebra of
L(H). According to an equivalent abstract definition a C*-algebra (or a,

B*-algebra, cf. [6] p. 180) is a Banach algebra with involution such that its
norm satisfies the condition jlallz : llr*ull (cf. [2] pp. 6 and 39).

For a set ")l c L(H) we denote

-lL'- {T c L(H) l"S - §? for every § €./l},

t7

and ')1" - (ll')'. A *-subalgebra

ctlgebra, if "Ll- - 
(Lltt. Every von

e.g. t5] p. 170).

'll of L(H) is called & aon l{euma,tu??,

Neumann algebra is a C*-algebru (.f.

3.2. Leb 'll be a subalgebra of L(H\ and E a projection in '/l or
in ?l'. We denote Tn: ET I E(H) and '|1.u : {TB | ? €'11}. It is readily
seen that '/1, is a subalgebra of L(E(H)) and a *-subalgebra if 'll is one.
If '11 is a von Neumann algebra, .ll, is a von Neumann algebra (tZ] p. tS).

Let (Hr),r, be a family of Hilbert spaces and, for each i e J, let, 'llt
be a subalgebra of L(H;). Denote by H the Hilbert sum of the spaces ä;.
If Tt €'11; and sup ll7;ll < m, we d,efine T : g,) e L@) by setting

ieJ
T((r,),r) : (Tin,),ut .

TIre set of operators T e L@) of this type is an algebra called the proiluct
ofthealgebras ?/; anddenotedUy TT?1;. If J:{1 ,...,tu}, wealso

3.3. In this and the next, subsection we record. a feu' simple properties
of compact and finite-dimensional elements in subalgebras of ,L(ä).

be cL subalgebru, ,f L(H), T € '/ ( and, E ff

d,s a comp&ct elentent of 'l(, TE i,s a compact

'l(', f @) c E(H), Kerg) 3 (I - E) (H) and

denote

If each 'l(,
algebra (.f.

Theorem 3.1. Let ''L(

proj ection.
(i) If E e'Lt aTLd T

elent ent of ' L( u.
(ii) If Ee'l( or Ee

ieJ

is a von Neuma,nn algebra,

t2l Ir. 2L).

Y ,LI
/ \ l'1,

T]
ieJ

''ll, is also a vo]r }{eumanr}

T]
ieJ
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Tu isacomgtactelementof 'Llu, then T 'i,sacompactelementof 'Ll. Analogous
"statements holil for fi,ni,te-d,imensional elements.

Proof : The mapping ESE ---> S, is a linear surjection from E llil
onto ?lr. ft is isometric, hence injective, for

Il§rll : sup ll,0'§rll - sup llESErl: li.E'B,E'll .

lirll<1,":Er ll"li <I

Denote this (vector space) isomorphism by q. Then the operator
I o

xE '- > EXE --->TEXET -> ETEXETE L> QEXET)E: TaXxTr

s precompact. This proves (i). To prove (ii) we note that the operator

X ---> DXE I , Xu-+ T"XuTs : ETEXET I E(H) -
o-L: (TXT)E, >ETXTE : TXT

is precompact,. The proof for finite-dimensional elements is analogous.

Corollary. A projection E e'LL i,s a fini,te-dimensional element of 'll
if and, onl,y i,f 'Llu is fini,te-d,irnens'i,onal,.

Theorem 3.2. Let E; be a Hi,lbert sgtace and, 'Lli a subalgebra of L(H;)
lori : l, . . . 1 n. ?hen ? : (T,)r<i<n is a compact (resp. finite-d,imen-
si,onal) element of 'll :'l1r x . . . x'LL i,f and, only if each Tr is a compact
(resp. fi,ni,te-d,i,mensional) elem,ent of 'Llt.

Proof : Let E; denote the projection of ä onto ä;. Then ti e 'Ll'
and. anr. can be id.entified with 'llr. For § : (§;) €'ll, denote

Bj : (ö,j,Sj)l r i S n. Then llsrill < ll§ll, so that the mapping ,S + §r: is
continuous. X'urthermore, the correspondence §rl + §, is an isometry.
Thus, if each Ti is a compact element of '11,, it follows from lemma 1.2.

(i), (ii) that the operator

,*å r:x:r: : rxr
is precompact. To prove the converse, note that if T : (T) is a compact
element of ?1, the operator

X ---> X o Ei-'>T(X. Ei) T : fixfro Ei'-'> TiXTi on'/1,

is precompact. The proof for finite-d.imensional elements is analogous.
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Theorem 3.3. Let T be a cornpact (resp. fi,ni,te-d,'i,mensi,onal) element of
the*-subalgebra'Lt of L(H). Then T* isacomltact(resp.fi'ni,te-d,i,mensi,onal,)

element of 11.

Proof : The operator X -+ X* '-> TX*T ---> T*XT* is precompact
(resp. has a finite-dimensional range).

3.4. LeL E atd -F be projections in th"e *-subalgebra 'Ll of. L(H).
ff there exists a partially isometric operator U e1L with initial projection
E and. final projection I (equivalently, such that tl*U : E and
IJ\J*: X, cf. [2] p. 333), then we say that E and. -F are equ'i,aalent

(with respect to 'Ll) and write E * F. We write E < l, it E(H) c I(H)
(equivalently, E : EE : lE), and E < I, if there is a projection
n' e 'Ll such that E - I' 1I (cf. [2] p. 225).

The term »relati,ael,y fi,ni,te-ili,mensi,onal projecti,oz» will refer to a projection
that is a finite-dimensional (or, equivalently, compact, cf. theorem 1.1 (ii))

element of a subalgebra of L(H) clear from the context.

19

Theorem 3.4. Let E q,nd

L(H). If E<E and F i,s

r elati,u ely finite-dimen s'iona,l .

E be projections i,n the *-subulgebra 'Lt ,f
relatiuely fi,nite-d,i,mensional, then f i,s ctlsct

Proof: There is a projection 1'€'J1 such lhat E - F' :I'.f,'. Hence

there is a partiall;, isometric operator Lr e1t such that I' : UU* and

E : E2: U*aU'FU : (J*X'U : U*X'EU .

By theorem I.1 (i) .O is a compact element of 11.

We call a projection E in a *-subalgebra '// of L(H) fini,te, if there
isnoprojection Ie'LL suchthat E-E and f ;8, i.e. E<8,
F + E. If ?1 is a von Neumann algebra, it is equivalent to require that
?1, be a so-called, finite von Neumann algebra (cf. [2] pp. 2aL and 318).

Theorem 3.5. Euery rela,tiuely fi,ni,te-cl,imensi,onal projection E 'i,n a
*-subalgebra 'L( of L(H) i,s fini,te.

Proof : Suppose .E is not finite. Then we have E - Et -.8r, where

Er,Dr. Let Ure'U be a partiall5, igemttric operator such that
U{Ur: p, and UrUf : gr. Then U2: U1E2 €?l is a partially iso-

metric operator, for which U{Ur: g, and allt@) C Ez(H). Since

ErSE, and. ULIE,(H) maps Et(H) onto Er(H) bijectivelS-, the in-



20 Ann. Acacl. Sci. Fennicre A. r. 429

clusion must be proper. By induction we obtain a sequence of projections
E, i E, t . , such that E^ : EE*EI e trLtU. Furthermore, the
projections .O, are linearly independent. For suppose

(1)
n
TL

tl: I
liUi : 0

Choosing non-zero vectors from the subspaces (8, - Eu ) (H), I I ,i I n,
and applying the operator (l) to them it is seen successively that
Xt: . . . - )u,: 0. Hence the space E'll E is infinite-dimensional, which
means that ,E is not a finite-dimensional element of '11.

3.5. In the following we summarize some spectral theoretic facts
needed in the study of the compact elemenbs of C*-algebras.

According to a well-known theorem of Gelfand and. Naimark ([5],
p. 232) a,ny commutative Cx-algebra 'Il rvith identity may be realized as the
algebra C]ry of all continuous complex-valued. functions on a compact
Hausdorff space 9ll. The algebra operations in C(111) are defined pointwise,
involution f ---fi* by setting fi*@):-0@) .1o, 

11,7 E')l( and norm
by

Ilfll : suP i?(71)1,ye )y

lyhere 0 e C6ltt1 is the function coruesponding to ? e'L(. For details
we refer to [5].

fn particular,let A e L@) be a Hermitian operator and denoteby 'll,
the minimal closed comnutative *-subalgebru of L(H) containing A and
the identity operator L It follo.vr,-s from proposition t.B.tO in l3l that,

Bpret(A) : Spue(A) .

Thus we may in this connection speak unequivocally of the spectrum
Sp(A) of A. fn virtue of proposition 1.4.3 in [3] we may, in representing
'11., as a function algebra C(')lt), assume trlnat '"tl|: Sp(A).Thusaunique
element, denoted by f (A) of 'Ll , corresponds to each continuous complex-
valued function f on Sp(A).

The following formulation of the spectral decomposition of a Hermitian
operator is proved in [5], pp. 248-219:

Lemma 3.7. Xor eaery Herntit,ian operator A e L@) there exists a
un'ique function P : R -> L(H), called, the spectral functi,on of A, with the

following prolterties:
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l" PQ) i,s a projecti,on operator for eaery ,A € R.
2" P(X)P(p,) : P(1.) for X. < yt.

g' P(j')T : f PQ') for eaery f e L@) such that AT : TA.
1o The functi,on ), ---> P(l)u is cont'inuous from the left for eaery r e H.
5" Let la , bf be a closed interaal containi,ng Sp(A) and, f a cont'i,nuous

comyfler-aaluerl functi,on on la , b). We il,efi,ne f(A) as i,n the preced'i,ng

d,i,scussi,on, where f wi,ll then be thought of as bei,ng restr'i,cted, to Sp(A\.
?hen PQ,):O for ).<a and, P(l):I for )">b anil, we h,aue

bb

l@) : I ftt'lar<ll,'in parti,cutar A : I ldP(l),

where the'i,ntegrals are of Bi,emann-Btiettjes type ånd, eri,st with respect

to the norrn of L(H).

The next result is implicit in the proof of the preceding lemma given

in 15] (see also [7] p. 3s2). However, we give it an independent proof.

Lemma 3.2. Let A e L@) be a Hermi,t'ian operator anil, t1c R\§p(- )

e,n open i,nteraal. Then the sTsectral functi,on P of A i,s constant i'n Å.

Proof: Choose c,deÅ and la,bl= Bp(A) suchthat a, <c <d <b.
Then the project'ions E, : P(c) - P(a), Ez : P(d) - P(c), and

Es: P(b) - P(d) are mutually orthogonal with sum equal to I. If
c 1 )"o {d, then there exists (1oI - A)-'e L(H), and the invariance
of the subspaces Et(H) under A implies that also 1o € R\B1o(/'),
v,here A' : Al Er(H). Next, if ).oelc ,d), set

tTsing the spectral decomlrosition

dP'(1) ,

where P'(1) : P(i) | Er(H), it is easily seen that llA'x - ),r1]l> ö llrll for
every # e Ez(H), which implies in a well-known manner that /'o € C\Sp(-A).
It follows that Sp(A'): A, which is possible only if Ez:0.

3.6. Our next main target is to show that the compact elements of any
*-subalgebra of L(H) form an id.eal. The lvay is via von Neumann algebras

and the spectral decomposition of compact Hermitian elements.
The follov'ing fundamental result, is proved in [2], p. 228.

2L

/^



22 Ann. Acad. Sci. Fennicre A. I. 428

Lemma 3.3. Let d be a Don Neumann algebra anil, E , F e "e4
projecti,ons. There eri,sts a projecti,on G e d n d' such that XG < EG
and, E(I - G) < F(I - G).

Theorem ?.6. Let d' be a uon Neum,ann algebra and, E , F e d
projecti,ons. If X i,s a fi,ni,te-d,i,mensi,onal, element of :Å and, E I X, then
each of the magtpings X -> EXn anil, X --> ?Xfr has a finite-d,imensional
range.

Proof: There is a projection I'e{Å such that E -I'1I. Let
U e d be a partially isometric operator for which n' : [J(J* and.

D : Elz: U*UU*U : U*E'EU .

Then each of the mappings

and

X -> EXE - U*I'ETJXF

X _-> EXE - EXTJ*F'EU

has a finite-dimensional range.

Theorem 3.7. Let 1L be a *-subalgebra of L(H) and,let E and, I be

relati,uely fi,ni,te-d,,i,mensi,onal projecti,ons in 'U. Then the mappi,ng X --> DXE
on 'Ll has a fi,ni,te-d,,imensi,onal, range.

Proof:If 'Ll d,oes not contain the identity operator I, let, ?1, be the
direct sum of '/1 and CI. Clearly, '11, is isomorphic to the algebra obtained
from ?1 by the customary adjunction of identity. Thus by theorem I.4
we ma,y &ssume that 1 € ')1. Let :Å be the von Neumann algebra generated

by '11, i.e. d, -'Ll" (cf. [2], p.2).By corollary Linl2l,p.44, 'L(: {Åt
where tt-Ltt donotes closure with respect to the weak operator topology,
i.e. the locally convex Hausdorff topology generated by the seminorms
T -->l(Tr,y)1, where r,y e H. ft is well knou.'n (cf. [2], p. 34 or [5],
p. aa\ that for fixed T the mappings X --> TX and X --> XT &re
weakly continuous. This along with the fact that a finite-dimensional sub-
space of any Hausdorff topological vector space is closed shows that

Hence E (and analogously X) is a finite-dimensional element of. d.
Now consider the mapping X --> EXF on .s4. By lemma 3.3 there is a
projection G e:/{ fl .{' such tlnah EG < EG and -E(1 - G) < t(I - G).
Then
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EXF: GEXE + (I - G) EXE - EGXFG + E(I G) XF(I

fn virtue of theorem 3.6 the mappings

X -> EGXFG and X --> E(I - G) XF(I - G)

on .tÅ have finite-dimensional ranges. It follou's that the

X -+ EXf on €Å and. hence also its restriction to 'Ll has

dimensional range.

G)

mapprng
a finite-

Corollary. Any fi,nite l'inectr

projections 'in a, *-subalgebra 'Ll
'Ll.

combinati,on of relati,aely fi,ni,te-dimensi,ott al

,f L(H) ts a fini,te-d,i,mens'ional element of

Theorem 3.8. Let 'LL c L(H) be a C*-algebra and, let the Hermi,tian

ogterator A be a compact element of 'Ll . ?hen A can be representeil, as a

seri,es or finite su,m of the form

(r) -q. : l, inUn,

where each D. e'Ll anil, )r" €R, and, the E^ are mutually orthogonal relati,uely

fini,te-ilimensional projections. The number of non-zero terms i,n (l) is finite
i,.f and, onty if A i,s a finite-(1,'imensionq,l elernent of 11. If the seri,es i,s i'nfini'te,

it conaerges 'i,n norm.

Proof : By theorem r. 6 §p, (,4 )\ {0 }, which is the same as §pr,r, (1 )\{0}
(corollary of theorem I.6), consists of isolated points. Let la,bl be a
closed. interval containing Sp(A) and having zero as an interior point, and

choose e > 0 so that e ( min{l"l ,läi}. Let P be the spectral function

of A. It follows from lemma 3.2 lhat the integral

v'
I ldP(^)

J

i-J
{

b

J

norm of L(H), it
may assume each

ldP(),)

degenerates int,o a sum å
to the point 1, e Sp(Å|.'

exists with respect to the
w'e obt,ain (1). ClearlY: \ve

i,E* tr{,/here E, is the jump of P corresponding

Since the integral

is easilv seen that as t -> 0,

tuUn+ 0 (if A:0, thesum
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is void). l{ext tve shou,, that, E * e 1.

3.1. Evidently, 
b

J J \''I

(. Choose a continuous function
) ---: 0 outside an open interval A
in the discussion precedirg lemma

dP(1) ,

and on the other hand

- f(A) € '/1,, .

Thus -&, can be expressed as a limit of polynomials in A, and.the equation

I
lun

along with the continuity of the mapping T --- ?.8, shows that these may
1

multiplied by -- a rvithout changing the limit. Therefore .8, is a limit
AN

of pol5nromials in ,4 having no constant term, which proves thab E^ e ,ll.
The compactness of the element, ,o, follows from (2) and theorem l.l (i).
X'inally, the equation

AE^a : )}*E*

combined. with the fact that the projections E^ are linearly independent
shows l,hat the sum (1) must, be finite, if ,4 is a finite-dimensional element
of 1l , and the converse follov-s from the corollary of theorem 8.7.

Theorem 3.9. Let 'Ll be a *-subalgebra of L(H) ancl let S and, T be
compact (resp. finite-d,i,mensi,onal) elements ,f 'll. Then the operator
-X -+ §X? on 'll ,is precompact (resp. has u, fini,te-d,imens,ional range).

Proof : rn virtue of theorem 1.2 we may assume that 'i1 is a c*-argebra.
since §*§ is a positively definite Hermitian operator and, a compact
element of 'L( , its spectral decomposition degenerates into the series or
finite sum

§*S : I l'"8",

where each I'n > 0 and each E^ is a relatively finite-dimensional projection
(theorem 3.8). rt follows from the corollaries of theorems 3.7 and r.7 lhat
the operator

b
n

I

I f(^)dP (i)
J

(2)
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lsi :(s*s;trz:TlUn"

is a compact element of ?1. Let §: UiSi be the polar decomposition of
§ (cf. [2], p.334). Thentheoperator X+S-f,§*: UISIXISI U* and
similarly the operator X -+ §*XS (cf. theorem 3.3) is precompact. Henee,
if we write

S : , (§ + §*) + i, % (^S - §*) : A * i,B ,

A and. B are Hermitian operators and compact elements of 'Ll. Similar
remarks hold for ?. Thus there exist sequences {S"} and {7"} in 'Ll
convergingto § and 7 suchthatthecorrespondingoperators X-+ B^Xf*
on '11 have finite-dimensional ranges (theorems 3.8 and 3.7). It then follows
from theorem 1.7 that the operator X -'> SXT on 'll is precompact.
To prove the second statement, note that if § and T arc finite-dimensional
elements of 'L/, all spectral decompositions involved in the above proof
will be finite sums.

Corollary l. Let 'Ll be a *-subalgebra of L(H\.
(i) Any fi,ni,te l,'inear combinatioru of compact elements of 'Ll 'i,s a compact

element of 'll.
(ii) Any finite li,near comb'ination of finite-d,imens'ional elements of 'LL

i,s a fi,nite-ilimensi,onal elernent of 'Ll.
(iii) If 'l( is a C*-algebra, q,ny conxpctct elernent of 'll is the l,i,mi,t of a

selluence of fi,ni,te-d,imensi,onal elements of 'll.

Proof : Statements (i) and (ii) are immediate consequences of theorem
3.9 and (iii) is contained. in its proof.

Corollary 2. Euery compact elernent T of an, i'nfinite-dimens'ional
C*-algebra 'Ll is a (left or ri,ght) topologic«,l ddui,sor of zero.

Proof : Let {8"} be a sequence of finite-dimensional elements of il
such that lim §" : 7. Choosing a subsequence if necessary we may by

theorem t.slå.o*" that each §,, is, say, & left d.ivisor of zero. Choose

Z, e'Ll so that llZ"ll: I and S"Z^: 0. Then

,::rr": j* (f - s") ," +:::snzn: s.

We summarize corollary I above, theorent 1.1 (i) and the corollary of
theorem 1.7 in the following theorem:
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Theorem 3.10. Let 'Lt be a *-subalgebra of L(H). Denote by ?" the

set of the compact elements of 1l and, by ?r the set of the finite-ilimensional,
elementsof 11. Then ?" and, \ aretwo-si,d,ed,idealsof 11, and,'J" isclosed,.
If 'Ll is a C*-algebra, 1)" is the closure of 4.

3.7. Next we apply the preceding theory to the spectral decomposition
of compact normal elements of C*-algebras. We show how the problem
can be reduced to the Hermitian case without appealing to the general
spectral theory of normal operators.

Theorem 3.11. Let 'll c L(H) bect C*-algebraand,letthenormaloperator
T be u compact element of 'Ll . Then

S1or,r, (")\{ o) : Sp u (T)\101

cons'i,sts of a countabl,e nunrber of eigenualues ),r,Xr,.... Eurthermore, T
can be represented, as a series or fini,te sum of the form

(1) /-
n

I
+i,N

Ir-,

lnEn,

where II is the Hilbert sum of the subspaces

qnGrc. It is clear fronr lemma 3.1 3o and the

that ?iG1, - Gx?i for all j , k > 0, which

where each non-zero eigenualue ln ,f T occ%rs precisely once, E, 'is the

projecti,on onto the ei,genspace correspond,'ing to the ei,genaalue ),n, the E"
are mutually orthogonal, and, eaery E, 'i,s afini,te-d,i,mensional element of 'Ll .

If the series i,s i,nfini,te, i,t conaerges 'in norrn, and, lim Än : 0. The sum i,s

fi,ni,te i,f anil, only i,f T is a finite-d,imensi,onal ,åAZm of 'L(.

Proof: Write

(r + T*)

where A and, B are Hermitian and, AB: BA. Itwasnotedintheproof
of theorem 3.9 that A and. B are compact elements of 'll (formally this
follows from the statements of theorems 3.10 and.3.3). In virtue of theorem
3.8 we can write A : 7,6i{. Setting 6o : 0 and denoting by -Fo the

J

projection onto the orthogonal complement of the Hilbert sum

@ Fi@): lgtl ,

we have A: r €i?i,
j>0

Fi@). Similarly, B -
definitions of Ea and

Ij>1

z
,c>0
Go

Ann. Acad". Sci. Fennicre
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means that each X1Gr" is aprojection. For j ) l, Fi isafinite-fimensional
element of 'Ll, and since the Gn are mutually orthogonal, IiGn:
Fjcnlj + 0 onlyfor afinite number of indices kl,,...,kii Wegettwo
sequences of projections

(2)

and

(3) FrG*\, FrGkL,

EoGo , FrGt , ?oG, , .. .

. , FrGol,r, FrGk? ) .. . , FrG*r*,, PrG*1 )

Since for k > | Gr, is a finite-dimensional element of '11, it can occur

only a finite number of times in (3). Choosing alternately an element from
each sequence we get the sequence

Eu, Err...rEn,,(4)

of mutually orthogonal projections, which are finite-dimensional elements

of 'll for n ) l. If E^ : I jG*, tl'e set 1.^: Ei * irir. Then

o : 
r4,^"r.

in the sense of the norm topology. This follows from a straightforward.

conrrergence argument based on the fact that the projections in (4)

eventually build up any 11 or G1,, j ,lc > l, and. that for sets of pairwise

orthogonal projections "F; and F'i < Ii, i: n,...,% ]'P,
n+p n*P

il ) r;'r',111 < ll I 4,411 '
J:N J:N

Clearly, the l^ can be assumed distinct and non-zero with the under-

standing that for T : O the sum will be void. Since

, : 
Ao@ 

E"(H) ,

every r e H can be written as

Enfr

lf ),or - Tr :0 we have

E*()'o* - T*) : (1^ - ).r) E"r : 0,

so that Enr:0 for n t' p. H.ence r: Eor or r € Er(H). Conversely,

each l, * 0 is an eigenvalue of 7 such that the corresponding eigenspace

contains E"(H). By the corollary of theorem 1.6 or by proposition

I.3.I0 in [3],

,fi: I
n)0

27
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Ber1r1 (r)\{0} : §1ou(")\{0},

and in virtue of theorern I.6, or directly by the convergence in norm of the
series (l), lim 2, : 0 if the number of eigenvalues is infinite. Next v'e
show tbat "'*

Sprgy(p) c { )",, 1n,} 0rr.

To this end., suppose 1 * )", for ever). n > 0 and set ö

Then

n)0

n)0

n)0

i"i > 0

ö'li*il'

This inequality combined. with the normality of 7 implies that ),1 - T
has a bound.ed inverse. Thus 2 G Spr,rr(T). Finally, once the representation
(1) is established, the last statement follows as in the proof of theorem 8.8.

4. Decomposition of relatively finite-dimensional projections

Rickart [6] calls an id.empotent e in an arbitrarv algebra '/l minirnal,
if e'Lle is a division algebra. We shall, however, adopt, a different usage
and call a projection E in a subalgebra ?l of L(H) ru,ini,mat, if E + O

and 'll contains no non-zero projection F ; D. If ,E is a projection in a
subalgebra '11 of L(H) and. dim (E'L(81: l, we sav that E is relatiaelg
7-d,irnensi,onal.

Obviously, a relatively l-dimensional projection is minimal. The converse
is true of every von Neumann algebra .:4. For if .E' is a minimal projection
in d, Elu and.0 are the only projections in :År, ar,id since a von l{eumann
algebra is generated by its projections (tZl p. 4), d, consists of the scalar
multiples of Er. Since .9(, is as a vector space isomorphic to Ed,E (see
the proof of tlreorem 3.1), we have also dim (EdE1 : t.

In a general C*-algebra, however, a minimal projection need not even
be relatively finite-d.imensional. This can be seen e.g. by considering the
commutatiye C*-algebra 'll of all continuous complex-valued functions
on the interval [0, I] (viewed as a Hilbert space operator algebra, if so
dosired, cf. section 3.1). The only projections (i.e. Hermitian idempotents)
in ?l are the functions identically 1 or 0. The former is a minimal projection,
but, not a finite-dimensional element of '/1.

Theorem 4.1. If E + 0 is a relatiuely finite-d,imensional projection in
the C*-algebra ''l(, thereer,istsarelati,uely 7-d,im,ensi,onalprojecti,on I in'tl.
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2 a-,

Proof: Sincethed.imension of E LIE isapositiveinteger and E eE LIE,

there is a, non-zero projection I e E LIE such that dim (.F''21X) is minimal.
Suppose E' + O is a projection in l'L(I, I' + X. Then

{O} + F''L|X' c X'Lln c E1(n .

Since n' : X'8, but n' + P, we cannot have F e I'1lI'. Thus
dim (X'?l/') < dim @1lX), contradicting the minimality of dim (.8'11-E).

It follows that .F is the only non-zeroprojection in E LIP. Clearly, I'LII
is a C*-algebra consisting of finite-dimensional elements, each of which
can be expressed as a linear combination of projections belonging to
n'L(P (theorems 3.3, 3.10 and 3.8). Therefore dim 11?i'f; : dim (C-tr') : l.

Theorem 4.l combined with theorems l.f (i) and 3.8 yieldsthefollowing
result:

Corollary. If the gx-o1gs6va, 'll contains & non-zero compact element,

'Ll conta'ins a relati,aely 7-d,i,mensi,onal projecti,on.

Theorem 4.2. Il E + O 'is a relati,uely fi,ni,te-d,i,mensional projection i,n the

C*-algebra 1(, E i,sthesumof a,fi,ni,tenum,berof pairwiseorthogonalrelatiaely
7-d,i,mensi,onal projections of 'l(.

Proof : By theorem 4.1 there exists at least' one relatively l-dimensional
projection Xe ELIE. Since IE:Dn:I, we have I<8. The
'number of pairwise orthogonal relatively 1-dimensional projections
It e E LIE (equivalently, ?, < E) is bounded by dim (E1lE). Let
(7,), < ;. o be a family of such projections, chosen so that rz is maximal. Since

is a relatively finite-dimensional projection orthogonal to all the 7; and
E''l(E' C E LIE, theorem 4.1 implies that E' :0.

Remark. IIsing the above theorem we could decompose the relatively
finite-dimensional projections appearing in the statements of theorems
3.8 and 3.ll into sums of pairwise orthogonal relatively l-dimensional
projections thus arriving at spectral representations even more closely
renriniscent of the classical case of compact operators.

7L

tri
i:1

1.2. A von Neumann algebra .:)4 is
to a von Neumann algebra 16 such that
discrete for any non-zero project'ion E e

called discrete, if it is isomorphic
')å' is commutative. ff €Å E is not
e4" n d,', sÅ is called cont'inuous.
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Any von Neumann algebra is canonically isomorphic to the product of a
discrete and a continuous von l{eumann algebra (cf. [2] p. L22).It follows
from corollary 3 in [2], p. 229, t}l;at no continuous von Neumann algebra
contains a minimal projection. This fact together with theorem 3.2 and the
corollary of theorem 4.1 yield.s the following result:

Theorem 4.3. Let d be'i,somorphi,cto :Åry:År, where :Å, is ad,'iscrete

and, dz a continuous aon Neumann algebra. Let

(Tr),:r,r€'*rx g{'z

corresponil, to the comgtactelement T of :Å. Then Tr:0. Inparticular,
no continuous ao?L Neumann algebra conta'i,ns cL norl-zero comltact element.

5. Characterization of the socle of a C*-algebra

In an arbitrary algebra 'l.l the sum of the minimal left (right) ideals is
called flne left (ri,ght) socle of 'Ll. Tf '/1 contains no minimal left (right)
ideals, it is natural to define the left (right) socle of 'LL to equal {0}. (Note,
however, that in Rickart's terminology, [6] p. 46, the corresponding socle
in this case fails to exist.) If the left socle is equal to the right socle, it is
called, simply tlte socle of ?1. Lemma 2.T.L2 in [6] combined with the next
lemma shows that the socle of a C*-algebra is alwavs defined (possibl;'
equal to {0}).

Lemma 5.1. If ? + {0} i,s a left or ri,ght i,deal of a C*-algebru. then
i)2 * {0).

Proof.' We give the proof for a left ideal. ff € :)\{0}, then T*f € :)
0.

T
/

Theorem 5.1. The socle of a C*-algebra 'L( co'i,nci,d,es uith the set of the

fi,ni,te-d,imensional elements of 'Ll.

Proof: An5' minimal left ideal of 'LL has the form 'LIA, where
diru (A'L|A\ : t (cf. lemma 5.1 above, lemma 2.1.5 and. its corollary in
[6]). Thus every element in the socle of '/l is a finite sum of finite-
dimensional elements, hence a finite-dimensional element of 'Ll (theorem
3.10). Conversely, every non-zero finite-dimensional element f of 'lL
(and trivially 0) belongs to the socle of '11, for it, follows from theorems 3.3,
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3.10, 3.g arrd,4.2 that ? can be expressed. as a finite linear combination of
relatively l-d.imensional projections, and an5r such projection 'o belongs to

the minimal left ideal 'UE of '11 (cf. lemma 5.1 above and corollary 2.I'9
in [6]).

6. Compact elements and irreducible representations of c*-algebras

6.1. In connection with C*-algebras we mearl lav a homomorphism a

mapping that preserves the *-algebra structure.

Theorem 6.1. Let 'Ll, and, 'Ll, be Cx-algebras and, II;'Llr->'L(, a

homomorgthi,sm. If u 'i,s a compact element of 'Llr, II(u) i,s a compact element

of II1.Llr1. The corresptondi,ng result holds for finite-d,imens,ional elemeruts.

Proof: The algebra'i1o : n(LlL) is closed.in'/1, (cf. [3] corollary 1.8.3,

p. 18), hence complete. If Br denotes the closed unit ball of '11r, it follows

from the open ma,pping theorem that, there is an r > 0 such t'hat

U(Br) 3 B: - {ir; €'l1o I iitii < r}

Since n is continuotls (.f. [3], p. i) , t'he set

is precompact. Hence II(u) is a compact element of '110. The assertion

concerning finite-dimensional element's is immediate.

6.2. Le1, '/1 be a C*-algebra and If a representation of '11 on the
Hilbert space ä' (i.e. a homomorphism from '/l int'o L(H')). The repre-

sentation I/ is said. Lo be (stri,ctly, rcsp. topologi,cally) irred,uci,bl,e, if the
algebra n(ll) is (strictly, resp. topologically) irreducible. By corollary
2.8.4 in [3], p. 45, lhe strict and. topological irred.ucibility of 'LL are equi-

valent, so that we may without ambiguitv speak simply of i,rred'ucible

representations of C*-algebras.

Theorem 6.2. Let 'Ll be a C*-algebra,, 1r a compact (resp. fi,ni,te-
d,'imens'ional) element of 'L( , and, II an irreduc'ible representati,on of 'Ll on

the Hilbert space H'. Then II(ze) is a com,pact operatot" (resp. an operator

with fini,te-d,'imens'ional range) on H'.

31
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Proof : By theorem 6.I and the above remark II(u) is a compact (resp.
finite-dimensional) element of a strictly irred,ucible operator algebra, and.
hence a compact operator by corollary 2 of theorem 2.2 (resp. an operator
with finite-dimensional range by theorem 2.3 (ii)).

Theorem 6.3. Let 'LL be a C*-algebra and, u * O a compact elem,ent of
'll. There eri,sts a Hi,lbert space H' + {0} anil an i,rred,ucible regtresentation
II of 'Lt on H' such that If maps the id,eal 7" of the compact elements of
'L( onto the irleal, LC(H') of the compact operators on H'.

Proof : It follows from proposition 2.7.1 in [3] that there exists a Hilbert
space H' and an irreducible representation If :'L|->L(H') such that
II(u) I 0. By theorem 6.2, II(?) c LC(H'). On the other hand,, by the
same theorem and corollary 4.1.10 in [3], LC(H') c II('L1). Since /1(?";
is a non-zero closed two-sided ideal of nfll) ([3], corollary 1.8.8), and
hence of LC(H'), corollary 4.1.7 in [3] shows rlnat II(7") : LC(H').

Remark. It follows from theorem 6.2 that if every element of a
C*-algebra 'L( is compact, 'il is a so-called. CCR-atgebra (»Cx-algöbre
liminaire» in the terminology of Dixmier, cf. [3], p. 86). In any C*-algebra
'll the ideal of the compact elements of '11 is contained in the maximal
closed two-sided CCB-ideal of '/l (cf. [3], proposition 4.2.6). In general
this inclusion is proper, for example always in the case of an infinite-
dimensional commutative Cx-algebra u.ith identity (cf. [6] lemma 2.4.4).

7. Compact and finite-dimensional elements in factors

7.1. A von Neumann algebra :4cL(H) is called a factor, if
.'Å n €Å' : {11| ,A € C}. Since for a factor d, the only projections in
.4, n d,' are 0 and 1, lemma 3.3 shows that for any pair of projections
E,n e{Å, either E <f or X <8. The following analogue of the
Euclidean algorithm is a consequence of corollary 2 in l2f, p. 228. It is
given explicitly in [5], p. a56.

Lemma 7.7. Let :/{ be a factor and, E,? e .t/1. projections such that
E q I. Then

Ei + Eo,

where Eo 1 E, each E, - E, anil all projections on the ri,ght are mutually
orthogonal.

The next lemma is proved in l5l, p. 460.

ieJ
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Lemma 7.2. Let :Å be a factor and, D , X e {Å projections such that E
i,s fini,te and, 0 + E < I. ?lte'i,nder set J i.n the preced,i,nglemmai,sfi,ni,te
i,f and, only if F is a fi,ni,te projecti,on.

7.2. For non-zero elements of a factor the converse of theorem 3.9 is
valid. (theorem 7.2). We first proye an auxiliary result.

Theorem 7.1. Let E unil I be non-zero project'ions in the factor d.
If the operator X ---> EXI on .4, is precompact, E and, I are fini,te-
d,imensional elements of g{..

Proof: Suppose first, D <I, rvhich me&ns that E --F'r ( X for a
projection Ure€Å. There is a partial isometry tl ed such that
Ft: UU* and

D : gx aLi* u : ti* F|FU .

Hence tlre operator X ---> EXE is precompact, and E is a finite-
dimensional element of .C{,. By lemma 7.1 I may be written as the
orthogonal sum

u:'äEi+Eo'

where Ei - E and. Eol E. Let Ui e rÅ be a partial isometry having
Ei as initial and. E as final projection. Every finite subset of the set

{DUII li,eJ} is linearlv iudepend.ent. For if

(1)
Ic: 1

it follows by successive applications of the operator (1) to non-zero vectors
from the subspaces En@) that ),, - 1z: . . . E 1o: 0. Since the pre-
compact operator X ---> EXI maps the unit ball of the subspace Ed?
onto itself, E.r'{I must be finite-dimensional. By theorem 3.4 Eo and
all the Ei a"re relatively finite-dimensional projections, and since the above
argument shows that the index set 7 is finite, -F is in virtue of the corollary
of theorem 3.7 a finite-d.imensional element, of .4,. fn the case ,E' I E the
conclusion follows from the above proof and the precompactness of the
operator X ---> X* --> EX* F -> FXE.

Theorem 7,2. Let S and, T be non-zero elements of the factor d.. Il
the operator X --+ BXT on d is precompact (resp. has a fi,ni,te-d,imensional
range), S and, T a,re conxpact (resp. fi,ni,te-d,i,mensi,onal) elements of g(.
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Proof : Suppose first that S and f are Hermitian. Since S + 0,

there is a closed. interval la,b1, not containing zero, such that
Et: PrQ) - Pr(a) * o for the spectral function Pt of S. Let P, be

the spectral function of T, choose an arbitrary closed interval lc,d,l rrot
containing zero, and denote Ez: Pz@,) - Pr(c), P;(1) : Pr(l) | Er(H),
T' : T lEr(H). If d: min{icl ,ldi}, an application of the spectral
decomposition

LdP', (i)

shows that ii?'rll ) äll"ll for all r € Er(ä). Since ä > 0, this implies that
7' has a bounded inverse. Since T' e.:År" and. (7')-t commutes with
eyery operator on Er(H) that commut'es with T',

Thus there exists T" e {y'| such that (T')-r : TÅ,. Therefore
Dz : TEzT" E2, and similarly we c&n find S" e :Å such that
Er : SEIS" Er Hence the operator

X --> ErXE2 : 'S'18" ELXTE,T" Ez

is precompact, and it follolvs from theorem 7.1 that Dz is a finite-
d.imensional element of. d.

Given € ) 0, \ve c&n choose a Riemann-Stieltjes sum .X approxi-

mating ? such that li" - Jll < | , *td that in the correspond,ing partition

the lengths of the intervals ad.jacent to zero are less fnat 
en. If .X' is the

sum obtained from I by discard.ing the terms corresponding to these

intervals, llT - I'ii < e, and the foregoing argument shows that the
projections appearing in I' are finite-d.imensional elements of. d. Thus it
follows from theorem 3.10 lhat T is a compact element of ,:Å. Let

r':/

(r) T_ y
L)
tl

Än P,,

be the spectral d.ecomposition T (cf. theorem 3.8). Since Er l l" or
Xn 1 Er, to each norr-zero ?, corresponds & non-zero partial isometry
U*e €/, whose initial projection is dominated. by -F" and. final projection
by Er. Since the ?o are mutually ort'hogonal, it is readily seen that the
operators ELU^X. are linearly independent. Therefore, if the operator
X -> SXT and hence the operator

(T',)-' € {du)"_- du,
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x -> ELxr _ §E' s" Erxr

has a finite-dimensional range, the number of rtorL-zero terms
t

finite, as otherwise the set consisting of the operators i"
mapped onto an infinite linearly independent set. Since

in (l ) must be

f./ n would be

the operator

x _> x* _> §x* T __> T* xB* : ?XB

is precompact (resp. has a finite-dimensional range), the above proof shorvs
that § is also a compact (resp. finite-d.imensional) element of :Å. fn the
general case the operator jf -+ §* SXT* T is precompact (resp. has a finite-
dimensional range) and §* S + 0, f* T + 0 are Hormitian. It was noted
in the proof of theorem 3.9 that l§i and. lTl are compact (resp. finite-
dimensional) elements of sÅ, if §x§ and 7* T are so. Since in the polar
decompositions §: UI§i and, T:Vlfl thepartialisometries IJ and.
7 belong to :Å (cf. [2] p. 5), the conclusion follows from theorem 8.10.

Remark. Theorem 7.2 cannot be extended. to an arbitrary r/on l{eumann
algebra. To see this, Iet H he an infinite-dimensional Hilbert space and
11. c L(H) an infinite set of mutually orthogonal nonzero projections, one
of which, say E, has a finite-dimensional range. Then :4:')1" is a
commutative von Neumann algebra. The operator X ---> IXE : EXE
on €4 has a finite-dimensional range, but, 1 is not a compact element
of the infinite-dimensional algebra ,.Å.

7.3. An argurnent similar to the proof of theorem 3.4 vields

Theorem 7.3. Let .9 be o, two-sided, id,eal i,n the *-subalgebra 'L( ,f
L(H). If E and, F areprojections,in'll,E e7, and, E q ?, then E e 1.

Theorem 7,4. If d, i,s a factor, the i,deal 'lr of the fi,ni,te-d,imensi,onal,
elements of {Å is conta'i,ned, ,in euery tzoo-sid,ed i,d,eal, of ,4.

Proof: Let ? be a two-sided ideal of .4. and 0 +f e?. Since
T*f + 0, there is a closed. interval [c , d] not containing zero, such thatg: P(d,) - P(c) t' 0 for thespectralfunction P of T*?. Asintheproof
of theorem 7.2 we can find an operator B e d suchthat E : T*TEBE.
Thus Ee?. Let Xe?t be a non-zero projection.Since E<X or
n < E, theorem 7.3 shows that E e il1 or ! e7. fn any case, 7 contains
a non-zero relatively finite-dimensional projection. §ince every relatively
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finite-dimensional projection is finite by theorem 3.5, it follows from
lemma 7.2 and theorem 7.3 that ? contains every relatively finite-
dimensional projection. Hence in virtue of theorem 3.8 we have ?tc?.

Combined. with theorem 3.10 the above theorem gives

Corollary. The id,eal of the compact elements of the factor :Å is contai,ned'

'i,n eaery closed, two-sid,ed, iil,eal, of {Å.

7.4. Tt is well known that the operators with finite-dimensional range
on a Hilbert space ä form a minimal and. the compact, operators on H
a minimal closed. two-sided ideal of ,[,(ä). Since L(H) is a factor, theorem
7.4 arrd its corollary show that the former ideal coincides with the ideal
of the finite-dimensional elements of L(H) and the latter with the id.eal of
the compact elements of L(H). Thus theorems 3.9 and 7.2 yield
independently of Ascoli's theorem the following special case of theorem
3 in [8] (resp. of theorem 2.3):

Theorem 7.5. Let B und, T be non-zero operators on H. The operator
X --> SXT on L(H) ,i,s comltact (resp. has a fi,nite-d,imensional range) i,f and,

only i,f S and, T are compact operators (resyt. haae finite-di,m,ensional ranges).

Remark. A factor is either discrete or continuous, and every discrete
factor is isometrically isomorphic to the full operator algebra on some

Hilbert space (cf. [2], pp. 121 and 8). Hence, in virtue of theorem 4.3, the
existence of non-zero compact elements in a factor .{ implies the existence
of a Hilbert space -I1' such that s{ is isometrically isomorphic to L(H').
Thus, if we take for granted, the fact that' the sets of the compact elements
of L(H') and the compact operators on H' coincide, the study of the
compact elements of factors is reduced to the classical theory of compact
operators on a Hilbert space. In particular, the corolla.ry of theorem 7.4

is a consequence of this theory.

University of Helsinki
Helsinki, Finland



References

[1] BoNs-tr,l, ]-, tr'.: cornpact linear operators from an algebraic standpoint. - Glasgow

Math. J., vol. 8, Part I (1967), 4l-49.
[2] Drxrtron, J.: Les algöbres d'opdrateurs dans l'espace Hilbortien (Algöbres de von

Nelmaln). - cahiers scientifiques, Fas. XXV, Gauthier-villars, Paris (1957).

[3] - , Les C*-algöbres et leurs repr6sentations' - Cahiers scientifiques, Fas. XXIX,
Gauthier-Villars, Paris (1964)'

[4] Fnngrvor,rcr, M.: Completely continuous elements of a normed ring. - Duke Math.
J. 16, 273-283 (1949).

[5] Narrvrlnr, M, A.: Normed rings. - P. Noortlhoff N. V., Groningen (1964).

[6] Rrcrenr, c. E.: General theory of Banach algebras, - van Nostrand (1960).

[7] Tevr,on, A. Itr.: Introduction to functional analysis.'W'iley, New York (1958)'

[8] Ver,.o., K.: On compact, sets of compact operators' - Ann. Acad. Sci. Fenn. A. I'
35r (I964).

[9] -»- Sur les 6l6ments compacts d'une algöbre normde.'Ann. Acad. Sci'

Fenn. A. I. 407 (1967).

Printed Septernber: 1968


	IMG_20160327_0001
	IMG_20160327_0002
	IMG_20160327_0003
	IMG_20160327_0004
	IMG_20160327_0005
	IMG_20160327_0006
	IMG_20160327_0007
	IMG_20160327_0008
	IMG_20160327_0009
	IMG_20160327_0010
	IMG_20160327_0011
	IMG_20160327_0012
	IMG_20160327_0013
	IMG_20160327_0014
	IMG_20160327_0015
	IMG_20160327_0016
	IMG_20160327_0017
	IMG_20160327_0018
	IMG_20160327_0019
	IMG_20160327_0020
	IMG_20160327_0021
	IMG_20160327_0022
	IMG_20160327_0023
	IMG_20160327_0024
	IMG_20160327_0025
	IMG_20160327_0026
	IMG_20160327_0027
	IMG_20160327_0028
	IMG_20160327_0029
	IMG_20160327_0030
	IMG_20160327_0031
	IMG_20160327_0032
	IMG_20160327_0033
	IMG_20160327_0034
	IMG_20160327_0035

