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INTRODUCTION

There has been a rapidly increasing amount of research concerning finite
automata, most of which has been carried out by electrical engineers,
logicians and mathematicians during the last ten years. One reason for the
widespread interest in this subject is the fact, that, finite automata forrn a
part of the theoretical background of digital computers.

X'inite deterministic automata are characterized by the fact that the
state transitions have a deterministic behavior. Papers concerning these
automata are rrery numerous. One of the most important results, due to
Kr,r;nNn [8], is that a language can be represented in a finite deterministic
automaton if and, only if it is regular.

The notion of a probabilistic automaton as a generalization of a finite
deterministic automaton w&s introduced by Buxrrlunv [1]-[3], Cenr,nr,n

[a] and. ResrN [3]. In such an automaton the state transitions have a
stochastic behavior. This generalization is essential with respect to the family
of representable languages; RanrN p3] showed that also non-regular
languages can be represented in finite probabilistic automata.

In the present paper, languages representable in finite probabilistic
automata are investigated. Following Sar,orrle [I7], we shall call them
stochastic languages. The notion of a finite probabilistic automaton as

well as the language represented in it is d.efined as in [f 2]. Thus the automata
investigated do not necessarily have a fixed initial state, as in 1131, but an
initial probability distribution over the set, of all internal states.

In the first chapter, finite probabilistic automata orrer a oneletter
alphabet are invest'igated. We are mainJy interested in conditions under
which non-regular languages can be represented in these automata.

Prz ll2l ga,ve an example of a three-state probabilistic automaton over
a one-letter alphabet with a fixed initial state in which a non-regular
language can be represented. We generalize his result b;, giving in Theorem
1 a necessary and sufficient condition for a tlrree-state probabilistic
automaton to represent a non-regular language.

fn Theorem 3 we give a finite upper bound for the number of cut-points
representing a non-regular language in an z-state probabilistic automaton.
(Another approach to the same question is found iu [15].) This bound can be
determined b5r means of the so-called normal form of the transition matrix.
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Furthermore, the correspond.ing exceptional cut-points can be calculated.
The exceptional cut-points are considered in § 5 and § 6. More preciselv.

we investigate conditions under w-hich (a) no one of them represents a non-
regular language (Theorems 4,5 and.6), (b) each of them represents a non-
regular language (Theorem 7), (c) at least one of them represents a norl-
regular language (Theorems 8 and 9). These conditions are closely associatecl

with the eigenvalues of the transition matrix. The problem (a) has also been
considered in [12], where it is assumed that the automaton has a fixed
initial state and a single final state.

It should be noted that Theorems I and 3 have been presented in [9].
The proof of Theorem t in this work has been essentially simplified b1' our
general theorlr.

In the second chapter, finite probabilistic automata and so-calletl
generalized probabilistic automata and generalized automata are considered.

In § 8 'w'e present, some theorems on stochastic languages. It is first
established that every stochastic language can be represented in il
probabilistic automaton with any cut-point 4 such that 0 < \ < 1. The
restriction 17 ) 0 is essential, since onlv regular languages can be repre-
sented with the cut-point 0.

It, is not, knou'n whether or not the family of stochastic languages is

closed under any of the Boolean operations. In § 8 we establish some partial
results on the closure under these operations. It is proved that the union
and the intersection of a stochastic language and a regular language a,re

both stochastic languages representable in the same automaton. As a

consequence of this result we get, a sufficient condition for the complement
of a stochastic language to be stochastic.

By the definition, a probabilistic automaton has a fixed set -F of final
states, to which there corresponds a, column vector zo consisting of 0"s

and l's onl5r. In § 9 we replace nr by a column vector with arbitrary real
components. This generalization is due to Pacn 111]. However, it, is not
essential as far as the family of representable languages is concerned; in
Theorem 16 we prove that a language can be represented in a generalized
probabilistic automaton if and only if it, can be represented in a probabilistit,
automaton.

By means of generalized probabilistic automata we introduce in § lU rr

certain subfamil5. tZ(+) of stochastic languages which contains all regular
languages as a proper subfamily. It is established that this family is closed.

under union and intersection. In addition, it is verified that, the intersectiot
of a stochastic language and a language belongitg to 1t (1) is a stochastic,

language. \4re do not know whether or not 9l(*) is a proper subfamily of
stochastic languages.

Bv the definition, the initial distribution vector and the transition
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rnatrices of a generalized probabilistic automaton are stochastic. In § 11

u,e replace them by a row vector and matrices with arbitrary real elements.
The autonraton thus obtained is called a generalized automaton. Our main
result (Theorem 21) is that a language can be represented in a generalized
automaton if and only if it can be represented in a probabilistic autornaton,
i.e.. if and only if it is a stochastic language. This result is then used. for two
applications concerning the mirror image of a stochastic language (Theorem
22) and. the right d.erivatives of languages (Theorem 23).

Finally, in § 12 criteria for the realizability of mappings by probabilistic
automata and b5. generalized automata are considered.

DEFINITIONS AND NOTATIONS

By an al,phabet 1 we mean a finite non-empty set. The set of v'ords,
including the empty word. ,4, over the alphabet 1 is denoted by lVg).
Subsets of W(I) are called languages over 1. We often identifv words
with their unit sets.

The length of a word P e Wg) is denoted by l(P).
The sum or union of two languages Z, and. -t, is denoted by L, * Lr,

their intersection by Lr,fl Lr, and their product or catenationby LrLr.
The complement of a language L with respect to W(I) is d.enoted 14, L.
In ad.dition, r4re use t'he notatior Lt - Lz: Lt fl Zr. The iterution of a
Ianguage Z is defined b;r

r*_u :

Here Zo denotes the language {A}.
A language -L over 1 is called regular if it is obtained from the empty

language and the elements of 1 by finitely many applications of the
operations sum, product and iteration. Otherwise, L is non-regulctr.

Definition l. A .fini,te probabi,l,istic automaton over the alphabet -I is
arr ordered quadruple S?I : (5, M,no, X), where § : {sr,...,s,} is
a finite non-empty set (the set of i,nternal states), M is a mapping of .I
into the set of stochastic nxn matrices, no: (pt , . . . , pn) is arr z-
dimensional stochastic row vector (lhe i,ni,tial d,i,stri,bution) and -F is a non-
empty subset, of rS (the set of final states).

Matrices M(r) @ e I) are called transi,ti,on matrices. The domain of
il1 is extend,ed from 1 to W(I) by defining

it'i:0
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II(A) : E" (nxn ident'ity matrix) ,

M(rrrr''' *r) : M(rr)M(rz)''' M(**),

where h>2 and r;€1.
Let ?rp be the n-dimensional column vector whose ,ith component

equals 1 if s; € X and 0 otherwise. The language represenäed in S2{ r,ith
the cut-poi,nt q. 0 lq .--l, is defined by

.I,($U ,q) : {P e Wg)lnoM(P)nr), ,t) .

n'or 0 a,yl .--1, a language -L is r1-stochast,i,c if and only if there exist.q

" S2I such that L : L(s#»{ ,q). A language L is stochasti,c if andonly if,
for sorne 4, it is r7-stochastic. For a given S2{, * cut-point r7 is callerl
non-regular if and only if ,(T?I , T) is a non-regular language.

X'or any matrix A, we shall use the notation Ar to mean the transpose
of A.

Hereafter, we use the term probabili,sti,c automaton to mean a finite
probabilistic automaton.

CHAPTER I

PROBABITISTIC AUTOMATA OVER A ONE-LETTER ATPHABET

§ 1. Preliminary remarks on stochastic matrices

1.1. In this chapter we investigate probabilistic automata u,hose
alphabet consists of a single letter r. Our considerations are closelv asso-
ciated rvith certain properties of the transition matrix M(r) arrd its pou'ers
M(r)*. Therefore. v'e need some results concerning stocha,stic matrices.
The terminology rve use belou' is the same as in [6].

1.2. A permutation of a square matrix M is a permutation of the rov-s
of M combined with the same permutation of the columns. ,11 is callecl
reclucible if there is a permutation rryhich transforrns it into the form

where B and D are square matrices. Otherwise, ,&1 is callecl i.rred,ucible.
Let M be a stochastic zr, X z matrix. Its eigenvalues satisfy the con-

dition iri < 1. Furthermore, )"L: I isaneigenvalue.Fortheeigenvalues
of modulus l, we have the following lemma, which is an immediate con-
sequeuce of a theorem of X'nosnNrus (cf. [6], Vol, 2, p. 53).

B 0l
CDI
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Lemma l. If M 'i,s an i,rred,ucible stochastic matri'r, then )': I is a
ti,mqtle root of ihe characteri,sti,c equati,on of M. Moreoaer, i'f M has h
ei,ginaalues ir, . . . , Xn of mod,ulus l, then these aalues are all d,istinct anil

cne, roots of the equati,on ,1,å - I : 0, 'i.e',

).,-t: exP(Znuilh) (z:0 ,.-.,h - I) '

The number ä is called l]ne i,nd,eu of i,mpri,mitiuity of M. The arguments

of ).1 ,..,,An, denoted. by arg),r,.,-,arg)'1,, are of the form 2nr

rdrere r is a rational number. we say that arg A (1 + 0) is rational' in
rlegrees if it can be expressed in this form. Otherwise, arg ). is iruational in
degrees.

with suitable permutations a stochastic matrix M carl be transformed

into its normal, form (cf. [6], Vol. 2, p. 75)

1l

- !1,

0

0

M2

0

0

0

0

0

0

(1.1) M- 00
M"--1, l lIr+r,2

l)[s o

Ms+l,s Ms-,,

aa.

fuI ,, M,z M-,
'5

Mr.g-- I JI"

vlrere Xf , , .,f,I , areirred.uciblematricesandforeach i,g + 1-i {s,

Mil + M;r-1. .. + Mi,i-, + o .

'Ihe normal form is uniquely determined up to a permutation of the blocks

and permutations within the diagonal blocks. Note that Mr, ' ' ' , nllr are

stochastic matrices but Mgat t...,M" are not. The eigenvalues of
l[r.i r t..., M" are of modulus less than 1, since in each ofthesematrices

at, least one ro\4r sum is less than I'
Denote by h, , . . . , h, the indices of imprimitivity of the matrices

-:\I1 , . . . ' 
Mu. Let h be the least common multiple of them, in symbols,

h :'l.c.m.(h1, . . ., är). Then / : t is t'he only eigenvalue of (7/)o with

modulus r. it is obvious that,, for each natural number nt, the eigenvalues

of M* ooa (7)- are exactly the same. Consequently, /, : I is the only

eigenvalue it lW with modulus t. This implies that the limit lim (rI1å)-

exists (cf. [6], vot. 2, p. 9B). We shall use this result in the follo*'iäi §""tiorr.

0

0
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1.3. Denote by 11 , . . , , 1" the distinct eigenvalues of a stochastic
nxn llr'afuix M. Then the following formula holds for the powers of lI
(cf. [6], Vol. l, p. r07):

(1.2)

(1.3)

where @ij*(m) is a
1rr...r1, be the
7f71 :...:?lL1 :1

in the form

Here Dn(l) is an nXza matrix depending on .1, and m* isthe exponent
of )" - ,1,r, in the minimal polynomial of M. Denote Ay pf) the (i . j)th
element of M*. Calculating the required derivatives in (I.2), ra'e obtain

P!?:-å @ip,("a)Af ,

polynomial in m of degree smaller than ilts,. Let
distinct' eigenvalues of M with modulus l. 'Ihen
(cf. [6], Vol .2,p. 86). Formula (1.3) can now be utitten

t

P!?- Zf,,*(l*)lT + eii(m),

where f ,*(X*) is the (i , j)fh element of the matrix Dn(Lr,| and
lim eq(m) : 0. As we have already mentioned, the eigenvalues of .11l and
n+@

M are oxactly the same. This implies, by Lemma 1, that arg 1, , . . . , arg i,
are rational in degrees, because 1r, , , . , t ).t &tleigenvalues ofthe irreducible
stochastic matrices Mr, . . ., Mr. Hence

usi.i(m) : i,f *Orlrf
h:t

is a periodic function of m, having only a finite number of distinct values.
Lat h be as in section 1.2. Then the limit lim M^h+, exists for each r,.

0 ( r, ( h - t. This implies that a i. ttJ'period of w,i(m) (i, j:
| , . . . , n). Thus, we have obtained the formula

(r.4) p!? : wti(m) * 
"i(m)

where )\rrt(*): 0 and wt(m) is a periodic function of m, the period

being å: l.c.m.(år ,...,hr).
If all of the eigenvalues of Il[ are simple, i.e., r : n, therr rl,e hal.e

the formula (cf. [5], p. a3t)

pS?:-å qä *f) yl!))-' r\k) utr')(1.5) 4rnAp,

L2
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u-]rere
to it,,
to At,.

Jl.ormulas (1 .4) and (1.5) are often used belovr.

§ 2. Lemmas

2.1. In what follou.s, we present some lemmas which are often needed

in oul considerations.

.r'lo) is the eth component of the column eigenYector

änd ylr) is the jbh componerlt of the row eigenvector
corresponding
corresponding

Lemma 2. fruery regular language

t,,t''pft:.ssed, in the fornt

u,ltrrn L, isct,fi'nitelu,rcguage, I: >0

L ouer the alphabe,t {*} c&?L be

. + x*k) (x")*

and u) 0.

'Ihis lemma is an immediate consequence of Theorem I in [1a]. If I
is an infinite language, then necessarily k > 0.

l-or any irrational number T, the set, of numbers nly (mod 1),

m: I ,2,..., is everywhere dense in the whole interval [0, 1] (cf. [9],
p. 75). If g is irrational in degrees and q is a natural number, the number

qq" is irrational in degrees. This implies the following

Lemma 3. ff q is irrqtional i,n degrees, then for any natu,ral number q

atrd a,ny real number V, the set of numbers mqq I y, (mod 2n),

tn :-- | ,2 , . . . , is euerywhere ilense in the whole interual l0 ,2nf.

!.2. In this section we cousider a three-state probabilistic automaton

'Il!{ : (S , XI , no , I) over {r} such that M(r) : lp,;l has an imaginary
eigerrvalue ),2. The rorry eigenvector of the eigenvalue \: I and t'he

colrrrnn eigenvector of the eigenvalue ]'z will be denoted by Yr:
(y, , A,, yr) and Xr: (*f) , *f) , *f))', respectively. Since ,1., is imaginary,
it follows that pti - I < 0 (d: 1,2,3). IJsing this and the equation

I-r(,I1(,r) - Er):0, it, isverifiedthatwecanchoose Ui20 (i: I ,2,3)'
Thrrs r7, * yz*'Us> 0, and we may clefine

(2.1)

t\rh€)re i,j -:-- 1,2.3

?'lij: qi * ?lj ,

and i + j.
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Lemma 4. ?he components of the row anil column ei,genaectors corre-
,spond,ing to the i,rnaginary e'igenualue )., are d,i,fferent from zero.

Proof. Bytheequation (M(r) - )"28s)X2:0, rf) :0 if and onl.r' if
(2.2) Pn?zs-PB(Pzz--1r):0
Tf (2.2) holds, then pr, : 0, since .l,, is not real. This implies that either

?p:0 or p2s:0. In both cases, a simple calculation shows that the
eigenvalues of M(r) are real, which contradicts our assumption. Thus (2.2)
does not hold. and, therefore, np 4 O. The same argument applies to rl')
and rp. The proof is similar for the row eigenvector of ,lr.

Lemma 5. The equation

(2.3) pr*Y) * prrf;i * psrf) :0
hold,s for an i,niti,al d,istri,bution (?r , pz , ?r) if and, only if (p, , pz , ps) :
(Tt ,7lz , T).

Proof. As we have already remarked, ytZ 0 (d:1,2,3). Thus

W20 (i:1,2,3). Since, inaddition, Tt*qz*qs: l, wefindthat
(th,Tz,?g) is a stochastic vector. Therefore, it can be chosen as an initial
distribution. X'urthermore, it is & rorv eigenvector of Lr. This implies that
the equation (2.3) holds if we choose (gr,?z,ps): (rlr,rlr,?a), because
the row and column eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Conversely, assume that (2.3) holds for an initial distribution (pr , ?z , ?a,).
Consider the equation

(2.4)

l- 
n,, 1z

I r,'
I r,,
LPt

Pn

Pzz - 1z

Pzz

Pz

PB

Pzs

P$-
Ps

,*r),
niust

l,
7, I'l
*\:))' ,

vanish.
every determinant
Calculating theseof order 3, formed from the matrix in (2.4),

d.eterminants, s,o obtain the equations

(2.5) PrAtr (Pr(Pr, * Pru) - PrPLz - PsPs) Ä, * cz : o ,

Pul?, (Pr(Pr, * Prr) - PrPlB - ?z&z) 1, * cB : o ,

where c11 c2 a;yld cs are real numbers. According to Lemma 4, xl2) ;0
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for each i, : I ,2 ,3. This and the equation (2.3) implv that at least two
of the numbers ?t , pz t ps äta different from zero, because h * pz * ps :
1> 0. Consequently,if pr:0 then pr) o, ps) o and, bythefirst of
the equations (2.5), Pz?zr * Pzh: 0, since .1, is not, real. Thus Pzt: O

and pr, : 0. But if M(r) satisfies these conditions, then its eigenvalues
are real. This contradicts our assumption. Hence h * 0. On the other
hand, 2, satisfies the characteristic equation of M(m). This implies that,

1; (pr, * pzz * pss - L)1, * det M(*) : 0(2.6 )

By remembering that, h =f 0 and by comparing the equation (2.6) rvith
the first of the equations (2.5), we obtain

since

{2.7)

?t(Pzz*pm) --Pz4zt-PsPil:Pt(h1 + Pzz* ee--_ 1) ,

is not real. fn other word.s,

In the same \Ä,&f,

tYe obtain

(2.8)

(pt L)pr * ?nuz + Psrps : 0 .

b;,' using the second and the third of the equations {2.5),

?n?r* (Prr- L)Pr* PszPB:0,

FnPt * ?zsPz + (Pr, - L)P, : 0 .

),2

From (2.7) and (2.8) it now follows thah (pr,?z,ps) is a row eigenvector
of Xt: l. Consequently, (pr,pz,P) : (rh,tlz,qs), since (?r,Pz,Ps)
is a stochastic vector. This completes the proof of Lemma 5.

§ 3. Three-state probabilistic automata

3.1. A three-state probabilistic automaton over a one-letter alphabet is
the most simple probabilistic automaton where a non-regular language can

be represented. Using the notations (2.1), we give in the follon'ing theorem
a. necessarv and sufficient condition for such an automaton to represent
ii non-regular language.

Theorem l. Let tS2{:({sr,rr,sr},M,(pr,?2,?e),I) be a three-

state probabi,li,stic cr,utomaton oaer the alphabet {r}, where F is a proper subset

of the set {s1 , §z , sr}. A non-regular language can be represented in Ss)I if
anil, only if M(x) has an i,maginary ei,genaalue )'z such that arg )., i,s

irrati,onal, in d,egrees and' (?t , pz , ps) * (1.,t. , qz , Ts). Moreouer, if this
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cond,ition is sat,i,sfied, then there is eractly one cut-point q such that the

language ,($2I ,q) is non-regular. This cut-gto'int is r1i i.f p : {s1l and
q;i i'f -F : {s; , s;} (i + j).

3.2. Before being able to prove this theorem, we have to derive suitable
formulas for the probability noM(r^)no where no : (pt , pz, ?s). For
doing this, we first assume that F : {§r} atd M(r) has imaginary eigen-
values )., and ,1u. 'Iheu Ls: iz, r,r'here the bar denotes complex conjugate.
The column eigenvector of the eigenvalue \: I is (I ,1 ,1)'. This to-
gether with formula (1.5) implies

(s.l) p*) : qi 1 R2rfi ylq 1':; + Rrrf;t yltt 7y (k : t, 2, ?),

where v"e have used the notation

Ri: (I *1," a?')-' (J : 2 , 3) .
v: I

Hence

noM(r^)t, : \; * Rru(21 y(,') ),:; + Rru(:t\ al') iT ,

v-here u.'e have denoted

u0) : pr*\j\ * prx!\ +,prnf\ (j:2,z).
From the equations (LI(r) - ).jE)Xj: 0 (, : 2 , 3) it follov's that the
components of the r-rolumn eigenvector § corresponding to 1,, can be

chosen as the conjugates of the corresponding cornporrents of )fr. The
same holds for the rorv eigenvectors l', and Ir. too. Consequentlv. the
coefficients of ,lf and ,1? in formula (3.1) are conjugate complex numbers.
Thus, this formula c,an be written in the form

(3.2)

(3.3)

:rofu[@*)*, -- ]ii + ui iti -r- u; ),\'

where u,; : ftrue) at2).
Lemma 5 isnorn'used. If (pr, gz, pz) : (r1,, ti2, r7r), then tr.(!) : 0 antl.

therefore. ui: 0. This leads, b5r (3.2). to the result,

\tÅl(x*)n, - tj; (zo : (rl, , yiz , tte))

Assume that (?r , pz , p) -+ (r11 , tp , r1s). Then, bv Lemmas 4 and i.
u; *0. u'hich implies that atg,tl; is defined. We use the notations

Since arg ls : 11

(3.4) xnfrI (r:*)n, :

arg 1z : V , arg '21; --:. V; .

t"lt + Ziu,iiÅr'"' eos (ntrF + V,i) (rn =f (rt, , tlz , vis».
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3.3. Theorem I will now be proved.. We first assume that, .F == {r,}
(zi : 1, 2 or 3).

To establish the »if»-part and the last sentence of Theorem 1, suppose

tlrat E : arg.X, is irrational in degrees for an imaginary eigenvalue ).2

of M(r), and. (pr , pz , pa) * (t1 , 4z , qs). We shall show that the language
,(S?I , ?;) is non-regular. Suppose, on the contrary. that it is a regular
language. By our assumptions, formula (3.a) is valid. §ince lui\,ttLzt^ > 0,

it follou,s that

Appl;ring LemmaStothesetofnumbets rng * r/; (mod 2n),m,: I , f,...,
we conclude from (3.5) that ,(S2t , r7r) is an infinite language. Now. Lemma
2 is used.. Since Z(S!I , r7;) is infinite, it follows that fr 2 1 and, for some
uatural numbers 'm., and a,,

.l:m't'tte L(s?f ,\i) (t,-1,2,(3. fi)

Åpplying Lemrna 3 to the set of numbers (mr*rtt)E!y;(modZn),
r,- I,2,..., v'e find that, for some natural number 11,

tr'rorn formula (3.5) it norv follolrs that the 1ys1fl t"trr' t'rtr does not belong
to the language tr(SlI ,4r). This contradicts (3.6). Consequently,
,(SU , r7;) is a non-regular language, u-hence the »if»-part of Theorem I
follows.

The last, sentence of Theorem I rvill now be proved. By the above
consid.erations, it suffices to show that I(S!I , T) is a regular language for
an)r ?i such that ry * Ur Sinee i, is imaginary, it follows lhat M(r)
is irreducible. If i),21,: l, then, by Lemma l, q: NS 1z is rational in
d.egrees. This contradicts our assumption. Hence !,tz' 11 and, therefore,

rhis impries that, *)*"'i,':;" ::.r,'''.:r,,0 
",n*, ?;) is a rinite

language arid ,L($2{ ,4;') is the complement of a finite language. In both
cases, the languages are regular, whence the last sentence of Theorern I
follows.

For the »only if»-part of Theorem 1, assume that 1I(r) has an imaginary
eigenvalue ,1., and lhat (pr,pz,ps): (t,.,Tz,Tr). liow, formula (3.3) is
valid, and clearly ,(S2l , ?) is regular for any cut-point 4. The rest of
the »onlv if»-part follows from Theorem 6 which we prove in § 5.

2
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3.4. X'inally, u'e consider the case 7 : {e, , si} $ +j). Assume first
lhat M(r) has an imaginary eigenvalue .1r. We have

nrM(r*)n, : Z nr@ll) + p[i)) .

If (pr . pz , ?a) : (r1 , Tz , \z), ,n"r,:b, tr.rl,
(3.7) (th , tlz , qs)M(r^)no : qt t rlj : rtij .

If (pr,?z,ps,) = (th,\z,qs), then w *tl (fr: I ,2,3) and
33

(3.8) lrutnp * et{t):Zp*0 -el':)) :q,i* 2)u"'t\)./:*cos(mE*y;'")

where 
rl) 

o , i, E : arg l): *.a 1t)' : arg (- u,). By fbrmulas (8.7) anrl
(3.8), the proofis reduced to the corresponding prooffor .F' : {s;}. Instead
of 17; v'e have r1ii. As in the case .F : {s;}, the rest of the proof follolrs
from Theorem 6.

3.5. As a consequence of Theorem I we establish the following

Theorem 2, Assume that at least one component of the i,niti'al, d,i,stri,btction

no: (pr , pz , Ps) equals zero. A non-regular lo,nguage can be re'presentecl itt

$!{:({s1 ,sz,sr},M,ns,I), where I is a progter.subset of the set:

{sr , sz , ss}, il and, only i,f l[(r) has an i,magi,nary eigenualue )., such that
arg ),, is 'irrational i,n ilegrees.

Proof . Assume that, for an imaginary eigenvalue ),r, arg 11, is irrational
in degrees. We have to show that zo satisfies the condition of Theorem I.
As in section 3.3, rve conclude that llrl : ]1rl < 1. This implies that, the
elements of the matrix lirr. M(r)"" are positive (cf. [6], Yol. 2, p. 93). On

the other hand, by fo"*oäi1ä.r), everl'rorv in this matrix equals (q, , r12 , r7,).

Thus rii ) 0 (i:1,2,3). Consequently, the condition (pt,pz,?) v.
(Tr , tl» , \2,) is satisfied if at least one of the numbers pr , pz , ?s equals
zero, whence the theorem follorvs, by Theorem l.

The assumption of Theorem 2 is satisfied for three-state probabilistic
automata having a fixed initial state, since then zo is a eo-ordinate vector.

3.6. In some cAses,

degl'ees can be solved
the question whether or not arg i, is irrational irl
by the following result of Orustno [10].

rati,onal r,n, degrees, then the only rat'ional ualue.s ,f
1.

Lemma 6. If q

cos p (ffe 0. + Ll2,
'as

+
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The eigenvalues of a stochastic 3x3 matrix M(r) : lpii ate roots of
the equation

(A - t)(1, - (pr.,. * pzz * Pr, - r)1* det M(rc)) : g .

ff an eigenvalue )'z of M(r) is imaginary, then

cos (arg 1") : @o * pzz * pu - l)12 \/ d"t' M(-) .

Åccording to Lemma 6, arg ),, is irrational in degrees if cos (arg ),r) is
rational and is different from 0, * ll2, f I. Theorem I now implies that if
).2 is imaginary, cos (arg ir) is rational and (pr , ?z , p) * (!h , rlz , rls,),

then the language ,(B!I , ?) is regular for every cut-point 4 if and only if

@r * pzz * pse - r)12 \/ d"r M@: 0, + rl2, + t.
As &n example, consider the probabilistic automaton S![ :

({rr,sr,st\,M,n6,I) over {r} where .f,, consistsof oneortwostates
and

§ 4. An upper bound for the number of non-regular cut-points

4.1. For any three-state probabilistic automaton over {r}, the number
of non-regular cut-points is at most one. fn what follows, we consider this
number for general probabilistic automata over {r} and derive a finite
upper bound for it.

Let $8I: (§, M ,no,-F) be an z-state probabilistic automaton over
the alplrabet {*}, where no: (pt , . . . , po) and M(r) : lp;il. By formula
(1.4),

[s/s r14 3/8-|

ap1 : I t1a rl4 5/8 I .

1,,, o 2p)

Å straightforward computation shows that eigenvalues )"2 and ]B are
imaginary and cos (arg )'r) : 7ll2. Thus, by Lemma 6, arg .X, is irrational
in degrees. The row eigenvector of i,: t is

YL: (L2137 ' 4f37 
' 

2L137) .

Acrcordiug to Theorem I, a non-regular language can be represented in $2t
if and only if no * Y1. Cut-points \i and rlii are immediately obtained
from fr.

n

IY YtlrLt
s;€F i:1

7t

\r. §/-L
sy€F i:l

nnM(r*)n, : pi LDii (m) Pi sii(m)
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Denote the sums on the right by TY(m) and e(m.). Then

(4.1) noM(m^)np: l['(m) ! e(m,) .

The values of the periodic function wq(nr,) are real and non-negative,
because 1im e;;(na) : 0 and el? > 9. Hence qi(m) is real. too. ft
follows that W(m) and e(m) arc real. Furthermore, the values of trl'(rz)
are non-negat'ive and lim e(m) : g. Denote b}r ä the period o1 y,t,,(nt)

(i,J: L,...,n). It f-åsily verified that also the function lY(nfl is
periodic, the period being h.

Lemma 7. Il 11 i.s not a ual,'ue of lT(m), then L($W,r1) is o reylular
language.

Proof . Let iltl , . . . ,,toh be the values of W(m), arranged so that
wr{"'*u:6. If rt:wn+d(d>0), then L(*W,q) is a, finite
language, since lim e(zra) : g. By the same reason, I(BQ[ , t) is the

tu+4
complement of a finite language if rt : wr - ö (d > 0). X'inally. assume
that, for some i, wr141wi;r. Let d:min(rl-*r,wiir-l).
There exists a natural number ,rao such that lr(^)i < ö for all ilt > ino.

Using this, it is immediately verified that Z(S?I , r7) is of the Ibrrn

,(SU,T) : L1* (r-i' r f . . . * r*n)(,ro)*,

where -L, is a finite language containing only words P with l(P) { nto.
Hence ,(S2I , 4) is a regular language. This completes the proof of Lerururr
7.

4.2. Lemma 7 shows that the number of non-regular cut-points does
not exceed the period h of W(m). If ,, : 1 is the only eigenvalue of
M(r) wil}n modulus l, then the limit lim noM(r*)zp exists (cf. section 1.2).

This implies, by formula (4.1), that ffö"1 * constant, i.e., its r.alue doe-"

not depend orL m. By Lemma 7, rre now have

Corollary t. If X: L i,s the only ei,genaal,ue of the transi,tiott m,atrix
M(r) wi,th mod,ulus l, then there erists at most one ?Lon-regular c,u,t-poittt.

With suitable permutations -I4(z) can be transformed into its norural
form (l.l). As before, denote the indices of imprimitivity of the itreducible
matrices Mr, . . ., M-, by hr, . . .,hr. Then,asnoticed insections 1.3 and
4.1, the period h of W(m) equals the number l.c.m.(å, , . . . , h"). This
together with Lemma 7 implies the following general result (for anothel
approach to the same question, see [15]).
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Theorem 3. Let S?{ : (S , M , ns , ?) be a probabi'l,i,sti,c automaton
ouer the alphabet {r}. The number of non-regular cut-points d,oes not erceeil

the n,umber h:l.c.m.(hr,...,hr) where hr,...,h, are the ind,i,ces of
,intprimi,tiaity of the matr'i,ces M1, . . . , Ms in the normal form (L.l) of
M(r).

This theorem reveals a very special property of probabilistic automata
orrer a one-letter alphabet, not possessed by probabilistic automata over an
arbitrary alphabet; it is well-known (cf. [13], [2]) that even in certain
tu.-o-state probabilistic automata over the alphabet consisting of tw-o letters,
an infinite number of non-regular languages c&n be represented.

§ 5. Probabilistic automata anrl regular languages

5.1. According to Lemma 7, a necessary condition for a cut-point t'o be

non-regular is that it, is a value of 1,he periodic function W(m). As we already
sau'in Theorem I, this condition is not sufficient. In this and the following
paragraph we investigate conditions under which (a) no value of W(m) is
non-regular, (b) every value of W(m) is non-regular, (c) at least one value
of \l (nt) is non-regular. We use the earlier notations and label the distinct
eigenvalues of the transition matrix lYI(") so that

= 11,1

5.2. It is obvious that if e(mz) vanishes identically for sufficiently large
values of m, then the language Z($U , ?) is regular for any cut-point 4.
In the case where e(zn,) does not identically vanish, we first establish the
follor'ving theorem concerning the problem (a) of section 5.1.

Theorem 4. Let S?I -: ({r, , . , s,} ,

abi,li,sti,c autonxaton ov)er the alphabet {*}.
M, (pr,. . ., Pn), F) be a Prob-
Assume that, fo, som,e 'integers s)

(5. 1)

but

(5.2)

s+g

fPik:s
\'yLL

s7€F f :1

rlvvAL
s7e F i:l

@ijt(m)lT +0 fo, all m> ffi,,

:' pio)i1r,(rn)Ai: o fo, cilt m > tno
k:nolL

If ary 1", ., ., arg )""*, are rati,onal'i,n degrees,then L(fiW, I) is aregular
language for any cut-1toi,nt q.
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Proof . By Lemma 7, we may assume that the cut-point 4 is a value of
W(m). Since h11e(m):0, there exists an integer mr) mo such that,

{mlm > rnr, noM(r^)np ) n) : {mlm,2 m, , W(m) > ,l}
U {mlm ) rnr, W(m) : q , e(na) > 0} 

"

Denote the sets on the right by M, and //r, respectively. Now rve have

(5.3) ,(fU ,4) : L, { {r^lm e Mr} * {x^)m € Ms} ,

v-here Z, is a finite language containing only words P with l(P) !'m*
It is easily verified that the language

Lr: {r*lm e Mr}

is regrrlar. Now it is sufficient, to prove that the language

Lu: {r^lm e Mr}

is regular. We first derive a suitable form for e(za).

Sinct. rez, ) !ru0, it follows from the assumption (5.2) that,for m s il't1:

n s+q n r

e(tn)- Z I Z pitiliir"(m)1T + f I I pror1,(*)L|,
sy€.Fi:llc:s s;€.Fr:1lc:s*q*1

where I,1"1 : 11"*rl and llrl< li"l foreachk:s* q+L,...,t'.
Let mh' be the highest power of m inthe first sum of (5.4) r,r,hose coefficient
d.oes not identically vanish. By the assumption (5.1), this power exists. Bv
taking )"? *^' as a factor of e(m), v-e have

e(m) - )"! ntk'(ur(m) + u,r(m,)) (n, > mr)

(5.4)

(5.5 )

(5.6)

where ),! Ur(m) is the afore-mentioned coefficient of mh' and zq(iir)
a sum for which lim ur(m) : 0. The function Ur(m) has the form

,r(;;*-:41 exp ('inrrm) + . + ae,exp (inr,,m)

where p=q+I, d1 2...ta11 are complex const'ants and T1 1 .,,1'11
are rational nurnbers. The last statement holds, because arg )." , . . . , arg )," , n

are rational in degrees. It implies that Ur(m) is a periodic function of ne

having only a finite number of distinct values. Let

fu' : {mlm } thr, Ur(m) t' 0} .

Since limur(m):0, we conclud"e that Ut@) * ur(m) * 0 whenever

*eAT-{nd. m islarge enough. We may assume the integer m, Lobe
so large that Ur(m) I ut(m) * 0 for all m e M'. This implies that,
t(m) -* 0 whenever m e M'. Thus, arg e(m) is defined for all m € M' .
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Furthermore, since e(m) is real, it follows that arg e(m) : u(m)w u'trere
,(m) is an integer depending orl nx. We obtain the result

(5.7) arg e(m) - arg ),! f arg (Ur(m) + ut(r/L)) : y(m)n (m e M') .

Since arg ,1, is rational in degrees, we have arg )'! : 2nmalb, v-here a
and ä are integers. This implies, by formula (5.7), that

(5.8) arg (Ur(m) + ,ut(tn)) : y(m)n - 2nmafb (m e M') .

Consequently, the function arg (Ur(m) + ut(rn)) (m e M') has onlv a
finite number of distinct values (mod.2n). On the other hand,

arg (Ur(m) + ul(rn)) - arg Ur(m) t q@) (m. e M') ,

where tim q(m) : 0, because lim ur(m) : 0 and the yalues of the period.ic
m+@ n+@

function Ur(m) are different from zero for all m e M'- Using this result
and formula (5.8), it can be proved that if mz), mr is large enough, then
g(?n) : 0 whenever m )- ?nz ard m e M'. Consequently,

arg (Ur(tn) + uL(m)) : ary Ul(trl) (m ) mr, m e M') .

For e(m) we thus obtain from (5.5),

(5.9) e(m) : l)."1^it)r(m) + ul(m)lmh, exp (i(ary 1! + &rg lrr(nt)))

(mtmr, me M').
fn order to prove that Z, is a regular language, we first consider the

language

Ln: {r^ ,m, ) rhz , e(m) > O} ,

rvhich we express in the form

Ln : {r^ lm } TLz , m e M' , e(m) > 0} T {** im ) tnz , U r(m) : 0 . e (riz ) > 0}"

Our intent'ion is to prove that Zn is a regular language. Denote the languages
on the right hy Lu and Zu, respectively. Thus L+: Le * Zu. B.v forrnula
(5.e),

Lr: {r^lrn } t%2, m e M' , arg 1! | arg Ur(m) (mod 2z) : 0} .

X'rorn the periodicity of arg ,tr| (mod 2n) and arg Ur(tn) (mod 2z) (tn e )I')
it follows that also the function ary ),! | arg Ur(nt) (mod 2z) Qn e lI')
is periodic. This implies that Lu is a regular language. Consequentl!-, Ln
is regular if

Lu: {x,^lm } rflz, Ur(m) -- 0 , e(rn) > 0}

is regular.



2+ Ann. Aca<l. Sci. tr'ennicin A. I. 12s

In order to prove Lhat Lu is a regular language, we first note that if 0

is not a value of Ur(m) then -Lu is the empty language. Ilence it is regular.
Assume secondll- that 0 is a value of Lir(m) and denote

5' : {m,lrn } rtuz, (ir(m) : O} .

Let ,mh" be the highest power of m inthe first sum of (5.4) whose coefficient,

does not vanish for all m e l{'. B5r the assumption (5.1), this power exists.

The following formula for e(m) (zrz € Ä") is obtained in the s&me ma,nner

as formula (5.5):

e(m) : i! mk'1ur(m) )- ur(rn)) (m e N') .

Here ,äl fir(m) isthe afore-mentioned coefficient of mk', and lim ur(m) : o.

The functio n (Jr(nr) is of the form (5.6). Thus it is periodic äii nr. only a

finjte number of distinct, values. Continuing in t'he same way as 'we did
after formula (5.6), we obtain

Le : L'l{*)ms r'nst 'me li' , fir(m) *0, e(m)> 0}

*{r'"lm)'/rlt, m,e l{', l-ir(rn):0, e(m)>o}

for some rn, and some finite language .L' containing only words P with
m, < l(P) I mr. De:note the last two languages on the right by L, and Lr.
The langua1e Lt can be proved regular almost in the same lvaY as Lu.

If there are values m ) rnt such that rra € Ä'-' and L'r(m) : 0, then the
above procedure is repeated by defining zaa,, L'r(m) and so on. Bv the
assurnption (5.1). this procedure must end. f inally, the lauguage /-, gets

the form

L*:L" + Lr*-tr,, +...-t-- L,,

rvhere L" is a finite language år,nd L, , I-7 ,

)iox' \tr'e have
, L, are regular langttages.

trV (nt) : \\ ,

where tro is a finite language. Since W(m) is a perioclic function of rn,

it follows that the right member of the intersection is a regular language.

Consequently, L! is regular, too. Since, by (5.3), ,(SU ,rl) :
Lt + Lz + Ls, v'e find that Z($!t , ry) is a regular language.

The proof of Theorem 4 is now complete.

5.3. \Ye omit the assumption (5.2) of Theorem 4 and prove the follov-ing
theorem concerning the problem (a) of section 5.1.
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Theorem 5. Let S?t
a,bil'ist'ie utttomaton ouer

Iåi,
s;e F i:1lc:s

== ({r., . . ., s,}, M, (Pr r . r'?n), F) be tt, Prob'
t-h,e alphabet {r}. Assume that, fw sol'i?€ i'tztegers

p;{-D;ik(tn))'[ +* 0 fo, all, nx > mo .

If arg ).",.. .,an:g ),"*, antl arg )., where ), runs through al,l, eigen'talues

o.f M(r) satisfying the cond,ition L > ill > li"l, are ruti,onal in rlegrees,

then L(SW , q) is a regular language for uny cut-pto'int q.

Proof. As agreed in section 5.1, the distinct eigenvalues of M(.r) are

labelled so that,

1 - 1, -='1""') ;7," ,' ä .' ' r t7,1 .

We write noM(r^)np in the form

iroM(r^)no : lI (m) * §r(nr.) + . .' -1- Sr(m) * §r- r(m) -l er(m),

'where, for each 'i:L,...,7,,S;(zri) corresponds to the eigenvalues

lnr_r-1 , . . , lni rvith the same modulus and. §,*,(ri'l) corresponds

to A",...tAs+s.
B-v Lemma 7, we mav assume that the cut-point r7 is a value of lV(m,).

If §r(zr) +- . . . 1 §r(r'z) vanishes for all rL ) ?nst then the t'heorem follows
from Theorem 4. In the remaining case \r'e mav assume that no one of the
functions Sr(*) ,. . . , §r(n) vanishes for all m ), mo.

Let rnk, be the highest llo\1-er of m ir 2;i r§r(rrz) vhose coefficient
does not vanish f«-ir all m > mo. This pou-er exists because of the assumption
madc abor.'e. Denote the coefficient br' ['r(nr,). Then Ur(m) is a periodic
functiorr of m., since arg )",,,,- r , . . . , arg ),o, are rational in clegrees (cf.
the proof of Theorem 4). If 0 is not a r-alue of Ur(-,), then I($!{ , ry)

can be proved regular in the same manner as in Theorem ,1. If 0 is a'r.alue
of LIr(m), then we choose the highest power of m, in Br('2.) lr.hose coeffi-
cient does not vanish for all tn :-> mo such that Ur(m,) : 0. If this power
does not exist,, then we choose the first function 8,,(m) of the sequence

S.r(m.),..., Sy+ r(m) for which such a power exists. This function canbe
found because of the assumption of the theorem. \Ye applv t'he same

procedure t'o Su(m) as to Sr(-). If this procedure does not encl v'ith
Sr(nt), then we choose a nerv function from the sequence §,,-r(nz; ,. . .,
§r-r(mz). The procedure ends at the latest s'ith §.,-,(nr). Finrrlly, the
Ianguage I(S?d , 17) gets the form

(5.10) ,[(T2.{ ,'q) - Lo -r- {*'"':m >
! Ir,) )
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where Lo is a finite language and L1 , . . . , L, are regular languages.
Consequently, Z($U , ry) is a regular language, whence Theorem 5 follows.

5.4. Assurne for a moment that all the eigenvalues of the transition
matrix M(r) have arguments rational in degrees. If the assumption of
Theorem 5 is satisfied, then L(fiW,rt) is regular for any cut-point r7.

If it is not satisfied, then we write

noJVl(r*)no: W(m) + St(*) l- * §r(*)

where the functions §; (rz) are defined as in the proof of Theorem 5. Leb 11

be a value of W(m). We use the method of the proofs of Theorems 4 and 5.

It is verified that the procedure, applied there, ends, because there are only
finitely many functions Bt(m). X'urthermore, it ends without making use of
functions § (ra) which contain eigenvalues I such that arg 2 is irrational
in degrees, because such eigenvalues d.o not exist for M(n). The language
,(S!{ , ?/) is of the form (5.10). Ilence it is regular. We have thus established
the follorving

Theorem 6. Let
ouer the alphabet {*}.
argunlents rati,onal,in
cu,t-poi,nt q.

As arl immediate

$2[ : (,S, M, no, F) be a probabi,li,sti,c automaton
If the eigenuulues of the trctnsi,tion ruatrir 1I (r) lr,aue

degrees, th,en ,(FLf , q) ,s ct, regula,r language for any

consequence we have

Corollary 2. If the ei,genualues of the transition matri,rc are real, then
I($2I , 17) is a regular language for any cut-ptoi,nt q.

Since the eigenvalues of a stochastic 2 x 2 matrix are always real, we have

Corollary 3. Only regular languages can be representeil'i,n two-state prob-
abi,listi,c ctutomata ouer a one-letter alphabet.

Corollary 3 and the example of section 3.6 show that a three-state
probabilistic automaton over a one-letter alphabet is the most simple
probabilistic automaton where a non-regular language can be represented.

§ 6. Probabilistic automata and non-regular languages

6.1. In what follows, the representability of non-regular languages in
probabilistic automata over a one-letter alphabet is considered.
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Let us assume that, for a given probabilistic automaton S2I :
({sr,...,§,}, M,(pt,...,9),X) oYer {*}, the eigenvalues of Jlf(r)
are simple. Then, by formula (I.5),

pP:iR^*1'rtr'1^" rEr

rvhere

Consequently,

(6.1) noM(r-)nr: iaUkVhtT
ryhere we have denoted 

k:l

n

Ur: .Z_rp,*f\ , V^: 
"Frrf' 

.

If the coefficients of the eigenvalues .2r with lil < I do not all vanish
in formula (6.1), then by omitting all the vanishing terms this formula can

be written in the form

(6.2) woM(r^)no: W(m) + §(if , . . . , 1?+r) 4- et(m) ,

where li,l ==...: ll,*rl< I and. et(m) correspondstoeigenvalues -1.

with i/,1 < Il,l. If,forsäme z (s{d(s*q), l; isimaginary,then 7;

is an eigenvalue of .M(*). Furthermore, the coefficient of 7; in (6'l) is
R,U,F,. Since ll4l: lkl, it follows that §(,ti ,..., t*r) containsthe
term R,O,Vtl?. Denoting

q,:arg),1 , Vi:arghiLrlV.i U:'s,"',§ *q),
rl.e obtain

Rt(Ji,Vir,T + hA,V,1f :2lRiu;V;llL;l^ cos (mgi + rt» .

In tlris way, all the conjugate terms in the sum §(,1| , . . . , X?+r) a,re corr-
bined. Thus, formula (6.2) gets the form

(6.3) noM(r^)np : W(m) + l1"l- (f u, cos (mq; + 1t) + ,r(*))
i:s

rvhere O{p<q+1, hmer(m):0 and.

1 zl&Utvtl if Im ]'i -* 0 ,
Ui:<' t l&urY,l if rm ),;: o .

Rr, (,å, *l!) y!,r')-t .
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I{ere Trn )"; denotes the imaginary part of
(6.3 ) , er(no) is r"ea,l.

N'ote that, 1r)' forrnr-rla

6.2. IJsing forrnula (6.3) and the notations of the previous section, rve
now prove the follor,ving theorem eoncerning the problern (b) of section 5.1.

Theorem 7. Let FlI : (B , M , no , P) be a probabi,listi,c ctutomaton
ouer the alphabet {r) such that noM(r^)no is of the form (6.3). Assume that

E" 'i,s irrat'ional'in d,egrees and, p". |,...,gs1p ar€rationali,ncl,egrees.The
language ,(T!t,q) i,s non-regular i,f 11 is a aalue of W(m) and, u,"2 z

where z rneans the largest mod,ulus of the aalues of the periocli,c function

S(nt) cos (mv, + vt)

Remark 7. If p : g, then we d.efine §(zz) : 0. If the assuniption
concerning g"+r t... tVstp is omitted, then the condition concerning u"
can be replaced by the condition z" > limsup l§(zz)1, which is satisfied,

for exarnple, if u") us*, * .. . + u" r^ol*

Proof. Assume Lhat, u"22, i.e., ,u":p f ä .irhere ä>0. Denote
by ä the period. of W(m). Let w, be an arbitrarily fixed r,,alue of Ttr'(m,)

and n" a natural number such that

W(n, * ih) - w, (, : 0,1,2,... ).
By formula (6.3),

zrM(r*)no: W(m) + lr'"1^ (2, cos (mq" * ,il t S(m) f rr(ru)) .

I)sing this, lve prove that L(fi}L , u,,) is a non-regular language. t'hich
implies the theorem.

\4/e first, show that ,(SU , to,) is an infinite language. Let rio be a
natural number such that ler(tn)l < ö12 for all m ) yno. Applving Lemma
3 to the set of numbers (n, { i,h)g."{ y" (mod2n), ,i:1,2,. , .!ye

find tlrat there exist infiniteh, many values of a for which n, -7 ih 2 mo

and

s+p
.-- I %;

i:s* 1

(6.1)

Since, in addition, lB(,zr) 12, it follou's that, for these values of i,
(6.5) noM(x", tih)np> w,.l12.1",-'o ((" + ö)(z -t ölz)l@ + ö)- z - öf 2):7s,

This implies that L($2[ , w,) is an infinite language.
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In order to prove that I(S?{ , zr') is a non-regular language, we assume,

on the contrary, that it is regular. Hence, bv Lemma 2, L(s#»I , i't'") can be

expressed. in the form

(6.6) ,(S!{ ,w,): Lr+ (x:^'-1- ... { r^n)(x")*

where z, is a finite language, k > 0 and u> o. Note that Ä cannot be

zero, because L($2I , u,) is an infinite language. Let no be a natural

number such that l(P) < no fot every word P e Lt
There exist natural numbers a and Ö such that

(6.7) h:aulb.
We apply Lemma 3 to the set of numbers

(6.8) {(n, I i,bh)cp" { tp" (mod2z)1 i, : 1,2,. "}'
As earlier in this proof (cf. (6.a) and (6.5)), it is verified that t'here exists a

natural number k, for which n, f krbh 2 zo and *n'. k'bh € -t($!I ,'ru.)'

Hence, by formula (6.6), n, I krbh - ?mr, -l- tu where I t' p :- l; and

, > 0. B5r (6.7), rle now have

\rre again appl), Lernnra 3 to the set of numbers (6.8), u'e find that
exists a latural number k,7 kL for rvhich er(n, j_ kzhk') ..- å lt ancl

implies that

fiafuI (*"' + kzbh), 
o {'tLtr

*n, { krau, 
== fr, - k"bh e r(S W , Wr)

by (6.e),

+- krau : w,,, -l- (t li:rct + lcra)u,

Here f - lrra I hza I 0, because A, > Å'r. B1- (6.6) and (6.11). 1\-e no\l-

conclude that, the word *n'ikfu belongs to the language tr($![ , a'.),

which contradicts (6.10). Consequentll-, Z(S!{ , zr',) is a non-regular

language, 'w-hence Theorem T follo'ws.

6.3. For probabilistic automata satisf5.ing the conditions of Theorem 7,

everv value of w(m) is a non-regular cut-1ioint,. In the follou,ing t'heorem

concerning the problem (c) of section 5.1, we u'eaken the condition related

to u" and shou, that at least one non-regular cut-point' exists.

( 6.e)

If
there

This

and, thereftrre,

(6.10)

On the other hand",

(6.11) 'tL,
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Theorem 8. Let F?I : (S , M , no , X) be a probabi,li,stic autom,aton
oaer the alphabet {r} such that noM(r^)n, is of the form (6.3). Assumethat
E" 'is irru,t'ional ind,egreesanil, q"n r,... t(ps1, &rarationalind,egrees,The
language ,(S2I ,q) ds non-regular for at least one cut-poi,nt t1 ,i,f u"2 z
where z rnea,ns the l,east mod,ulus of the ualues of the peri,od,i,c fun,ction

s(m) (mV, + Vi)

Proof. Denotetheperiods of W(m) and §(m) by h and /, respectively.
Then there exists a natural number nr such that l§(2, * i,l)l : z
(r; : 0,1,2,...), Denote w, : W(n,). Then, for each i>0,

l9(n, + i,ltl)l : r, W(n, + ihl) -.: wr

s*p

i:sJ- 1

(6.12)

Theorem 8 is established by proving that the language ,(S2I, eu,) is non-
regular. The proof is exactly the same as that of Theorem 7 if one repla.ces
It, by hl and remembers the equations (6.12).

As äI1 example we consider the probabilistic automaton

ts?t == ({tr,...,§a},M, (0 ,7,7,1 2y,0,0) ,{s2e§3,sn})

ITT, O I

' l.o Mr)

1{'ith

[ ,lr I l4 B/8-]

Lr 
r: 

:!:l

0

0

Ll1ll,l

Ll2

Ll4

Ll2

Note that M., is the same matrix as in section 3.6. It follows that, for any
m 21,

tM? 0'tM(r^):l l.I o LIi)

The eigerrvalues of M@) are 1t : l, 1z: l, [s: ll4, XE: - Il4,
).5: (7 -r l/ OS ,iS1+A and 

^a 

: trs. Hence, llrl : l),41 : tll.
Formula (1.5) gives
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".ro1lI (r*)n o

6.4. If the coefficients of the eigenvalues X with 0 < lil < I do not
all vanish in formula (6.1), then, for some integers s and' Q,

I>:i"i :li"1rl >0 and

noM(r^)np: W(m) * R(m) + §('1f ,''' , Ä?*r) + et(t/L)

rvhere R(m) and er(ru,) arc the parts of (6.1) corresponding to eigenvalues

l, u'ith l > lf l > ll,l and l,ii < li-], respectivel;r. Thefollowingformula,
coruesponding to (6.3), can now be derived:

(6.14) noM(x^)ns: W(m) * R(r,r) + l2"l- ffi, "o. 
(mgi't yt) | e2@)) .

Here zr; ; 0 and er(m) is a real functio, ,":"airg lo zetoas zl tends to
infinity.

The following theorem shows that, in §ome cases the conditions of
Theorem 5 are also necessary for the language Z(SU ,q) Lo be regular

for everv cut-point.

[å.](-]I ?-?(-]I ,-l
,,i:l l-;(-l)- ?.?(-;l , 

I

I I - (i)- * ; (- l)- ? - z(- i)- (l)- 
_l

In the s&me m&nner we finrL that in MT t]ne element, ptl) i* of the form

p9) : 12137 + llul^uucos (mqu * vs)

u'here uu> 0 and gu : arg lu is irrational in degrees (cf' section 3'6)'

Norv we have

/r \-
(t - zy)ur\n) cos (m'Eu I v) .

Altlrouglr h: t is not simple, we ma,y use Theorem 8, since noM(r^)n,
is of the same form as in this theorem. Now tr42(zz) : 4yl5 + l2(1 - 2y)137,

),": ),s, u": (l - 2y)us and §(za) : y + y(- \^15. The least, value of

l§(rn)l is z:4y15. The condition %") z is satisfied if
0 1y < uul@15 * 2u).

Thus, the language ,(B?I ,4y15 + L2(L - 2y)137) is non-regular when-

er-er ,/ satisfies the above condition'
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Theorem 9. Let $?I : (S , M , na , F) be a probabi,listi,c «utom«ton
ouer the al'pltabet {r} such that noM(x^)np is o,f theform (6.14). A non-regu,lcu.
l,anguage can be regtresented, ,in B2I if R(m) uanishes period,i,cally, q" is
,irrational ,in d,egrees and, u") %"_", * .. . *,tr"+p.

Remark 2. The last condition can be replaced by the condition
s+p

", ,' ,::1 
sup 

,,:äu; 
cos (rn'rPi -i- v) l,

Proof . There exist, natural numbers n, and I such that R(n, + i/) == 0
(i:0,1,2,...). Let h be lhe period of lY(m) and w,:. ll-(n").
Then, for each i > 0,

lY(n, ! ihl) : w,, R(n, t ihl) :0 .

As in the proofs of Theorems 7 and 8, it, can be verified that the language
L(pL{ , w,) is infinite but not regular, whence the theorem follou-s.

As an exarnple rve consider the probabilistic automaton

S?I : ({sr,. . .,so}, M, (0,Lf4,lf4,Lf2,O, 0),{sr,sn})

r.yhere M(") is the matrix (6.13) rvith

I ,/* Bl4 o I ls/r rl4 B/8.l

ru,--,lz1+ ti4 o|..rr,:Ir7s tl4 5/8 I.'tttt
I,/* tl+ Ll2l I'3 o 2p)

Note that M, is the same matrix as in the example of section ai.B. lfhe
eigenvaluesof M(r) ale lr:L, ).2:L, |s:712, i+:- I2. ).;:
(7 + \/ 95 i)148 and La: Lt. Hence, we obtain (cf. the examlrle of
section 6.3)

ubi15l"' cos (mg;u -: ,;';)
t
iå ((-

61
xoÅrI (,:x"')7.8, - -i-1,49 i

where us) 0 and gr: arg l"u is irrational in degrees. Although \: I
is not simple, we may use Theorem 9, since noM (rc^)n, is of the sarne form
as in this theorem. Here lf (m):611L48, R(m): ((- Ll2)* - (tr2)-)/8,
'tL": 't{a12, },": ls and p : g. We find thaL R(m) vanishes periodicallv,
the period being / : 2. The number z" satisfies the condition of rheorerr
9, since u,"; O. Thus, ,(S?t, 61/148) is a non-regular language.
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CHAPTER II

PROBABITISTIC AND GENERALIZED AUTOMATA
OVER AN ARBITRARY ALPHABET

§ 7. A theorem concerning two-state probabilistic automata

z.t. In tlis chapter we investigate probabilistic automata oYeI &n

alphabet 1 without making any assumption on the number of its elements.

We first establish the following

Theorem 10. Let S?I : ({sr, rr}, M, (Pt, ?z), I) be a probabili'sti'c

ctntont.clton ouer the alphabet I:i\,...,frh1J. If the transiti,on matri,ces

lI (r;) -

,srttisf y the cond'it'ions

(i.1)

0,nd

(7 .2)

f t 0
M(x,\ + iL0 I

,L:;]

then the language ,(§13!{ , ri) is regular for any cu't-pto'int 1'

Proof. Without loss of generality, we assume that -F := {'r}' Let 1

and i; be the eigenvalues of M(r;). Then ,1; is real, because M(*t)

is a stochastic 2x.2 matrix. On account of the condition (7'l) we have

\).;':11 and ai*b;> 0 (i: I ,...,k). Denote

t lb, o,1 - I I o, -',1o': o + b,l;;, ;:,,1' &: e, + a, l- å, ö, 
'l '

Then

M(*,) : A, 4 Bi)'t (i : 1,...,k).

Fromthecondition (7.4if follows f]nai, A, : -4r, and Br: '' ': Bt'

Thus

(7.3) M(r;): Ar{ B1)"i (i: 1,..., tr) .

Clearly ArAl: A1 , BrBl: 81 , A1B1: 0, BrAr: g' By (7'3), this

implies that, for a,ny non-empty word x)-,'''?-1,"t



34 Ann. Acad. Sci. Fennicre A. r. 129

(7.4)

Denote arl@, *
we now obtain

(7.5)

M (frrr " frr") - AL * B, I]
i:L

1,,

From the equation (7."t)

n,,)no:b + (a-pz) il
i:1

1,,

Now we divide the eigenvalues 1, , . ) ),n into three classes

Urr). ,Arolr,Uir,

whero u,p,y20, 1,,:0, )"i,)0 and ),x, <-0.
We consider the language Z($21 ,q) for different values of 4. I1'hen

doing this, we use fonnula (7.5) and remember that ri;l { I

Assurne first that ?7 - b.

the empty language. If a >
alphabet {*ir, . . .,'trj t}, frkl, .

If cr, : pz, then b : pt and. ,(S»{ , b) i.
pz, then ,($W,b) i* a language orer the
. . , xnr]; containing exactly the urord.s u'here

thetotalnumberof letters rr, (v -1,...,2) iseven. If a4pr. therr
the statement of the previous sentence holds with »even» replaced bv »odd».

If ,l > ö, then ,(S2I , 17) is a finite language. X'inally, assurne that
q <b. If a: pr, Lherr b: pt and I(S?{ ,rt): lIrQ). If o =p," then
f(SU ,q): Lr* L, where -L, and L, are formedasfollou-s. I, consists
of the words P such that l,(P) > mo where mo is a sufficientlv large
integer, and. L, contains only words P with l(P) !. mr.

Frorn the above considerations it follo'rvs that ,($2I ,4) is a leg-ular
language for any cut-point 4.

§ 8" Theorems coneerning stochastic languages

8.1. Buxruunv [3] showed that every r7-stochastic language (ri > tl)
is also 4r-stochastic for any Tr such that 0..--1o<-t?. The follorring
theorem generalizes this result.

Theorem 71. Euery stochasti,c language is qr-stochastic for any q, such
that 0<Tr<1.

Proof. Lel L- r(S?I,r7), r,vhere SlI : ({sr,. . .,s,}, M,no.1) is
aprobabilisticautomatonorrerthealphabet I. Let r7, befixed., 0 <r7, <: l.
By omitting the trivial case 41 : 11, wa may assume tbat q, * 4. Consider
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the probabilistic automaton SlIr : ({sr ,

for each re I,

(8. 1)

and
fr!:
and
that,,

Theorem 12. The s?rrn L, * L,
stochcrst'ic langu,age LL and a, regu,la,r

a,re botlt stoclt ast'ic languages.

Proof. Let LL

$u,
is a probabilistic

, 8n , §, + ,) , Mt , flL, Fr) where.

and, tlue i,ntersect'ion LL n Lz ,f cL

language Lz (ouer tlte alpkabet I)

L O lJ

((rlrlr?)ro,I -qtlq) and /L- F. If hlT, then nL:(pnu,L-p)

for any P e WQ),

tM(P\ 0ta,e):l -' l.'Lo tl
Thus, for any word P e Tf Q) ,

(8.2) nrn[r(p)nr. - | (nJn-)noM(P)n' if q' 1q 't' I pnnM(P)n" * (1 - p) if r11) \ .

X'rom (8.2) and the choice of p iL follows that in both cases L : L($2[, , q1),

which implies our theorem.

According to Theorem 11, every stochastic language is, for example,

$-stochastic. The restricLion q, > 0 is essential, because every 0-stochastic
language is regular. Conversely, every regular language is O-stochastic,
because every finite deterministic automaton can be rewritten as a prob-
abilistic automaton v-here the initial distribution and. the transition
matrices consist, of 0's and l's only.

8.2. Psz lI2] constructed a probabilistic automaton where the inter-
section of a stochastic language and a regular language can be represented.

In the following theorem we construct a more economical probabilistic
automaton where both the sum and the intersection of such languages

can be represented.

- L(S?t, ,q), where

: ({rr, . .,, §r}, Mr, (Pr, .. . rP*), Fr)

automaton over I. Let Lz: r(StI, , 0), rr,'here

- ({t,*, : §,+ *} ,l[2, (1 , 0 , . . . ,0) , Fr)s?I,
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and eaclr ron'in each Mr(r) is a co-ordinate vector. Thus, S2[2 is a finite
deterministic automaton, where Z, is represented, renritten as a proba-
bilistic automaton.

Consider the (m, t n)-state probabilistic automaton

mll : ({sr,,..,§,,§,+1,...,a,1-}, M,nq, X)

over .I lthere, for each r € 1,

J),t r(x)

0

0) and

0
JUI (t:) -:

fro: (*Pr, ". .,*P,,*,0,'''
each P e trNr(I),

ttr@) )'
F -= f, U f z. Consequentll,, for

Since, in additiorl,

| ,,,TtF : 
I

l_np.

the follorrying equation holds for any word P e WQ):

(8.3) :zoM(P)np: *(pr,. ..,p")Mr(P)rr, + å(1 ,0, .,O)Mr(P);tp,.

Since (l ,0, ...,0)Mz(P)2", equals I or 0, depending on u-hether P e Lz

or P C. Lr, (8.3) implies the equations

L, * Lr: L(*21 , *,?)

and

Ltn Lz: ,(F?I, å (ri _| t)) .

This proves the theorem.

As an immediate corollary we obtain the following

Theorem 13. If L, 'is a stochast'ic language and, L, a regular language,

then the language L, - L, is stochastic. Let L' be a langu,age obtainecl from
alanguage L by add,i,ng or remouing fi,nitely many utord's. ?lten L' 'is stochastic

if and only i,f L is stochast'ic.

The left d,eriaatiue of a language Z with respect to a word P is defined
by ApL : tQl PQ € Z). BuxnaRAEY [3] has proved the follorving result:

I[r(P) o 
Io tuIr(P) I

:t6
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Lemma 8. All l,eft d,eri,aatiaes of a stochastic language are stochq,.stic

languages. Conaersely, i,f there eti,sts an integer k such that all left deriaati,aes

of a language L wi,th resgtect to word,s of I'ength lt are stochastic languages,

then L is a stochastic language.

Our next theorem follows from this lemma, Theorem 12 and the equations

lr(Lr l Lr) : 0pI1l 1pLz, Ap(LLn Lr) : (1rLr) n QpL2) '

Theorem 14. Let Lt anil L, be stochasti,c languages' I.f there erists an'

integer k such that, for each word, P of length k, ei,ther 1rL, or 1rL, is
a regular language, then Lr! L, and, LrCl L, are stochastic languages.

8.3. X'or a probabilistic automaton P?I: (S,M,no,F) aud a cut-
point 4, we denote

L(S?I, ry, :) : {Pl noll(P)nr : ?t} .

Now the following result concerning closure under complemeutation
can be established.

Theorem 15. Assume that L: r($U ,q) is a stochastic lan,rlttage and,

that thel,anguage ,(F?I ,T ,:) is regular. Then the complement of L is a
stochastic language.

Proof. Let SU: (S, tI ,to, -F). Denote b;, F the complernent of I
with respect to S. Then

L : {Pl noM(P)np 111}

: {Pl noM(P)n7 > I - 4} + ,(S?I ,T ,:) ,

whence Theorem 15 follows, by Theorem 12.

The hypothesis ofthe previous theorem is not, satisfied for all stochastic

languages; Srenxn [8] constructed a probabilistic automaton over the
alphabet {0 , r} for which

(8.4)

This language is not regular.
We return to the closure problerns in § 10.
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§ 9. Generalized probabilistic automata

9.1. Pacn [l] has considered probabilistic autornata for which the
components of zo as well as the cut-poinl t1 are allorved to be arbitrary real
numbers. An open problem has been whether the family of representable
languages remains unaltered in this generalization. In what follor,vs, we soh,e
this problem.

Definition 2. A generalized, probabi,li,stic autonraton over the alphabet /
is an ordered quadruple 6S?I: (S,M,no,fo), where §, M and nn

&re as in Definition I and fi is an z-dimensional column vector with real
components (the final oector).If /, is a stochastic vector, then @S2[ is a
generalized. probabilistic automaton with a fi,rual d,i,stri,bution.

'Ihe domain of M is extended from "I to W(I) in the same $,a)' as
before.

For any real number q, the language represented in 6$?I with the
cut-point' ry is defined to be the set

,(6$?I ,rt): {P e Wg) lnoM(P)fr> ?t}.

Lemma 9.Assumethat L: Z(6S?I ,q) where 6F?I- (S,M,no,lo).
Ioranyreal,number c, L: r(6$!Ir,q +c) where @fiWr:= (§,lI ,no,fr)
«nd, fr:/, + (c,. . ., c)'.

Prutaf . For any w'ord P e T4r(I),

noM (P)h : lroL[ (P)fo * c ,

because \M (P) i= a stochastic vector. This proves the lemma.

Theorem 76. A language L can be representeil in a generalized, prob-
abili,stic cttttomaton (generali,zeil, probabilistic automaton uith q fi,nal distri-
bution) if and, on,ly i,f il can be represented, in a probabilisti,c automaton.

Proof. To establish the »if»-part, $'e assume that L :,(E2I, 4), where

S!{ : (8 , M , no , I) is a probabilistic automaton over /. Denote by fr

the number of the elements of E (k > 0). Then the generalized probabilistic
automaton 6StI : (S , M , no , k-rnr) has a final distribution and
,L($U ,',t\ : L(@p[I,,qlk).

To prove the »only if»-part, v'e assume lhat L can be represented in a
generalized probabilistic automaton. By choosing c large enough in

38
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Lemma

1{'s, , ' )

8', =: QrlQ

l,I'here

and

g, we may assume that L - L($SU ,rl) u'here gS2[ -
§,) , M , nn , fo) and the components of f, are positive. Denote

fra : (pr,,, gn), fo : (qr,. . ., In)'

Qt+ .+Qn.Thus 8i) 0 (i --':-1 ,n) and. q> 0. Let
for each i:---: I )... ,n. Consider the probabilistic automaton

SU : ([.tr, ., §r, §rri1 r . . . §rr], Mr, frL, Er)

Fr- {s1, sr-i 2, sz,, i,3, o ., srr}'

trnd, for each xe I,

f d,nt@ qrM(*) . . . q"tt(r)l

(e.r) M,(x) :ldaol qLM.t*) 

. . .o'*.o' I

l-q,aWl qiM(*) . . .q|a@ )

Clearly, Mr(x) is a stochastic nzxnz matrix and z, is an n2-dimensional

stochastic row vector.
Let P e IVQ) be an arbitrary non-empty word. From the construction

of Mr(r) it follows that (9.I) holds if r is replaced by the word P' Using
this result,, it can be verified that'

(e.2)

u'here p,if) denotes
other hand,

(e.3)

ntMt(P)rr, : å i o, ai p,i(P)
tl:l i:l

the (i , j)fh element, of the matrix lyl (P). On the

noM(P)f,^- f io,Qipii(P) .

,-1 j:1

Combining (9.2) and (9.3), we obtain

nrMl(P)np, - q-r noM(P)fo .

Consequently, the language L(*AI,rllq) contains exactly the same non-

empty words as the language ,(6[ttt , r7), whence our theorem follows,
by Theorem 13.
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Thus, a final vector can always be reduced to a vector whose components
are 0's and l's only. Nobe that the initial distribution can always be reduced
to a co-ordinate vector (cf. [7]).

.\s an immediate corollary of Lemma 9 we obtain

Theorem 17. If L: L(@FL[,T), then,, for any real number Tr,
there eri,sts a generalized, probabi,listic automaton 6$lt, such tlmt
,D : z(@B![, ,4,).

Thus, ever5r language of the form Z(6S2[ ,4) can be represented in
some @SU, with the cut-point 0 (cf. Theorem 1l).

More general automata will be considered in § 11.

§ 10. Closure properties of a subfamily of stochastic languages

10.1. Let 6$2tr:(§r, M1,n1,/r) and 6$2tr:(§2, M2,ns,fr) b"
generalized probabilistic automata over 1 with n and tn states,
respectively. Denote h: (pt,..,,pn), fr: (qr,...,Qo)' and, for each
re I, Mr(r):lpti@)1. Consider ttre mn-state generalized probabilistic
automaton @$?I: (Brx§, , M ,no,fo) where

fro : (Prn, t Pzfrz t

and, for each fref ,

,P,fr2), fa

97,
arlv
also
anv

(10.1) naM (P)fo :

Thus, we have established

(n, Mr(P)fr) (n, Mr(P)fr)

the follou.irg

I hrz

I 
rr@)Mr(*) prr(*)Mr(r) . . . p,^(x)Mr(t') 

|

lp*,(*) LIr(*) p^r(r)M r(x) . . . p"lr)M r@) )
Thus, ,\y'(r) is the Kronecker product of Mr(r) und. Mr(r) (cf. [7], p.

[12]). X'rom the construction of the matrices M(r) it follows that, for
non-empty word P e WQ), IW(P) : Mr.(P) I Mr(P). Clearly, this
holds for P : ,7. By a direct computation, we now verify that, for
word P e WQ),



Lemma 10. Ior two general'i,zed, probabil,i,sti,a automata 6S?11 :
(SL,Il[1,;\,ft) anil, GtSUr:(Sz,Mr,nr,fr) oaer I, there eu'ists a
generalized, probabili,sti,c automaton 682I : (S , M ,no,fd su,ch that (10.1)

hold,s for any woril P e WQ).

In what follows, we also need the following

Lemma 17. Xor two generalized, probabili,sti,c automata 6SUr :
(Sr,Mr,nt,fr) and @EUr:(r§2,fuIr,nz,fz) ouer I, there er'i,sts a

general,'i,zed, probabilisti,c automaton 6S!I: (8, M ,no,fo) such that, for
any word, Pe Wg),

nrM(P)fo: n Mr(P)f, { nrMr(P)f, .

Proof. By defining

ao -: L(nr, tr), f^ : l'f')'- l.rfr)
and, for each re I, M(r) as in the proof of Theorem 12, rre obtain the
desired automaton.

10.2. X'or any generalized probabilistic automaton 6S!{ : (S , M , to ,fo)
over -f, we denote

,(0FAI ,4 , *): {Pi noM(P)fo = q}

and, respectively,

,(@SlI ,T , :): iPl noM(P)fo: rt| .

Let :l(*) hethe family consisting ofthe languages,t over 1 such that,
for some @$![ and some 4, L: L(@BLl,q , *). The famil5z '-{-(--)
is defined analogously.

fn what follows, we also use the uotations t'/!., and 1r to mean,
respectively, the family of regular languages and the family of stochastic
languages over 1.

Lemma 9 and Theorem 16 are useful tools in constructions involving
probabilistic automata. \Ye shall use them in the following consid.erations.

P,q.avo TunaxarNEli, On probabilistie. automata and their generalizations 4L

Theorem 18. The fa'mi,ly 1/., is a proper subset of the .fami,ly '-L(r').
The fam,i,ly :t-(+) is a subset of the fam,i,ly -'/".

Proof. X'or each L e'!,, there exists a probabilistic automaton

$!t: (S,M,no,F) suchthat L:tPlnrM(P)no l0). Thus, 9t, isa
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subset of '1(7). The first part of the theorem now follows from the fact,
that the complement of the language (8.a) is not regular.

To establish the last part, we choose an arbitrary language ,L fronr
'-(,(+). From the proof of Lemma g it follows that, for some GS?I1 :
(Sr, Mr, nr,fr) over I, L : L(@F![, , 0 , +). By Lemma 10, there exists
a generalized probabilistic automaton 6ts2l: (S , M ,no,fo) sueh that.
for an;r word P e WQ),

noM(P)fo : kqMr(P)f..)z .

This implies that L : L(6BU,O), whence the Iast, part of Theorem l8
follows, by Theorem 16.

Theorem 19. The fami)y tt(+) 'i,s cl,osed, under sum and, i,ntersectiott.

Proof. I-ei Lre 4e) and. LreAG) be arbitrarily fixed. B), the
proof of Lemma 9, we may assume that L : L(@BDLi ,0 , *) where
6S?I,: (§;, Mi,ni,fr) (i:1,2). By Lemmas l0 and ll, there exist's
a generalized probabilistic automaton @S2[: (S, M ,no,/s) sueh that,
for each word P e Wg),

nofu[ (P)/o - @rMr(P)fr)' * (nrM r(P)fr)'

This implies that Lr* Lr:r(6S?I ,0, *), whence the closure under
sum follows.

To establish the closure
By Lemma 10, there exists
(§, M,ns,fo) such that,
holds. Consequently, Ll
under intersection follows.

under intersection, let LL and Lz be as above.

for each word P e WQ). the equation (10.1)
fi L, - L(g $2[ , 0 , +), whence the closure

Theorem 2A. If L, e V.(*) a,nd

Lr n Lz is a stochastic language.

Proof. We may assume that

there exists a generalized probabilistic
such that, for each \4,ord P e I?rQ),

Lz as a stochasti,c languuge. the,tr,

, rf,i , fr) (i, -: I , 2). By Lemnra I0,
aut,omaton 6$2[ : (,S, M, ro, fo)

noM(P)fo : @rMr(P),fr)z (nrMr(P)fr) .

This implies that LLn Lz: Z(6S!I,0), whence the theorem follows,
by Theorem 16.
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We do not know whether or not, the famil;, -!(+) is a proper subfamily
of '.t ".

10.3. We consider for a moment the family ,((:). By (8.a), rL, is
a proper subfamily of 7(:1. By means of Lemmas I0 and 11 we see that,
l(:) is closed. under sum and intersection. Every language of Z(:) is
the complement of a language of -4.(l). Consequently, if there exists a
language L e9{e) which is not stochastic, then l" is not closed under
complementation. It can be verified that, for example, the language

{0"1"1 n, } t} belongs to !Z(:). However, we do not know whether or not
it is stochastic.

The problem of the closure under complementation is closely related to
the question whether or not the family of representable languages remains
unaltered if the sign 2 is replaced by the sign ) in the definition of a
language represented in a generalized probabilistic automaton. I{amely,
t{" - 4.(>) if and only if SZ" is closed und,er complementation. The
definition of the family tt(>) is analogous to that of 7(,(+).

§ 11. Generalized automata

ll.l. As we have seen, the generalization of n, is not essential as far
as the family of representable languages is concerned. In what follows, we

show that this holds even if the elements of zo and of the matrices M(r)
are allowed to be arbitrary real numbers.

Definition 3, A generalized, automaton over the alphabet .I is an ordered
quadruple 08[:(S,M,no,fo), where §:{sr,...,§,} is a finite
non-empty set (the set of internal states), M is a mapping of 1 into the
set of nxn matrices with real elements, no is an ra-dimensional row
vector with real components (lhe initial aector) and /s is an z-dirirensional
column vector with real components (lhe final aector).

The domain of M is extended from 1 to W(I) h the same l\'ay as

before.
For any real number 4, the language represented in 6!I rvith the

cut-point 4 is defined to be the set,

L(@21 ,4) - {P € W(I) | noII(P)fo > q}

A language -L is called a 62[-language if and only if, for some 6?I and
7t, L:L(@81,q).
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11.2. In the following four lemmas we show how, for any given
generalized. automaton, a generalized probabilistic automaton representing
the same language can be constructed.

Lemma 12. Euery @lI"-languoge L catl be represented, dn a general'izeil

automaton 6?11 : (51 , Mr , nt , fr) where, for each r e I, the rotn a,nd,

eolumn su.ms of Mr(r) equal zero.

Proof.Let L:r(6!{,4), where @!I: (B,M,no,fo) isan n-state
generalized automaton. Clearl5r, for each r e I, Lhere exist real numbers
ör(r) ,. ..,ö^(r), yo(x),...,y"(r) such that in the matrix

(11.1) tvI (*)

-9:91-
-Yo@)

yt@).. .y"(n)

every ro\i' and column sum equals 0. From this construction it follows that,
for each non-empt5' rvord P e \yQ) and for some real numbers

dr(P) ,...,d,(P), To(P),...,7^(P), Mr(P) is obtained from (11.1) bv
replacing fl: by P. Consequently, if we define z, : (0 , ns , 0) and

å : (0 , f{ ,0)', then, for the (n | Z)-statn generalized automaton

@2[1 : (St, ]llr, nL,ft), the equation

nrMr(P)lr: noM(P)fo

holds u'henever P ell'(I). This implies that, L: L(@2\,rl), u'heuce

tho lemma follows.

Lemma 13. Euery @|L-language L can be represented, in a generalizecl

automatott 62[1 : (51 , Mr , nr , ft) where, .for each r e I, the elements of
the m,atrir Mr(*) are non-negat'iue.

ProoJ. By Lemma 12,we m&v assume t'hat' L : ,(6!I ,q) for an zi-state

generalized automaton @?I : (S , M , no , fo) such that the row and
columrr sums of the matrices )lI(r) @ e I) equal 0.

For ant' real number o, denote by X(a) the n><n matrix whose

elements equal o. Let d ) 0 be so large that, for each r € 1, the elements
of the ma'trix Mr(ru) : fI@) * N(ä) are non-negative. By the assumption

0 ... 0 0-
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concerning the matrices M(r) @ e I), both M(r)N(a) and N(alM(n)
ate zero matrices. This implies that, for any x e I and. A e I,

tlr(*y) - Mr(r)Mr(y)- M(*y) f t[(n,ä2) .

It is easy to verify that the row and column sums of M(rA\ equal 0. Let
P e Wg) be an arbitrary non-empty word. Proceeding inductively, we

infer from (1f.2) that

(11.3) Mr(P): Me) * Nlnret -1ä(P)) .

Let A be the 2x2 malfix whose rows equal (0 , f). Consicler the
(2n * 2)-state generalized automaton @!I1 : (5, , M, , nt , ft) r,r'here

h : (no,xt6,nsfs,0), fi : (l{, - f{, l, 0)r

and" for eacb. x e I,

(11.2)

(11.4) Mr(P) ::- d,p 
;]

|u"nl o

Mr(*):l o ir(d)

to o

Oonsequently, for any non-empt), \,r,'ord.

0

0

A

P

I

€ w(I),

X'ormulas (1f .3) and (1I.a) together with the definition of Mr(A) now imply
that, for any word. P e WQ),

nrMr(P)fr: noM(P)fo .

Thus -L : L(@2\ , \), whence the lemma follows.

Lemma 74. Eaery @Vl-language L can be represented, in a generalizeil,

automaton @![, : (St , M, , nt , ft) where the matri,ces Mr(*) @ e I)
are stochastic.

Proof. By Lemma 13, we may assume that L
generalized automaton @?I: (§, M,no,fo)
matrices M(") @ e I) are non-negative.

Let ö > I be a, real number larger than

- L(gU , q) for all lz-state

where the elements of the

the largest row surn in the
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matrices M (rc) @ e I). tr'or each

I ...0
ör(')

a^,w)

is st'ochastic. Frorn this construction it follows that, for any non-empt;,
'vyord PeWQ) and for some real numbers dr(P) ,...,ä"(P),

1 0...0-l
ä'(P)

j,e)

ö-t(P) tyl(P)

Consider l}r.e Qt, f 3)-state generalized automaton 6?11 : (8, , M, ,7r , fr)
where

z, : (0 ,xts 1'tl ,0) , fr: (0 ,,fot, - I ,0)t
and. ft»' each r e I,

ltr,oli o -l
M,(r):l ; l----ll;;ll_ io r _l

ft follorvs that, for any non-empty v.ord P e ll,(I) ,

ML(P) -

We rlo\\' conclude that, for any word P e W V),

rh,rs r. - L(6u,, 3!'S!:;å:'":"Y:1*;J'

fr

ch

0

e I, there exist real numbers å;(r),
that the matrix

ö-LM (r)
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Lemma 15. Eaery @ll-language L can be represented, in a generalized,
,pr obabili,stic automaton.

Proof. By Lemma 14, we may a,ssume that L:L(6W,q) for an
n -state generalized automaton 62I : (S , M , no , fo) where the matrices
M(r\ @ e I) are st'ochastic.

Let ä > 0 be so large that,
ponents of the Yector (p, * d

1):pt+ .*p,,+2nö. Thus y>
prohabilistic automaton 6S?[ - (§,

Proof . Since mi(mi(L)) _- L,
language, so is mi (r).

Let L ,- .D (S!t , ?i), where

for no : (p, , . , pn), the com-
. . , P* * ö) are positive. Denote
0. Oonsider the Zn-state generalized

, M, , nL , fr) where

it suffices to pror.e that if L is a stochastic

r.r,L: y-r(h + ö ). ,p,, + ä, ö i

änd., for each fr e I,

, ö) , fr:

*,o,:l*1.' i,.,)
trYe conclude that, for any word P e Wg),

nrMr(P)f, : y-hoM (P)fs .

Thus -L : L(@*W,qly), whence the lemma follows.

11.3. As an immediate consequence of Lemma 15 aud Theorem 16 we
obtain

Theorem 21. A lang uag e L can b e r epr esented, in q, g ener alized, automaton,
if and, only i,f it can be represented, in a probabi,li,sti,c automaton, i.e., if and
only if it is a stochastic language.

Thus, the family of languages representable in generalized automata
equals the family !2".

By the mirror image of a language -L, in symbols mi(Z), u,e mean the
language obtained from .t by writing all words backu,ards. Bv means of
Theorem 21, we nou' establish the following

Theorem 22. A language L 'is stochastic if ancl only if the minor i,mage,

of L i,s stochastic.

tÅt
L- r,l
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automaton. Consider the generalized automaton 6?I : (S , M, , nr , ft)
where nt: ntr, h: n{ and, for each r€1, Mr(r): M(r)'. Foreach
word P e WQ), we norY obtain

qMr(mi(P))fi : nrM (P)n p,

which implies that mi(I) : L(@!zI,n). Theorem 22 nora' follows from
Theorem 21.

The right d,eriuatiae of a language -L with respect to a word P is defined
bY 

a,L:{erePeL}.
Clearly, mi (är-L) is the left derivative of mi (,L) with respect to the word
mi (P). By Theorem 22 and Lemma 8, we nov' obtain the following

Theorem 23. All ri,ght d'eri,uatiues of a stochastic lunguage are stochasti,c

languages. Conaersely, i,f there eri,sts an integer lc such that all, right d,eriaati,aes

of a language L with respect to word,s of length k are stochast'i,c languages,

then L is a stochast'ic language.

We give another proof for the first part of this theorem. Let
L: L(l1d_A,4), where $!I: (S,M,no,I). Let P beanarbitraryr+'ord.
The language ArL is represented in the generalized probabilistic automaton
@S?I : (S , M , no, M(P)n ). By Theorem 16, we conclude that 7*Z is
a stochastic language.

Theorem 23 implies that Theorem 14 holds for right derivatives, too.

§ 12. Realizability of mappings

12.1. Let V, be the set of z-dimensional stochastic roly vectors ar.d Z
a mapping of I7(.I) into 7,. Then Z is said to be realizableby a prob-
abilistic automaton if and only if, for some S?I : (S , M , to, ?) o'i'er 1,

Z(P) : noM(P) for all P e ll'(I) .

Clearly, Z is realized by a probabilistic automaton if and only if, for each
re I, there exists a stochastic nxn matrix M(x) such that

Z(Pr) : Z(P)Lt[(r) for all P e TYV\ .

If r is the maximal number of linea,rly independ.ent vectors Z(P),
alad Z(Pr) , . . . , Z(P,) are linearly ind.ependent. then we say that these
vectors form a basis of Z.
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Ser-ouaa [f6] has proved that the following two conditions are both
necessary and sufficient for a mapping Z : W(I) "-> V* to be realizable by
a probabilistic automaton:

,f z{P) _- a;Z(Q;) then
k,

\-L
1i.: I

(i) For ell P e TTI(I) a,nd all x e I,

Z(Px): j, xiZ(Qnj.

a,nd fr e I, thett, there erist n-dimensional
U,_ur, ., U^ such th,at the matri,x

n,, are linearly i,ndependent

row aectors zr*, ,. . . , zn,

Z(Qr)

Z(Q,)

Z, -;- ,

;,,

Z(Qrn)

z(Q,r)

;,

-1

I

'is stochs,stic.

Another criterion ean be found in l2l and [3].

Remark 3. The existence of vectors Zi, fl i (i, - t + I ,

some basis of Z onlt' is sufficient in the condition (ii).
n) for

12.2. Using the conditions (i) and (ii), we establish the follorring criterion.

Theorem 24. Let Z(Pr) , . . . ,2(P,) form a bas'i,s ,f a mapping
Z : W(I) * Vn. Then Z i,s reali,zable by a probabi'listic automaton if and' only
i,f the follow'i,ng two cond,iti,ons are sati,sfieili t

(i)' Xor all P e WQ) and, all r e I, ,f Z(P) : I atZ(P) then
r

Z(Pr): I *,Z(P;r).
i: I
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(ii)' For all x e I, tlr,ere exist n-d'imens'ional row aectors

Urit, o, , )(J^ guch that

Z(Pr) Z(Prr)

Z, 1 r , , 2,,,

-1

(r2. r) A(*) --

is u matrix wdth non-n,egat'i,ae elements anil,, furthermore, the suwt, of the cont-

ponents o"f fi equalsthesumof thecomTtonentsof Ut (i:r*1,...,?L).

Proof. Assume first that Z is rcalizable by a probabilistic automaton.
Then the conditions (i) and (ii) are satisfied. This implies that (i)'is satisfied.
By the condition (ii), there exist roru vectors Z;, Ut (i:r 1^ 1,...,n)
such that (12.1) is a stochastic matrix. Thus, its elements are non-negati'i'e.
Furthermore,

Z(.P,)

Z,+r

Z(Prr)

Z(P,x)

u,-,

Z(P,r)

U,+t

Z(Pr)

Z(P,)

z, _.,

z* Lf ,,

(t2.2) A(*)

zn

Since A(r) is a stochastic matrix, it follows that the sum of the com-

ponents of [/; eeuals thesumofthecomponents of. Z; (i - r I l, . . ., n).

Thus, also the condition (ii)' is satisfied.

f.I,

-1
I
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Conversely, assume that (i)' and (ii)'
satisfied, let Pe Wg) and ire I be

kr

J== 1

,l:1 i:1

B), the condition (i)', we now have

z(Px):,I rä §'§'i z(PP) ' z(Q'r)

so that Z(Pr) : .2, §,ZtQ'*1. Thus, the condition (i) is satisfied.

From the condition (ii)' we obtain the equation (L2.2) where the elements
of A(r) are non-negative. Denote in (12.2) the first factor of the natrix
on the right by [aJ. The row sums of A(r) satisfy the equations

t ry )- -.. * 
-l 

I for 'i':l'"''r'
-ir*1 r ..' | tuttutun - l n, for i: r 11 ,. ..,tu,

where a; d.enotes the sum of the components of Ut For this inhomogenous
system of z equations, the determinant of coefficients is different from
zero. Thus, the solution is uniquely determined. Since nt: . . . : z, : I
is a solution, we conclude that the row sums of -4(r) equal l. Consequently,
A(r) is a stochastic matrix. \Ye have thus 'i'erified that, for the basis
Z(Pr) , . . . , Z(P.), the condition (ii) is satisfied. From Bemark 3 it now
follows that Z is realizable by a probabilistic automaton. The proof isthus
complete.

Using Theorem 21, it can be verified that the condition (ii)' nia5, fos

replaced by the following condition:

are satisfied. To prove that (i) is
arbitrarily fixed and let Z(P) -

so that

§, §'1)z(Pi)

Z(Pir) ,

-I:l

(ii)" If Zr + | t

each i:1,. ,%,
tn

laqZ(P) t laqZlj:t i:r+ I

i,s a stochasti,c aector, then, for each r e I, there eri,st n-dimens'iottal row
uectors U,1t,...,Un ind,epenilent on i, such that

I a,1Z(Pix1 * io,1tt1j:1 j:,-:L

'is a stochast'ic uector for each i:1,...,?1,.

, Zn ate n-dirnensional stochast'ic rou) aectors (LlLd,, for
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If r' - n, then (ii)' gets the followirg simpler form:

tl

If I s; Z(P) 'i,s a, stochastir: uector and,, r e I, then

,stochnr'rit ,nrtor.

Z(Pw) is ct

12.3. Finally, we consider the realizability of mappings Z : W(I) * Wn

by generalized automata, where I[,, denotes the set of all n -dimensiona]

row vectors with real components. The notion of the realizability by
generalized automata is defined as in section 12.1. As we show in the
follorving theorem, only the condition (i)' is nou' needed.

Theorem 2S. Let Z(Pr) , . . . ,2(P,) form a basis of a mappi,ng

Z : IYQ) ---> Wn. ?hen Z 'i,s realizable by a generalized, automaton if and only
if the followi,ng cond,i,ti,on i,s sati,sfi,ed,: t

Iar all P eWQ) an,il all re I, if Z(P): I utZ(Pt) then Z(Pr):

I a; Z(Prt).

Proof. The »only if»-part follows from the clistributive larr of
matrix rnultiplication. For the »if»-part,, assume that the condition is

satisfied. We choose vect'ors Z;, TrteW^ li: r + 1,. ..,n) such that
Z(Pr) , . . . , Z(P,), Z. : t , . . . , Zn are linearl;, independent, and form the
matrix (12.1). Then

be An arhitrar\' \\'ord. Since Z(Pr) ) . . . , Z(P,) form a
have

Z(P) xi Z(Pt)

Our a-qsumption now implies that

Z(Pr) ai Z(P;r)

Consequently, by (f 2.3), Z(P*) : Z(P)A(t). The 1:roof is thus complete.

Ilniversity of Turku
Turku, Finland

I&;
i:1

( 12.3)

Let P e l1:(I)
basis of Z, \rre

r
\'Lj:1

r

TLi:1
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