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INTRODUCTION

There has been a rapidly increasing amount of research concerning finite
automata, most of which has been carried out by electrical engineers,
logicians and mathematicians during the last ten years. One reason for the
widespread interest in this subject is the fact that finite automata form a
part of the theoretical background of digital computers.

Finite deterministic automata are characterized by the fact that the
state transitions have a deterministic behavior. Papers concerning these
automata are very numerous. One of the most important results, due to
KLeEXNE [8], is that a language can be represented in a finite deterministic
automaton if and only if it is regular.

The notion of a probabilistic automaton as a generalization of a finite
deterministic automaton was introduced by BukHARAEV [1]—[3], CARLYLE
[4] and RaBIN [13]. In such an automaton the state transitions have a
stochastic behavior. This generalization is essential with respect to the family
of representable languages; RaBin [13] showed that also non-regular
languages can be represented in finite probabilistic automata.

In the present paper, languages representable in finite probabilistic
automata are investigated. Following Savomaa [17], we shall call them
stochastic languages. The notion of a finite probabilistic automaton as
well as the language represented in it is defined as in [12]. Thus the automata
investigated do not necessarily have a fixed initial state, as in [13], but an
initial probability distribution over the set of all internal states.

In the first chapter, finite probabilistic automata over a one-letter
alphabet are investigated. We are mainly interested in conditions under
which non-regular languages can be represented in these automata.

Paz [12] gave an example of a three-state probabilistic automaton over
a one-letter alphabet with a fixed initial state in which a non-regular
language can be represented. We generalize his result by giving in Theorem
1 a necessary and sufficient condition for a three-state probabilistic
automaton to represent a non-regular language.

In Theorem 3 we give a finite upper bound for the number of cut-points
representing a non-regular language in an n-state probabilistic automaton.
(Another approach to the same question is found in [15].) This bound can be
determined by means of the so-called normal form of the transition matrix.
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Furthermore, the corresponding exceptional cut-points can be calculated.

The exceptional cut-points are considered in § 5 and § 6. More precisely.
we investigate conditions under which (a) no one of them represents a non-
regular language (Theorems 4, 5 and 6), (b) each of them represents a non-
regular language (Theorem 7), (c) at least one of them represents a non-
regular language (Theorems 8 and 9). These conditions are closely associated
with the eigenvalues of the transition matrix. The problem (a) has also been
considered in [12], where it is assumed that the automaton has a fixed
initial state and a single final state.

Tt should be noted that Theorems 1 and 3 have been presented in [19].
The proof of Theorem 1 in this work has been essentially simplified by our
general theory.

In the second chapter, finite probabilistic automata and so-called
generalized probabilistic automata and generalized automata are considered.

In § 8 we present some theorems on stochastic languages. It is first
established that every stochastic language can be represented in a
probabilistic automaton with any cut-point 5 such that 0 <<y << 1. The
restriction 1 > 0 1is essential, since only regular languages can be repre-
sented with the cut-point 0.

It is not known whether or not the family of stochastic languages is
closed under any of the Boolean operations. In § 8 we establish some partial
results on the closure under these operations. It is proved that the union
and the intersection of a stochastic language and a regular language are
both stochastic languages representable in the same automaton. As a
consequence of this result we get a sufficient condition for the complement
of a stochastic language to be stochastic.

By the definition, a probabilistic automaton has a fixed set F of final
states, to which there corresponds a column vector m; consisting of 0's
and I’s only. In § 9 we replace @, by a column vector with arbitrary real
components. This generalization is due to Pace [11]. However, it is not
essential as far as the family of representable languages is concerned; in
Theorem 16 we prove that a language can be represented in a generalized
probabilistic automaton if and only if it can be represented in a probabilistic
automaton.

By means of generalized probabilistic automata we introduce in § 10 a
certain subfamily <£(#) of stochastic languages which contains all regular
languages as a proper subfamily. It is established that this family is closed
under union and intersection. In addition, it is verified that the intersection
of a stochastic language and a language belonging to <£(+£) is a stochastic
language. We do not know whether or not <£() is a proper subfamily of
stochastic languages.

By the definition, the initial distribution vector and the transition
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matrices of a generalized probabilistic automaton are stochastic. In § 11
we replace them by a row vector and matrices with arbitrary real elements.
The automaton thus obtained is called a generalized automaton. Our main
result (Theorem 21) is that a language can be represented in a generalized
automaton if and only if it can be represented in a probabilistic automaton,
i.e., if and only if it is a stochastic language. This result is then used for two
applications concerning the mirror image of a stochastic language (Theorem
22) and the right derivatives of languages (Theorem 23).

Finally, in § 12 criteria for the realizability of mappings by probabilistic
automata and by generalized automata are considered.

DEFINITIONS AND NOTATIONS

By an alphabet I we mean a finite non-empty set. The set of words,
including the empty word -, over the alphabet [ is denoted by W(I).
Subsets of W(I) are called languages over I. We often identify words
with their unit sets.

The length of a word P € W(I) is denoted by I[(P).

The sum or union of two languages L, and L, is denoted by L; + L,
their intersection by IL; N L,, and their product or catenation by L,;L,.
The complement of a language L with respect to W(I) is denoted by L.
In addition, we use the notation L, — L, = L, N L,. The iteration of a
language L is defined by

L* = Y IF.
i=0
Here L° denotes the language {1}
A language L over [ is called regular if it is obtained from the empty
language and the elements of I by finitely many applications of the
operations sum, product and iteration. Otherwise, L is non-regular.

Definition 1. A finite probabilistic automaton over the alphabet I is

an ordered quadruple RU = (S, M , 7, , F), where S =={s,....s8.} is
a finite non-empty set (the set of internal states), M is a mapping of [
into the set of stochastic nxn matrices, 7y = (p;....,p,) is an n-

dimensional stochastic row vector (the initial distribution) and F is a non-
empty subset of S (the set of final states).

Matrices M(x) (x € I) are called transition matrices. The domain of
M is extended from I to W(I) by defining
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M(A) = E, (nxn identity matrix),
M(xywy - - ) = M) M () - - - M(x) .

where £ =2 and x; €1.

Let 7, be the nm-dimensional column vector whose ith component
equals 1 if s, € F' and 0 otherwise. The language represented in RBA with
the cut-point 7, 0 =< <1, is defined by

L(BEUA ,7) ={P € W) g M(P)p > )} .

For 0 =# <1, alanguage L is #-stochastic if and only if there exists
a PA such that L = LRA , ). A language L is stochastic if and only if,
for some 7, it is #-stochastic. For a given P, a cut-point 5 is called
non-regular if and only if L(RU, ) is a non-regular language.

For any matrix 4, we shall use the notation A" to mean the transpose
of 4.

Hereafter, we use the term probabilistic automaton to mean a finite
probabilistic automaton.

CHAPTER I
PROBABILISTIC AUTOMATA OVER A ONE-LETTER ALPHABET
§ 1. Preliminary remarks on stochastic matrices

1.1. In this chapter we investigate probabilistic automata whose
alphabet consists of a single letter x. Our considerations are closely asso-
ciated with certain properties of the transition matrix M(x) and its powers
M(x)". Therefore, we need some results concerning stochastic matrices.
The terminology we use below is the same as in [6].

1.2. A permutation of a square matrix M is a permutation of the rows
of M combined with the same permutation of the colummns. M is called
reducible if there is a permutation which transforms it into the form

~ |B 0
J[_{C D

where B and D are square matrices. Otherwise, M is called irreducible.

Let M be a stochastic nxn matrix. Its eigenvalues satisfy the con-
dition [A] = 1. Furthermore, 4, = 1 is an eigenvalue. For the eigenvalues
of modulus 1, we have the following lemma, which is an immediate con-
sequence of a theorem of FrosExITS (cf. [6], Vol. 2, p. 53).
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Lemma 1. If M is an irreducible stochastic matriz, then A=1 1isa
simple root of the characteristic equation of M. Moreover, if M has h

eigenvalues 2y, ..., M of modulus 1, then these values are all distinct and
are roots of the equation A —1=0, 1.e.,
A1 = exp 2mvifk) (v =10,..., h—1).

The number A is called the index of imprimitivity of M. The arguments
of Jy....,%, denoted by argl,,...,argk, are of the form 2mr
where » is a rational number. We say that arg A (4 # 0) is rational in
degrees if it can be expressed in this form. Otherwise, arg 2 is irrational in
degrees.

With suitable permutations a stochastic matrix 3/ can be transformed
into its mormal form (cf. [6], Vol. 2, p. 75)

M, 0 .0 0 .0
0 M, .. 0 0 .0
(Ly M=]o0 0 oM, 0
M, .y M, - M, ,, M, 0
__‘Zl[sl .Zlf[sz “ .. Iu’sg AMS_:_,V, 1 e Jl{s_
where M, , ..., M, areirreducible matrices and foreach j, g + 1 = j = s,

Jl/[jl -+ ﬂfﬂ + ... Mj.j-—l # 0.
The normal form is uniquely determined up to a permutation of the blocks
and permutations within the diagonal blocks. Note that M;,..., M, are
stochastic matrices but M, ;,..., M, are not. The eigenvalues of
M, \....., M are of modulus less than 1, since in each of these matrices
at least one row sum is less than 1.

Denote by k ,...,k the indices of imprimitivity of the matrices
M,...., M, Let h be the least common multiple of them, in symbols,

h =lem.(hy,...,h). Then 2= 1 is the only eigenvalue of (ZTI )h with

modulus 1. Tt is obvious that, for each natural number m, the eigenvalues

of M™ and (ﬂ )m are exactly the same. Consequently, 4 = 1 is the only
eigenvalue of M* with modulus 1. This implies that the limit lim (M*)"

m— o0

exists (cf. [6], Vol. 2, p. 93). We shall use this result in the following section.



12 Ann. Acad. Sci. Fennice A 1. 429

1.3. Denote by 4,,...,4 the distinct eigenvalues of a stochastic
nxn matrix M. Then the following formula holds for the powers of M
(cf. [6], Vol. 1, p. 107):

r 1 d'"k -1

(12) r =k:1(mk — D! [dame—! (Di(2)2") P=iy

Here Di(1) is an nxn matrix depending on 2, and my is the exponent
of A — 2 in the minimal polynomial of M. Denote by P the (i.j)th
element of M™. Calculating the required derivatives in (1.2), we obtain

(1.3) P = D i (m) Ay,

k=1
where wgi(m) is a polynomial in m of degree smaller than m;. Let
..., be the distinct eigenvalues of M with modulus 1. Then
my = ...=m =1 (cf.[6], Vol. 2, p. 86). Formula (1.3) can now be written

in the form

pg’” =kzlfijk(lk)}$ + &j(m) ,
where fii(4) is the (¢,j)th element of the matrix Dy(4) and
lim g(m) = 0. As we have already mentioned, the eigenvalues of M and

m—> oo

i are exactly the same. This implies, by Lemma 1, that arg 4, , . ... arg 4
are rational in degrees, because 1, , ..., A, areeigenvalues of the irreducible
stochastic matrices M, ,..., M,. Hence

wylm) = 3 fur ()2

is a periodic function of m having only a finite number of distinct values.
Let 2 be as in section 1.2. Then the limit lim M™** exists for each .

0=<v=h— 1 This implies that % is the period of wj(m) (i.j=
1,...,n). Thus, we have obtained the formula
(1.4) P = wy(m) + e(m)

where lim &;(m) = 0 and w;;(m) is a periodic function of m, the period
being b =lecm.(hy, ..., k).

If all of the eigenvalues of M are simple, i.e., r = n, then we have
the formula (cf. [5], p. 431)

(1.5) PP = 2 (Xl o) el gl 2
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where " is the ith component of the column eigenvector corresponding
to 4., and yj‘.k) is the jth component of the row eigenvector corresponding
to 4.

Formulas (1.4) and (1.5) are often used below.

§ 2. Lemmas

2.1. In what follows, we present some lemmas which are often needed
in our considerations.

Lemma 2. Every regular language L over the alphabet {x} can be
capressed in the form

L= Ly + (@™ 4 .. 4 ™) (@)

where Ly is a finite language, k =0 and w > 0.

This lemma is an immediate consequence of Theorem 1 in [14]. If L
is an infinite language, then necessarily k > 0.

For any irrational number y. the set of numbers my (mod 1),
m ==1.2,..., is everywhere dense in the whole interval [0, 1] (cf. [9],
p. 75). If ¢ is irrational in degrees and ¢ is a natural number, the number
qq is irrational in degrees. This implies the following

Lemma 3. /f ¢ is irrational in degrees, then for any natural number g
and any real number v, the set of numbers mqp 4y (mod 2m),
m=1.2...., is everywhere dense in the whole interval [0 , 2x].

2.2 In this section we consider a three-state probabilistic automaton
WU = (S, M, 7, F) over {x} such that M(x) = [py] has an imaginary
eigenvalue 2,. The row eigenvector of the eigenvalue 7, =1 and the
column eigenvector of the eigenvalue 1, will be denoted by Y, =
(y - Yo - y5) and X, = (2, ), )", respectively. Since 4, is imaginary,
it follows that pi — 1 <0 (i =1,2,3). Using this and the equation
Y(M{r) — Ej) = 0, it is verified that we can choose y; =0 (i =1,2,3).
Thus y, + ¥ + y; > 0, and we may define

N = Yil Yy + Y2 + Ys)

(2.1)
Nij = 1i + s

where 7.5==1,2.3 and 7 #j.
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Lemma 4. The components of the row and column eigenvectors corre-
sponding to the imaginary eigenvalue A, are different from zero.

Proof. By the equation (M (x) — AE;)X, =0, 2 = 0 if and only if

(2.2) P12Pos — Pi3(Pas — 25) = 0.

If (2.2) holds, then p;3 = 0, since 4, is not real. This implies that either
P =0 or py; = 0. In both cases, a simple calculation shows that the
eigenvalues of M(x) are real, which contradicts our assumption. Thus (2.2)
does not hold and, therefore, ) % 0. The same argument applies to {”
and 2{). The proof is similar for the row eigenvector of A,.

Lemma 5. The equation
(2.3) prat? 4 pyald + pyafd =0
holds for an initial distribution (py, ps,ps) if and only if (py, Py, pPs) =
(115 M > Ms)-

Proof. As we have already remarked, y; =0 (1 =1,2,3). Thus
=0 (t=1,2,3). Since, in addition, 2, + 7, + 73 = 1, we find that
(1 s M2 » M3) 1is a stochastic vector. Therefore, it can be chosen as an initial
distribution. Furthermore, it is a row eigenvector of 4,. This implies that
the equation (2.3) holds if we choose (p;, P, P3) = (11,7, ,13), because
the row and column eigenvectors corresponding to distinct eigenvalues are
orthogonal.

Conversely, assume that (2.3) holds for an initial distribution (p,, p,, ps).
Consider the equation

P — Ao P12 P13
Hoo — ;v
(2.4) P21 Doz 2 Dos lx—o.
P D32 P33 — Ay
Y2 P2 DPs

9

Since it has a non-trivial solution X = (2", 28? , 2{")7, every determinant
of order 3, formed from the matrix in (2.4), must vanish. Calculating these
determinants, we obtain the equations

l D1y — (D1(Pae + Daa) — PP — PaP)de + ¢, = 0,
(2.5) Doly — (Do(Pr + Das) — PiPre — PaP) o + €, = 0,

l Pshy — (P3(Pr + Do) — PiP1s — PePn)he + ¢ = 0,

where ¢;, ¢, and c¢; are real numbers. According to Lemma 4, x” =0
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for each ¢ = 1,2 ,3. This and the equation (2.3) imply that at least two
of the numbers p, , p, , p; are different from zero, because p; + p, + p3 =
1 > 0. Consequently, if p; = 0 then p, > 0, p; > 0 and, by the first of
the equations (2.5), PyPs; + P3Py = 0, since 1, is not real. Thus p, = 0
and pg = 0. But if M (x) satisfies these conditions, then its eigenvalues
are real. This contradicts our assumption. Hence p; # 0. On the other
hand, 2, satisfies the characteristic equation of M(x). This implies that

(2.6) A — (P11 + Doz + P33 — 1)Ay + det M(x) = 0.

By remembering that p; # 0 and by comparing the equation (2.6) with
the first of the equations (2.5), we obtain

P1(P22 + Ps3) — PoPor — P3Ps1 = P1(Pu + Poz + Pas — 1)

since A, is not real. In other words,

(2.7) (Pu — Dpy + PuaPe + Paps = 0.

In the same way, by using the second and the third of the equations (2.5),
we obtain

P1aP1 + (Do — 1)P2 + Paeps = 0,

(2.8)
P13P1 + PosPe + (P33 — )ps = 0.

From (2.7) and (2.8) it now follows that (p,,p,,p;) is a row eigenvector

of 1, = 1. Consequently, (py,ps,ps) = (1,%2,%s), since (py,p,,Ps)
is a stochastic vector. This completes the proof of Lemma 5.

§ 3. Three-state probabilistic automata

3.1. A three-state probabilistic automaton over a one-letter alphabet is
the most simple probabilistic automaton where a non-regular language can
be represented. Using the notations (2.1), we give in the following theorem
a necessary and sufficient condition for such an automaton to represent
a mnon-regular language.

Theorem 1. Let PA = ({81, 8,83}, M, (py, Dy, ps) , F) be a three-
state probabilistic automaton over the alphabet {x}, where F is a proper subset
of the set {sy, 8, ,83}. A non-regular language can be represented in PU if
and only if M(x) has an imaginary eigenvalue X, such that arg i, is
irrational in  degrees and (py, Ps, P3) F (Mg s Ys). Moreover, if this
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condition is satisfied. then there is exactly one cut-point 1 such that the
language L(PA , 1) is non-regular. This cut-point is v; if F = {s;} and
ny of F={si,s8} (0 #]).

3.2. Before being able to prove this theorem, we have to derive suitable
formulas for the probability =M (x™)7, where ;= (p;,ps,ps). For
doing this, we first assume that F = {s;} and M(x) has imaginary eigen-
values 4, and 4,. Then 1; = 4,, where the bar denotes complex conjugate.
The column eigenvector of the eigenvalue 4, =1 is (1,1, 1)". This to-
gether with formula (1.5) implies
(3.1) pb = i = Ryady® 25+ RyaldyD 2 (k=1,2.3),

where we have used the notation

By= (X i) (=2.3).
y=1
Hence
M (@™)ap = i + Ryu® y? 2y -+ Ryu™ oy 237
where we have denoted
wld) — » I‘;ﬂ + Py ;1'51-“ - Py 127\ (j=2,3).

From the equations (M(x) — A4E;)X; =0 (j = 2, 3) it follows that the
components of the column eigenvector X, corresponding to 4, can be
chosen as the conjugates of the corresponding components of X,. The
same holds for the row eigenvectors Y, and Y, too. Consequently. the
coefficients of 17 and A} in formula (3.1) are conjugate complex numbers.
Thus, this formula can be written in the form

am

(3.2) T M (™) g == 9 -+ wi Ay + Ui Ay

where w; = R,u' y'*.
Lemma 5 isnow used. If (p; ., py, p3) = (15 1js » #3), then «® = 0 and.
therefore, w; == 0. This leads, by (3.2). to the result

(3.3) M (@) mp = i (79 == (15 12 5 75)) -

Assume that (py.p,.ps) % (41 -4 . 1j3). Then, by Lemmas 4 and 5,
u; # 0. which implies that argw; is defined. We use the notations

arg A, = ¢, arg w; = y; .
Since arg Ay = — ¢ and arg#; = — y;, formula (3.2) gets the form

(3.4) A M (™) = 1 4+ 2jwi| 1A, ™ cos (mq + yi) (w9 F (1, 1 5 1)) -
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3.3. Theorem 1 will now be proved. We first assume that F = {s;}
(i =1, 2 or 3).

To establish the »ifs-part and the last sentence of Theorem 1, suppose
that ¢ = arg 4, is irrational in degrees for an imaginary eigenvalue 1,
of M(x), and (py, ps, Ps) #= (1, Ys - 1j3)- We shall show that the language
L{BA , ;) is non-regular. Suppose, on the contrary. that it is a regular
language. By our assumptions, formula (3.4) is valid. Since ju;![4,™ > 0,
it follows that

{(3.5)  L(PU., i) — {A} = {a™] — a/2 < me + y; (mod 27) < 7/2} .

Applying Lemma 3 to the set of numbers me + y; (mod 2x),m = 1,2, ...,
we conclude from (3.5) that L(‘BY , »;) is an infinite language. Now, Lemma
2 is used. Since L(BA , ;) is infinite, it follows that & =1 and, for some

natural numbers m; and u,
(3.6) S E LRA L) (r=1,2,...).

Applying Lemma 3 to the set of numbers (m; — ru)g + y; (mod 27),
r==1,2,..., we find that, for some natural number i,

/2 < (my + nu)p + yi (mod 27) << 37/2 .

From formula (3.5) it now follows that the word 2™ ™" does not belong
to the language L(BA,s;). This contradicts (3.6). Consequently,
L(BA, ;) is a non-regular language, whence the »ifr-part of Theorem 1
follows.

The last sentence of Theorem 1 will now be proved. By the above
considerations, it suffices to show that L(B ,#) is a regular language for
any 7 such that 5 =£ ;. Since 4, is imaginary, it follows that M(x)
is irreducible. If 4,/ = 1, then, by Lemma 1, ¢ = arg 4, is rational in
degrees. This contradicts our assumption. Hence |4, << 1 and, therefore,

lim 2w 4,™ cos (mg + p) = 0.
This implies that, for any #; > 1, and #; <7, L(BA,7;) is a finite
language and L(RA , 7;) is the complement of a finite language. In both
cases, the languages are regular, whence the last sentence of Theorem 1
follows.

For the »only ifs-part of Theorem 1, assume that M (x) has an imaginary
eigenvalue 4, and that (p;, Py, ps) = (41,7, 13). Now, formula (3.3) is
valid, and clearly L(R,#) is regular for any cut-point 7. The rest of
the »only ify-part follows from Theorem 6 which we prove in § 5.

2
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3.4. Finally, we consider the case F = {s;,s;} (¢ #j). Assume first
that M(x) has an imaginary eigenvalue 1,. We have

3
M @)me = 3 pu(lt) + o)
=1

If (py-posps) = (41512, 73), then, by (3.3),
(3.7) (71 5 M2 5 Ng) M (™) = 1 + Nj = Yij -

If (py.ps,p3) # O ,ma,m3), then w £0 (k=1,2,3) and
3 3
(3.8) ,,Z 2D + i) = D (1 — i) =y + 2w A" cos (mep - y)
=1 K=1

where s #1i,j, ¢ = arg 4, and 7y, = arg (— »,). By formulas (3.7) and
(3.8), the proof is reduced to the corresponding proof for F = {s;}. Instead
of 7; we have ;. As in the case F = {s;}, the rest of the proof follows
from Theorem 6.

3.5. As a consequence of Theorem 1 we establish the following

Theorem 2. Assume that at least one component of the initial distribution
Ty = (P1, Ps, P3) equals zero. A non-regular language can be represented in
RUA = ({81,8,8}, M, ,m, F), where F is a proper subset of the set
{81, 85,83}, if and only if M(x) has an imaginary eigenvalue Ay such that
arg A, 18 irrational in degrees.

Proof. Assume that, for an imaginary eigenvalue 1, arg 4, is irrational
in degrees. We have to show that =, satisfies the condition of Theorem 1.
As in section 3.3, we conclude that [1,] = |A;] << 1. This implies that the
elements of the matrix lim M (x)" are positive (cf. [6], Vol. 2, p. 93). On

the other hand, by formula (3.1), every row in this matrix equals (i, , 15 , 75).
Thus #; >0 ({=1,2,3). Consequently, the condition (p;.p,,p;) =
(91 s 12, 1j3) 1s satisfied if at least one of the numbers p,.p,,p; equals
zero, whence the theorem follows, by Theorem 1.

The assumption of Theorem 2 is satisfied for three-state probabilistic
automata having a fixed initial state, since then =, is a co-ordinate vector.

3.6. In some cases, the question whether or not arg 4 is irrational in
degrees can be solved by the following result of OLMsTED [10].

Lemma 6. If ¢ is rational in degrees, then the only rational values of
cos ¢ are 0, 4+ 1/2. 4+ 1.
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The eigenvalues of a stochastic 3 x 3 matrix M(x) == [p;] are roots of
the equation

(A — DAy — (P + Pog + P33 — 1)A -+ det M(z)) = 0.

If an eigenvalue 4, of M(x) is imaginary, then

cos (arg Ay) = (Pyy + Pop + P3s — 1)/2 \/Eét M(x) .
According to Lemma 6, arg 4, is irrational in degrees if cos (arg 4,) is
rational and is different from 0, 1~ 1/2, -+ 1. Theorem 1 now implies that if

J, is imaginary, cos (arg A,) is rational and (p;, Dy, Ps) 7 (11, M2 > Ma)s
then the language L(RU , %) is regular for every cut-point # if and only if

(P11 + Doz + P33 — 1)/2\/det M(x—)= 0,+ 12,4 1L

As an example, consider the probabilistic automaton PUA =
({81, 8.8}, M, 7, F) over {#} where F consists of one or two states
and

3)8 1/4 3/8
M@) = |1/8 1/4 5/8
1/3 0 2/3

A straightforward computation shows that eigenvalues 4, and 1; are
imaginary and cos (arg 4,) = 7/12. Thus, by Lemma 6, arg 2, is irrational
in degrees. The row eigenvector of 4, =1 is

Y, = (12/37, 4/37 , 21/37) .

According to Theorem 1, a non-regular language can be represented in BU
if and only if 7, # Y;. Cut-points »; and 7; are immediately obtained
from 7Y,.

§ 4. An upper bound for the number of non-regular cut-points

4.1. For any three-state probabilistic automaton over {x}, the number
of non-regular cut-points is at most one. In what follows, we consider this
number for general probabilistic automata over {x} and derive a finite
upper bound for it.

Let PA = (S, M ,7m,, F) be an n-state probabilistic automaton over

the alphabet {z}, where my = (p;,...,p.) and M(z) = [py]. By formula
(1.4).
T M@™me =Y Y piwg(m) + X > pieg(m) .
Sj Fi=1 SjEFi=l
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Denote the sums on the right by W(m) and e(m). Then
(4.1) we M (x™)tp = W(m) + e(m) .

The values of the periodic function w;(m) are real and non-negative.
because lim ¢;(m) = and p{"” = 0. Hence ¢;(m) is real. too. It

m-—>o

follows that W(m) and e(m) are real. Furthermore, the values of 11 7{m)
are non-negative and lim &(m) = 0. Denote by % the period of uy;(m)

m-—>o0

(t,g=1,...,m). It is easily verified that also the function W(m) is
periodic, the period being A.

Lemma 7. If 5 is not a value of W(m), then L(RUA,v) is a reqular
language.

Proof. Let w,,...,w, be the values of W(m), arranged so that
wy == If oy =wn 4 0(0>0), then L(RA,»n) is a finite

language, since lim¢(m) = 0. By the same reason, L(BA,s) is the

complement of a finite language if 5 = w, — 0 (6 > 0). Finally. assume
that, for some i, wi<ny<w, ,. Let d=min(y — w;,w, , — 5).
There exists a natural number m, such that |e(m)| < o for all m > .
Using this, it is immediately verified that L(B,#) is of the form

LOBUA,n) = Ly + (@™ -1 + ... a™) (@h)*,

where L, is a finite language containing only words P with I(P) = m,.
Hence L(B . %) is a regular language. This completes the proof of Lemma
7.

-

4.2, Lemma 7 shows that the number of non-regular cut-points does
not exceed the period 2 of W(m). If 2 =1 is the only eigenvalue of
M(x) with modulus 1, then the limit lim z,M(2™)n; exists (cf. section 1.2).

m-—>x

This implies, by formula (4.1), that W(m) is constant, i.e., its value does
not depend on m. By Lemma 7, we now have

Corollary 1. If A =1 is the only eigenvalue of the transition matrix
M(x) with modulus 1, then there exists at most one non-reqular cuf-point.

With suitable permutations M(x) can be transformed into its normal
form (1.1). As before, denote the indices of imprimitivity of the irreducible
matrices M, ,..., M, by hy,...,h,. Then, asnoticed in sections 1.3 and
4.1, the period h of W(m) equals the number l.c.m.(k,, ..., k). This
together with Lemma 7 implies the following general result (for another

approach to the same question, see [15]).
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Theorem 3. Let VA = (S, M ,n,, ) be a probabilistic automaton
over the alphabet {xz}. The number of non-regular cut-points does not exceed

the number h = lem. (hy,..., k) where hy,..., hy are the indices of
imprimitivity of the matrices M, , ..., M, in the normal form (1.1) of
M(x).

This theorem reveals a very special property of probabilistic automata
over a one-letter alphabet, not possessed by probabilistic automata over an
arbitrary alphabet; it is well-known (cf. [13], [12]) that even in certain
two-state probabilistic automata over the alphabet consisting of two letters,
an infinite number of non-regular languages can be represented.

§ 5. Probabilistic automata and regular languages

1. According to Lemma 7, a necessary condition for a cut-point to be
non-regular is that it is a value of the periodic function W(m). As we already
saw in Theorem 1, this condition is not sufficient. In this and the following
paragraph we investigate conditions under which (a) no value of W(m) is
non-regular, (b) every value of W(m) is non-regular, (c) at least one value
of W(m) is non-regular. We use the earlier notations and label the distinct
eigenvalues of the transition matrix M(x) so that

1= Ql="=12,1>14 ==kl

5.2. It is obvious that if ¢(m) vanishes identically for sufficiently large
values of m, then the language L(BU, ) is regular for any cut-point 7.
In the case where &(m) does not identically vanish, we first establish the
following theorem concerning the problem (a) of section 5.1.

Theorem 4. Let PUAU = ({s;,...,8} ., M ,(py....,pa),F) bea prob-
abilistic automaton over the alphabet {x}. Asswme that, for some integers s,
q Cl?’lrd ”20’ ‘;;"s—lg> [ls! == 1‘}"s ‘ > ’Z's—qj—ll a’nd

n s+4q
(5.1) > D piog(m)At £ 0 for all m > my,

SjGF i=1k=s

but

n s—1
(5.2) Z Z piwigp (M)A =0 for all m > m,.

Fi=1k=n,+1

If arg 2, ,...,arg A, ., are rational in degrees,then L(BU , 1) is aregular

language for any cut-point 1.
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Proof. By Lemma 7, we may assume that the cut-point # is a value of
W(m). Since lim ¢(m) = 0, there exists an integer m; > m, such that

{mim > my, mM@")mp>n}={mlm>my, Wm)>n}

U{mm >m;, Wim)=mn, em)>0}.
Denote the sets on the right by M, and M,, respectively. Now we have
(5.3) L(BA, 5) == Ly + {a"|m € My} + {a"|m € My},

where L, is a finite language containing only words P with [(P) = m,.
It is easily verified that the language

Ly = {a™|m € M,}
is regular. Now it is sufficient to prove that the language
Ly = {x™|m € M}

is regular. We first derive a suitable form for e(m).
Since m; > m,, it follows from the assumption (5.2) that, for m > m;.

n s+gq n r

(5.4) 8 Z_ Z u]k Z 4\_ pto)uk );';cna
jGFL: = s]EF1=1L =s +q+1

where |4, = = A, and [A] < |4, foreach k = s+ ¢+ 1..... r.

Let m" be the hlghest power of m in the first sum of (5.4) whose coefficient
does not identically vanish. By the assumption (5.1), this power exists. By
taking A"m™ as a factor of e(m), we have

(5.5) e(m) = A7 (Uy(m) + wy(m)) (m > my)

where A" U,(m) is the afore-mentioned coefficient of m™ and u,(in) is
a sum for which lim u,(m) = 0. The function U;(m) has the form

(5.6) Uy(m) = a, exp (izrym) + ... + a, exp (izwr,m)

where u =q -+ 1, a,...,a, are complex constants and » ,....7
are rational numbers. The last statement holds, because arg 4, ,...,arg 2, ,
are rational in degrees. It implies that U;(m) is a periodic function of m
having only a finite number of distinct values. Let

M ={mm>m;, Uym) +#0}.
Since lim wu,(m) == 0, we conclude that U,(m) + u;(m) #* 0 whenever

m € M’ and m is large enough. We may assume the integer m,; to be
so large that U;(m)+ wy(m) £0 for all m € M’. This implies that
s(m) # 0 whenever m € M'. Thus, arge(m) is defined for all m € M’.
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Furthermore, since ¢(m) is real, it follows that arg e(m) = »(m)z where
»(m) is an integer depending on m. We obtain the result

(5.7) arg e(m) = arg Ay + arg (U;(m) 4+ uy(m)) = v(m)x (m € M’) .
Since arg A, is rational in degrees, we have arg A7 = 2mama/b, where «
and b are integers. This implies, by formula (5.7), that

(5.8) arg (U;(m) 4+ uy(m)) = v(m)x — 27ma/b (m € M') .

Consequently, the function arg (Uy(m) + u,(m)) (m € M’) has only a
finite number of distinct values (mod 2z). On the other hand,

arg (Uy(m) 4 uy(m)) = arg Uy(m) + ¢(m) (m € M'),

where lim @(m) = 0, because lim wu,(m) = 0 and the values of the periodic

m-—»o m->0

function U(m) are different from zero for all m € M’. Using this result
and formula (5.8), it can be proved that if m, > m, is large enough, then
@(m) = 0 whenever m > m, and m € M’'. Consequently,

arg (Uy(m) + wy(m)) = arg Uy(m) (m > my,, m € M').
For &(m) we thus obtain from (5.5),
(5.9)  e(m) = |2, ™Uy(m) -+ uy(m)|m" exp (i(arg A" + arg U,(m)))
(m>m,, m€M).

In order to prove that L, is a regular language, we first consider the

language
Ly = {a™m > my, e(m)> 0},

which we express in the form
Ly={a"m>my, m €M, e(m) > 0} + {a™m > my, Uj(m) =0, e(m) > 0).

Our intention is to prove that L, is a regular language. Denote the languages
on the right by L and L, respectively. Thus L, = L; + L,. By formula
(5.9),

Ly = {2™m > my, m €M, arg A" -+ arg U;(m) (mod 27) = 0} .
From the periodicity of arg 27" (mod 2x) and arg U,;(m) (mod 2x) (m € M)
it follows that also the function arg A7 + arg U;(m) (mod 27) (m € M’)

is periodic. This implies that L, is a regular language. Consequently, L,
is regular if

Lg = {x™m > my, Uy(m) =0, e(m)> 0}

is regular.
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In order to prove that L is a regular language, we first note that if 0

is not a value of U,;(m) then L is the empty language. Hence it is regular.
Assume secondly that 0 is a value of U,(m) and denote

N = {mim = my, Uy(m)=0j}.

Let m" be the highest power of m in the first sum of (5.4) whose coefficient
does not vanish for all m € N’. By the assumption (5.1), this power exists.
The following formula for ¢(m) (m € N’) is obtained in the same manner
as formula (5.5):

e(m) = Ay m*: (Uy(m) - uy(m)) (m € N').

Here ™ Uy(m) is the afore-mentioned coefficient of m':, and lim uy(m) = 0.

m-—> o

The function U,(m) is of the form (5.6). Thus it is periodic and has only a
finite number of distinct values. Continuing in the same way as we did
after formula (5.6), we obtain

Ly= L+ {a™m > mg, m€N', Uym) #0, em)=>0}
+{amm > mg, mE€N', Uym)=0, &m) >‘0}»

for some m, and some finite language L’ containing only words P with
my < I(P) = my. Denote the last two languages on the right by L, and Lg.
The language L, can be proved regular almost in the same way as L;.
If there are values m > my such that m € N’ and U'y(m) = 0. then the
above procedure is repeated by defining m", U(m) and so on. By the
assumption (5.1), this procedure must end. Finally, the language L, gets
the form

Ly=1L" +ILg+ L.+ ...+ L,

where L” is a finite language and L;, L, , ..., L, are regular languages.
Now we have

Ly = (Ly + Ly N {a™m > my, W(m)=ny},

where L, is a finite language. Since W (m) is a periodic function of m,
it follows that the right member of the intersection is a regular language.
Consequently, L, is regular, too. Since, by (5.3), L(PA,n) =
Ly + Ly + Ly, we find that L(BA,y) is a regular language.

The proof of Theorem 4 is now complete.

5.3. We omit the assumption (5.2) of Theorem 4 and prove the following
theorem concerning the problem (a) of section 5.1.
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Theorem 5. Let PA = ({s;. ..., 8}, M . (pys...,pn), F) be « prob-
abilistic automaton over the alphabet {x}. Assume that, for some integers
s, g and my, Ay > Al=...=1A >4 , 1 and

noos4q
3D piog(m)a # 0 for all m > m,.
sJ'EF i=1k=s
If argZ,....,arg kA, and arg i, where % runs through all eigenvalues
of M(x) satisfying the condition 1> || > |, are rational in degrees,
then L(PA . y) 1is a regular language for any cut-point 1.

Proof. As agreed in section 5.1, the distinct eigenvalues of M (r) are
labelled so that

1:{},12:_—;---:: ')., (>‘)‘n0»-172...

Ty

N/
N

We write z,M(x™)7p in the form

T M (e™)p = W(m) 4 Sy(m) + ... LS (m) =8, _;(m) + &(m) .

where, for each 4= 1,...,v,8i(m) corresponds to the eigenvalues
.+ Ay with the same modulus and S, ;(m) corresponds
0 Aesois A

By Lemma 7, we may assume that the cut-point 4 is a value of 1V (m).
If Sy(m) -+ ...+ S (m) vanishes for all m >> m,, then the theorem follows
from Theorem 4. In the remaining case we may assume that no one of the
functions  S;(m) , ..., S (m) vauishes for all n > m,.

Let m™ be the highest power of m in 2181 (m)  whose coefficient
does not vanish for all m > m,. This power exists because of the assumption
made above. Denote the coefficient by (7(m). Then U (m) is a periodic
function of w2, since argZ, ,....,arg 2, are rational in degrees (cf.
the proof of Theorem +4). If 0 is not a value of U (m), then L{BI,y)
can be proved regular in the same manner as in Theorem 4. If 0 is a value
of U,(m), then we choose the highest power of m in S;(m) whose coeffi-
cient does not vanish for all m >> m, such that U;(m) = 0. If this power
does not exist, then we choose the first function S (m) of the sequence
Sy(m) . ..., 8, 1(m) for which such a power exists. This function can be
found because of the assumption of the theorem. We apply the same
procedure to S, (m) as to Sy(m). If this procedure does not end with
S,(m), then we choose a new function from the sequence S, (m)....,
S, 1(m). The procedure ends at the latest with 5, _,(m). Finally, the

language L(RA, ) gets the form
(5.10) L(RA, ) = Ly + {2™ m > my, W(m) >y}
Lfamm>my, Wm)y=y}0 L+ ...+ L),
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where L, is a finite language and L,,...,L, are regular languages.
Consequently, L(BA , %) is a regular language, whence Theorem 5 follows.

5.4. Assume for a moment that all the eigenvalues of the transition
matrix M(x) have arguments rational in degrees. If the assumption of
Theorem 5 is satisfied, then L(BU,n) is regular for any cut-point .
If it is not satisfied, then we write

M (@) = W(m) 4 8y(m) + ... + 8, (m)

where the functions §;(m) are defined as in the proof of Theorem 5. Let 7
be a value of W(m). We use the method of the proofs of Theorems 4 and 5.
It is verified that the procedure, applied there, ends, because there are only
finitely many functions §;(m). Furthermore, it ends without making use of
functions §;(m) which contain eigenvalues 2 such that arg 4 is irrational
in degrees, because such eigenvalues do not exist for M (x). The language
L(SBA , %) is of the form (5.10). Hence it is regular. We have thus established
the following

Theorem 6. Let PA = (S, M ,n,, F) be a probabilistic automaton
over the alphabet {x}. If the eigenvalues of the transition matrix M(z) have
arguments rational in degrees, then L(BA , ) is a regular language for any
cut-point 1.

As an immediate consequence we have

Corollary 2. If the eigenvalues of the tramsition matrix are real, then
L(RA . 5) is a regular language for any cut-point 7.

Since the eigenvalues of a stochastic 2 X 2 matrix are always real, we have

Corollary 3. Only regular languages can be represented in two-state prob-
abilistic automata over a one-letter alphabet.

Corollary 3 and the example of section 3.6 show that a three-state
probabilistic automaton over a one-letter alphabet is the most simple
probabilistic automaton where a non-regular language can be represented.

§ 6. Probabilistic automata and non-regular languages

6.1. In what follows, the representability of non-regular languages in
probabilistic automata over a one-letter alphabet is considered.
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Let us assume that, for a given probabilistic automaton BUA =
({SyseeesSa}s M, (py,...,pn), F) over {x}, the eigenvalues of M(x)
are simple. Then, by formula (1.5),

('") — Z R, a® y(k) yi

where

(V‘ 2P y(k) -1
Consequently,
(6.1) M (2™ )7 :kile U. V. X

where we have denoted

Uk:zpixik ’ Zy]

If the coefficients of the eigenvalues A with |1| < 1 do not all vanish
in formula (6.1), then by omitting all the vanishing terms this formula can
be written in the form

(6.2) aeM(xm)p = W(m) + S(A7, ..., A7) + &(m),

where [A]=...= 14,/ <1 and ¢(m) corresponds to eigenvalues 4
with 4] < |A]. If, for some ¢ (s =¢ = s -+ ¢), A is imaginary, then r
is an eigenvalue of M(x). Furthermore, the coefficient of i in (6.1) is
R. U, 7. Since |4] = |A|, it follows that S(A",..., A" ) contains the
term R;U; V; A". Denoting

g =argly, y=agR UV, (j=s,....,5+4),
we obtain
R UV, l? + Ri Ui 17,7[:" = 2[R Ui ViHZi!m cos (m<p,~ + V’i) :

In this way, all the conjugate terms in the sum S(47, ... ) are com-

bined. Thus, formula (6.2) gets the form

) s+q

(63)  mM@e = Wim) + A" (3 uscos (mgi + ) + ex(m)

1=3Ss

where 0 < p < ¢+ 1, limeg(m) =0 and

| 1RUV:) if ImAi=0.

U; =
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Here Im 4; denotes the imaginary part of 4. Note that, by formula
(6.3), &(m) is real.

6.2. Using formula (6.3) and the notations of the previous section, we
now prove the following theorem concerning the problem (b) of section 5.1.

Theorem 7. Let PA = (S, M ,z,, F) be a probabilistic automaton
over the alphabet {x} such that zyM(x™)z, is of the form (6.3). Assume that
@s 18 trrational in degrees and ¢, . ..., ¢, , arerational in degrees. The
language L(RA . 5) is non-regular if v is a value of W(m) and wu, > z
where z means the largest modulus of the values of the periodic function

s+p

S(m) = > wu; cos (mei + i) .

i=s-+1

Remark 1. If p = 0, then we define S(m)= 0. If the assumption
concerning ¢, .1, ..., ¢, ., is omitted, then the condition concerning u,
can be replaced by the condition u, > lim sup |S(m)!, which is satisfied,

m—>oc

for example, if w, > w, |+ ... 4w, .

Proof. Assume that wu, > 2z, ie., u, =2z -6 where 6> 0. Denote
by % the period of W (m). Let w, be an arbitrarily fixed value of 11 (m)
and 7, a natural number such that

Wn, +th)=w, ¢=0,1,2,...).
By formula (6.3),
T M (x™)p = W(m) + [A,™ (us cos (mes + p,) + S(m) -+ ey(m)) .

Using this, we prove that L(RU,w,) is a non-regular language, which
implies the theorem.

We first show that L(RU, i) is an infinite language. Let m, be a
natural number such that le,(m)] < 0/2 for all m > m,. Applying Lemma
3 to the set of numbers (n, + k)¢, + 9, (mod27), ¢ =1,2,..., we
find that there exist infinitely many values of ¢ for which =, 4+ ik > m,
and

(6.4) cos ((n, + ih)ps + ) > (z + 8/2)/(z + 9) .
Since, in addition, [S(m) = z, it follows that, for these values of i,
(6.5) M (2" ™) > w, 4 12" (2 0)(z 4 6/2)/(z + 0) — 2z — 0/2) = w, .

This implies that L(BA,w,) is an infinite language.
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In order to prove that L(BA , u;) is a non-regular language. we assume,
on the contrary, that it is regular. Hence, by Lemma 2, L(R( . ) can be
expressed in the form

(6.6) L(RA, w,) = Ly + (2™ .. 4 2™) (@)*

where L, is a finite language, k> 0 and u > 0. Note that £ cannot be
zero, because L(PA,w,) is an infinite language. Let 7, be a natural
number such that [(P) < n, for every word P € L.

There exist natural numbers a and 0 such that

(6.7) h = aufb .
We apply Lemma 3 to the set of numbers
(6.8) {(n, 4 ibh)g, + . (mod 27)| i=1,2,...}.

As earlier in this proof (cf. (6.4) and (6.5)), it is verified that there exists a
natural number k, for which #, - kph > ny and a™ ™" € L(BA, w,).
Hence, by formula (6.6), n, + kbh = m, - tu where 1 = = E and
t = 0. By (6.7), we now have

(6.9) ne = m, + tu — kauw .

If we again apply Lemma 3 to the set of numbers (6.8), we find that
there exists a natural number k, > k; for which ey(n, - kyph) <= 0/2 and

cos ((n, - kobh)g, + ) < — (z + 9/2)/(z + 0) .
This implies that
oM (" MY <y
and, therefore,
(6.10) ke o gne ek @ LR, )
On the other hand, by (6.9),
(6.11) n, -+ kyaw = m,, = (t — ko + kya)u .

Here t — Iya 4 kya > 0, because k, > k. By (6.6) and (6.11). we now
conclude that the word 2" " belongs to the language L(RU, w).
which contradicts (6.10). Consequently. L(RU,w,) is a non-regular
language, whence Theorem 7 follows.

6.3. For probabilistic automata satisfying the conditions of Theorem 7,
every value of 1 (m) is a non-regular cut-point. In the following theorem
concerning the problem (c) of section 5.1, we weaken the condition related
to wus and show that at least one non-regular cut-point exists.
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Theorem 8. Let PUA = (S, M ,n,, F) be a probabilistic automaton
over the alphabet {x} such that m,M(x™)my tis of the form (6.3). Assume that
@s s wrrational in degrees and @,y , ..., q@,., arerational in degrees. The
language L(PU , 1) is non-regular for at least one cut-point n if u, > z
where z means the least modulus of the values of the periodic function

s+p

S(m) = >’ ui cos (me; + ) .

i=s+4+1

Proof. Denote the periods of W(m) and S(m) by % and I, respectively.

Then there exists a natural number =, such that [S(n, + il)| = 2
(t=0,1,2,...). Denote w, = W(n,). Then, for each ¢ =0,
(6.12) S(n, + thl)| =2z, W(n, + ihl) = w, .

Theorem 8 is established by proving that the language L(R , w,) is non-
regular. The proof is exactly the same as that of Theorem 7 if one replaces
h by hl and remembers the equations (6.12).

As an example we consider the probabilistic automaton

%9[:({Slr"'=86}7M7(0a7’y71"'27/70’0)5{52783’84})

where 0 <<y < 1/2 and

M, 0
(6.13) M) = [ }
0 M,
with
12 12 0 3/8 1/4 3/8
M, = |3/4 14 0|, My=|1/8 1/4 5/8
1/4 12 1/4 13 0 2/3

Note that M, is the same matrix as in section 3.6. It follows that, for any
m =1,

M? 0
M@m) = [ }
0o Mr
The eigenvalues of M(x) are A4 =1, =1, A=1/4, I, = — 1/4,
ds= (1T +V 950)/48 and Jg= 4. Hence, |4 =--- = |},] = 1/4.

Formula (1.5) gives
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2 2 1\"
S
2 3 1\
Sl z) ‘
2
5

P T

In the same manner we find that in M7 the element p{} is of the form

=
-3
I
l
o] w S
/T
l
W~
3

P(lT) = 12/37 + |25|™u; cos (mg; + y;)

where u;> 0 and ¢, = arg 4; is irrational in degrees (cf. section 3.6).
Now we have

12 ) 1 ( 1>m‘ 1>'"
7+§(1—~?)+5V 1 TV(Z +

S|

T M (x™)p =

1 m
(1 — 2y)u, (Z) cos (mgs + ;) -

Although 4, = 1 is not simple, we may use Theorem 8, since oM (x™) 7y
is of the same form as in this theorem. Now W(m) = 4y/5 4 12(1 — 2y)/37,
be = Js, uy = (1 — 2y)u; and S(m) =y + y(— 1)"/5. The least value of
S(m)! is 2z = 4y/5. The condition wu, >z is satisfied if

0 <y < ug/(4/5 + 2us).

Thus, the language L(PA, 4y/5 + 12(1 — 29)/37) is non-regular when-
ever » satisfies the above condition.

6.4. If the coefficients of the eigenvalues 42 with 0 < [A] <1 do not
all vanish in formula (6.1), then, for some integers s and ¢,

1> 4 =+"=1A,,/>0 and
A M(@x™me = W(m) + R(m) + S(A7 , ..., A7) + &(m)

where R(m) and e(m) are the parts of (6.1) corresponding to eigenvalues
J with 1> |4 > |4] and || < |A/, respectively. The following formula,
corresponding to (6.3), can now be derived:

s—p
(6.14) 7 M(@™)my = W(m) + R(m) + 12.m (X wi cos (mgi + pi) + ex(m)) .

Here u; > 0 and &(m) is a real function tending to zero as m tends to
infinity.

The following theorem shows that in some cases the conditions of
Theorem 5 are also necessary for the language L(BU,7) to be regular
for every cut-point.
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Theorem 9. Let RA = (S, M ,n,, F) be a probabilistic automaton
over the alphabet {x} such that 7, M (a™)rp is of the form (6.14). A non-reqular
language can be represented in PAU if R(m) wvanishes periodically, ¢, is
irrational in degrees and w, > w,. . .. u, .,

Remark 2. The last condition can be replaced by the condition

‘J'P

ug > lim sup | > i cos (mq; -+ i)

m-> 0 i:—- — 1

Proof. There exist natural numbers », and [ such that R(n, + i) = 0
(t==0,1,2,...). Let h be the period of W(m) and w, = T (n).
Then, for each ¢ = 0,

W(n, + ihl) = w,, R(n, - ihl) — 0

As in the proofs of Theorems 7 and 8, it can be verified that the language
L(BA , w,) is infinite but not regular, whence the theorem follows.

As an example we consider the probabilistic automaton
PU= ({s1. .. .80, M, (0,1/4,1/4,1/2,0,0),{s,,5,})

where M {x) is the matrix (6.13) with

1/4 3/4 0 3/8 1/4 3/8

My=|3/4 14 o|. My={1/8 1/4 5/8

14 1/4 1)2 13 0 2/3
Note that M, is the same matrix as in the example of section 6.3. The
ewenvalues of M(x) are =1, J,=1, Jy=1/2, j, = —12 ) =

(T4 951 )/48 and J¢ = Z;. Hence, we obtain (cf. the example of
section 6.3)

61 1 1\ L\ 1
Wl = e+ (=) = (5) )+ 5wl cos mgs =

~

where ;> 0 and ¢; = arg 7, is irrational in degrees. Although 7, = 1
is not simple, we may use Theorem 9, since 7, M (x™)z, is of the saine form
as in this theorem. Here II'(m) = 61/148, R(m) = ((— 1/2)™ — (1/2)")/8,
Uy = uz/2, A= A5 and p = 0. We find that R(m) vanishes periodically,
the perlod being [ = 2. The number u, satisfies the condition of Theorem
9, since wu, > 0. Thus, L(PA, 61/148) is a non-regular language.



Paavo TURAKAINEN, On probabilistic automata and their generalizations 33

CHAPTER II

PROBABILISTIC AND GENERALIZED AUTOMATA
OVER AN ARBITRARY ALPHABET

§ 7. A theorem coneerning two-state probabilistic automata
7.1. In this chapter we investigate probabilistic automata over an
alphabet I without making any assumption on the number of its elements.

We first establish the following

Theorem 10. Let RUA = ({8, , 85} . M , (py, ps) - F) be a probabilistic

automaton over the alphabet I =={x,,...,a}. If the transition matrices
‘ 1 —«¢; a; )
M(x;) = [ b l-—b,] (i=1,...,k)

satisfy the conditions

) [ o0] o 1

(7.1) M) # lo 1},[1 0}

and

(7.2) aibj=a;b; (i,j=1,....k).

then the language L(BA , ) is regular for any cut-point .

Proof. Without loss of generality, we assume that F = {s;}. Let 1
and 7 be the eigenvalues of M (x;). Then 7; is real, because M(x;)
is a stochastic 2% 2 matrix. On account of the condition (7.1) we have
o<1 and a;+b>0 (i=1,...,k). Denote

4 1 {bi ai] B 1 { a —a
a &T;Abfz U T a + bi | —bi b |-

Then
M@)= A+ Bz (i=1.....k).
From the condition (7.2) it follows that 4; = ... = 4, and B, = ... = B
Thus
(7.3) M) = A, + By A (i=1.....k).

Clearly A, A4, = A,, BB, =B;, A, B, =0, B4, =0. By (7.3), this
implies that, for any non-empty word w, ---x

vy

3
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(7.4) Mo, - 2,) = A, + BT A,.

i=1

Denote a,/(a; + b)) = a and b,/(a; + b)) = b. From the equation (7.4)
we now obtain

(75) 'TEOM(xul e xvs)nF =b + (a - p2) .I_l. l”i .
i=1
Now we divide the eigenvalues 4;,..., A into three classes
{).il,...,itia},{ljl,...,Zjﬂ},{lkl,...,lky}

where o ,f,y =0, 4, =0, 4,>0 and A, <O.

We consider the language L(SB9,#) for different values of ;. When
doing this, we wuse formula (7.5) and remember that 4' <1
(t=1,...,k).

Assume first that 5 = 0. If @ = p,, then b = p; and L(RA,b) is
the empty language. If a > p,, then L(BU, D) is a language over the
alphabet {a; ,..., 2 & ,...,a,} containing exactly the words where
the total number of letters @, (v = 1,...,y) is even. If a < p,. then
the statement of the previous sentence holds with »even» replaced by »oddy.

If > b, then L(RUA, %) is a finite language. Finally, assume that
7 <b. If a=p, then b =p, and L(BA,#) = WI). If a == p,. then
L(BA , %) = L, + L, where L; and L, are formed as follows. L; consists
of the words P such that [(P) > m, where m, is a sufficiently large
integer, and L, contains only words P with [(P) = m,.

From the above considerations it follows that L(SB ,#) is a regular
language for any cut-point .

§ 8. Theorems concerning stochastic languages

8.1. BurkHARAEV [3] showed that every -stochastic language (y > 0)
is also #;-stochastic for any #; such that 0 << <<#. The following
theorem generalizes this result.

Theorem 11. Ewvery stochastic language is 1,-stochastic for any 1, such
that 0 << < 1.

Proof. Let L == L(BA , 7)., where PUA = ({s;,...,8.}, M ,7,,F) is
a probabilistic automaton over the alphabet I. Let 7, befixed, 0 < #; <2 1.
By omitting the trivial case »; = %, we may assume that », 7 5. Consider
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the probabilistic automaton RUA; = ({sy, ..., 8, 8,1}, My, 7, F;) where,
for each « €1,
8.1 M, {Aﬂ@ 0
. i X)) =
(8.1) 1(%) 0 J

and m; as well as F; are defined as follows. If 7, <, then
7y = ((p/n)me , 1 — /) and Fy = F. If 5 > 7, then m; = (pm,, 1 — p)
and F,=FU{s,.,} where p = (1 —)/(1 — 7). From (8.1) it follows
that, for any P € W(I),

(P — VI(P) 01
N S
Thus, for any word P € W(I),
B [ (/)M (P)ny it o <,

(8.2) 2 My (P)p, = , ,

TR prM(Pye 4+ (1 —p) i >
From (8.2) and the choice of p it follows that in both cases L = L(R, , 1),
which implies our theorem.

According to Theorem 11, every stochastic language is, for example,
1-stochastic. The restriction 7, > 0 is essential, because every 0-stochastic
language is regular. Conversely, every regular language is O-stochastic,
because every finite deterministic automaton can be rewritten as a prob-
abilistic automaton where the initial distribution and the transition
matrices consist of 0’s and 1’s only.

8.2. Paz [12] constructed a probabilistic automaton where the inter-
section of a stochastic language and a regular language can be represented.
In the following theorem we construct a more economical probabilistic
automaton where both the sum and the intersection of such languages
can be represented.

Theorem 12. The sum L, -+ L, and the intersection L, N L, of a
stochastic language L, and a regular language L, (over the alphabet I)
are both stochastic languages.

Proof. Let L; = L(BY, , ), where

VU = ({83, «vssut, My, (P15 pn), )
is a probabilistic automaton over I. Let L, = L(*B%,,0), where

By = ({850 1s e s Snam}s My, (1,0,...,0), Fy)
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and each row in each M,(x) is a co-ordinate vector. Thus, B, is a finite
deterministic automaton, where L, is represented, rewritten as a proba-
bilistic automaton.

Consider the (m -+ n)-state probabilistic automaton

BU= ({81,280 sSutseevsSnim> M, 7y, F)
over I where, for each x €1,

Vi) — [ M (x) 0
M) 1o M.Z(a:)}’

T = (3prs-v s ipn.3,0,...,0) and F = F,UF, Consequently, for
each P € W (),

Since, in addition,

rﬂF,
=",

TR,
the following equation holds for any word P € W (I):
(8.3) M (P)tp = Y(pys .- ) My(P)p, - 3(1,0, ..., 0)My(P)ap, .
Since (1.0,...,0)M,(P)ny, equals 1 or 0, depending on whether P € L,
or P ¢ L, (83) implies the equations

Ly + Ly = L(BA, §)
and
LN Ly = LPA, (i 4+ 1)) .

This proves the theorem.

As an immediate corollary we obtain the following

Theorem 13. If L, is a stochastic language and L, a regular language,
then the language L, — L, is stochastic. Let L' be a language obtained from
a language L by adding or removing finitely many words. Then L’ is stochastic
if and only if L is stochastic.

The left derivative of a language L with respect to a word P is defined
by 0pL = {Q| PQ € L}. BukHARAEV [3] has proved the following result:
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Lemma 8. All left derivatives of a stochastic language are stochastic
languages. Conversely, if there exists an integer k such that all left derivatives
of a language L with respect to words of length k are stochastic languages,
then L 1s a stochastic language.

Our next theorem follows from this lemma, Theorem 12 and the equations

aP(L1 + L2) = aPLl + aPL2 s aP(Ll n Lz) = (aPLl) n (aPLz) .

Theorem 14. Let L, and L, be stochastic languages. If there exists an
integer k such that, for each word P of length k, either 0pL; or 09pL, is
a regular language, then L, + L, and L, N L, are stochastic languages.

8.3. For a probabilistic automaton BUA = (S, M , 7, , F) and a cut-
point #, we denote

L(RA ,n , =) == {P| 7 M(P)ryp =1} .

Now the following result concerning closure under complementation
can be established.

Theorem 15. Assume that L = L(RU,7) is a stochastic language and
that the language L(RUA , 1 , =) is reqular. Then the complement of L 1is a
stochastic language.

Proof. Let BA = (8, M , =, , F). Denote by F the complement of F
with respect to S. Then

L = {P| neM(P)ny = 1}
= {Pi nOJII(P):’TF > 1 - 77} + L(gEg[ ’ 7] 3 :) )
whence Theorem 15 follows, by Theorem 12.

The hypothesis of the previous theorem is not satisfied for all stochastic
languages; STARKE [18] constructed a probabilistic automaton over the
alphabet {0, 1} for which
(8.4) LR , 5, =) = {0"10°1 | n = 1} + 011 .

This language is not regular.
We return to the closure problems in § 10.
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§ 9. Generalized probabilistic automata

9.1. Page [11] has considered probabilistic automata for which the
components of ;. as well as the cut-point 5 are allowed to be arbitrary real
numbers. An open problem has been whether the family of representable
languages remains unaltered in this generalization. In what follows, we solve
this problem.

Definition 2. A generalized probabilistic automaton over the alphabet I
is an ordered quadruple GRA = (S, M , =, ,f)), where S, M and =z,
are as in Definition 1 and f; is an n-dimensional column vector with real
components (the final vector). If f, is a stochastic vector, then GRUA is a
generalized probabilistic automaton with a final distribution.

The domain of M is extended from [ to W(I) in the same way as
before.

For any real number 7, the language represented in GRUA with the
cut-point 5 is defined to be the set

LGPA, ) = {P € W) | M (P)fy > 7} .

Lemma 9. Assumethat L = L(GRA , n) where GBA = (S, M , =, , f,).
For any real number ¢, L = L(GRA, , 5 + ¢) where SV, = (S, M , 7, , f1)
and fy =fo+(c,...,0)".

Proof. For any word P € W(I),
woeM(P)f, = 7, M(P)f, + ¢,

because m,M(P) is a stochastic vector. This proves the lemma.

Theorem 16. 4 language L can be represented in a generalized prob-
abilistic automaton (generalized probabilistic automaton with a final distri-
bution) if and only if it can be represented in a probabilistic automaton.

Proof. To establish the »ify-part, we assume that L = L(RU , %), where
PA = (S, M ,n,, F) is a probabilistic automaton over I. Denote by &
the number of the elements of F (k > 0). Then the generalized probabilistic
automaton GRA = (S, M ,n,, k'7z) has a final distribution and
L(PA . ) = L(BBA, n/k).

To prove the »only ify-part, we assume that L can be represented in a
generalized probabilistic automaton. By choosing ¢ large enough in
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Lemma 9, we may assume that L = L(GRA,n) where GPA =
({81, s8a}, M, 7. f,) and the components of f;, are positive. Denote

7.[0-:(./plf“'7z)")7 f():(q1="'>q")T

and ¢=¢, + ...+ ¢. Thus ¢&>0 (¢=1,...,n) and ¢> 0. Let
g/ == q;/q for each i =1,...,n. Consider the probabilistic automaton
PU = ({85,288 1508t My, m, Fy)
where
o =nYay,...,7) (m, occurs n times)
and
=81 ,8 . 2,8me3:-+>s Spe )

and, for each x €1,

M) M) ... qM)

(9.1) M) — G M) @M@). .. q,M@)

@ M@) M) ... M) |
Clearly, M,(x) is a stochastic n?xn? matrix and z; is an n2-dimensional
stochastic row vector.

Let P € W(I) be an arbitrary non-empty word. From the construction
of M,(x) it follows that (9.1) holds if 2 is replaced by the word P. Using
this result, it can be verified that

n

(9.2) mMy(P)np, :.Zl lei Qj, p;;(P)

i=1 j=
where p;(P) denotes the (i,j)th element of the matrix M(P). On the
other hand,

n
\

93) 2 M(P)f, =

i

=

piqipi(P) .

]:‘l
Combining (9.2) and (9.3), we obtain
0 My (P)p, = g a M (P)fy .

Consequently, the language L(BA,7/q) contains exactly the same non:
empty words as the language L(GRA,7). whence our theorem follows,
by Theorem 13.
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Thus, a final vector can always be reduced to a vector whose components
are 0’s and 1’s only. Note that the initial distribution can always be reduced
to a co-ordinate vector (cf. [17]).

As an immediate corollary of Lemma 9 we obtain

Theorem 17. If L = L(GBA,5), then, for any real number 1,
there exists a generalized probabilistic automaton ~&PA, such that

L = L(GRY, ,ny).

Thus, every language of the form L(GRUA,#) can be represented in
some GPUA; with the cut-point 0 (cf. Theorem 11).
More general automata will be considered in § 11.

§ 10. Closure properties of a subfamily of stochastic languages

10.1. Let GPUA, = (S;, My, 7, f;) and SPUA, = (S, , My, 7, ,f,) be
generalized probabilistic automata over I with »n and m states,
respectively. Denote m; = (p;,...,p.), fi= (¢ ,...,q.)" and, for each
v €1, M(x) = [pyj(x)]. Consider the mn-state generalized probabilistic
automaton GPUA = (S;xS,, M , n,, f,) where

) ‘hfz’
Ty == (P1Tta s PoTty s - - -, PuTy) 5 fo =

) In fo
and, for each x €1,
Pu(@)My(x) pro(@) My(x) . . -I’Jn(x)ﬂfz(l')i

xY M. (; (M ,'”2",147;/2;.
M) — M) © My(e) — | POONE) Po@M) - o oy (@) Do(e)

j’nl(x)sz(x) Duz(¥) My() . . . Pan() My(2)
Thus, M(z) is the Kronecker product of M;(z) and M,(x) (cf. [7], p. 97,
[12]). From the construction of the matrices M(z) it follows that, for any
non-empty word P € W(I), M(P) = M,(P) @ M,(P). Clearly, this also
holds for P = /A. By a direct computation, we now verify that, for any
word P € W(I),
(10.1) M (P)fy = (7 My (P)fy) (70, M3 (P)fy) -

Thus, we have established the following
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Lemma 10. For two generalized probabilistic automata  GPA, =
Sy, My, . f)) and G&BU, == (Sy, M, ,7,,f,) over I, there exists a
generalized probabilistic automaton GPA = (S, M , n,, f,) such that (10.1)
holds for any word P € W(I).

In what follows, we also need the following

Lemma 11. For two generalized probabilistic automata  &PA; =
Sy, My, m . f)) and GPBU, = (Sy, My, 7y, f;) over I, there exists a
generalized probabilistic automaton GRA = (S, M , 7, fy) such that, for
any word P € W(I),

7 M(P)fy = “1*7|/11(P)f1 + 752M2(P)f2 .

Proof. By defining
2h
.

and, for each x € I, M(x) as in the proof of Theorem 12, we obtain the
desired automaton.

T =M, ™), fo= [

10.2. For any generalized probabilistic automaton GRA = (S, M , 7, , f,)
over I, we denote

LGPA, 7, #) = {P| 2 (P)fy + 1}
and, respectively,
L(@%QI s, :) = {P| 7[047'[ f() = 7/;

Let <£(+) be the family consisting of the languages L over I such that,
for some &PA and some 7, L = L(GPA,» , #). The family <L(=)
is defined analogously.

In what follows, we also use the notations <£, and <£, to mean,
respectively, the family of regular languages and the family of stochastic
languages over I.

Lemma 9 and Theorem 16 are useful tools in constructions involving
probabilistic automata. We shall use them in the following considerations.

Theorem 18. The family L, is a proper subset of the family “L(=).
The family <L£(#) is a subset of the family L.

Proof. Yor each L €</, there exists a probabilistic automaton
BA = (8, M ,7m,, F) such that L = {P| 7 M(P)ry # 0}. Thus, <4, is a
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subset of <£(+). The first part of the theorem now follows from the fact
that the complement of the language (8.4) is not regular.

To establish the last part, we choose an arbitrary language L from
<£(+). From the proof of Lemma 9 it follows that, for some GPA, =
(Sy, My, 7 ,f)) over I, L = L(GPA, , 0, ). By Lemma 10, there exists
a generalized probabilistic automaton GRA = (S, M , x, , f,) such that.
for any word P € W(I),

P)fo = (mM,(P)f;)?

This implies that L = L(GRA, 0), whence the last part of Theorem 18
follows, by Theorem 16.

Theorem 19. The family <L(+#) is closed under sum and intersection.

Proof. Let L, € £(#) and L, € £(#) be arbitrarily fixed. By the
proof of Lemma 9, we may assume that L; = L(GRUA;,0, %) where
GRA; = (S, Mi, 7, f:) =1,2). By Lemmas 10 and 11, there exists
a generalized probabilistic automaton GRA = (S, M , x,, f,) such that,
for each word P € W(I), :

P)fy = (mMy(P)f1)? + (o Ma(P)fy)?

This implies that L; 4+ L, = L(GPA, 0, =£), whence the closure under
sum follows.

To establish the closure under intersection, let L; and L, be as above.
By Lemma 10, there exists a generalized probabilistic automaton GRA =
(8, M,mn,,f,) such that, for each word P € W(I), the equation (10.1)
holds. Consequently, L;N L, = L(GPA,0, £), whence the closure
under intersection follows.

Theorem 20. If L, € £(+) and L, is a stochastic language, then
L, N L, is a stochastic language.

Proof. We may assume that L, = L(GBA,,0, #) and L,=
L(GPRA, , 0) where SR = (Si, M;, 7w, f;) (¢ =1,2). By Lemma 10,
there exists a generalized probabilistic automaton GRA = (S, M , =, , f,)
sach that, for each word P € W(I),

7o M (P)fy = P)fy)? Pfy) .

This implies that L; N L, = L(GPA, 0), whence the theorem follows,
by Theorem 16.
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We do not know whether or not the family <£(+) is a proper subfamily
of <£..

10.3. We consider for a moment the family <£(=). By (8.4), £, is
a proper subfamily of <£(=). By means of Lemmas 10 and 11 we see that
<£(=) is closed under sum and intersection. Every language of <£(=) is
the complement of a language of <£(#). Consequently, if there exists a
language L € (=) which is not stochastic, then <£, is not closed under
complementation. It can be verified that, for example, the language
{0"1"| n = 1} belongs to <£(=). However, we do not know whether or not
it is stochastic.

The problem of the closure under complementation is closely related to
the question whether or not the family of representable languages remains
unaltered if the sign > is replaced by the sign = in the definition of a
language represented in a generalized probabilistic automaton. Namely,
L, =<L(=) if and only if <£, is closed under complementation. The
definition of the family <£(=) is analogous to that of <£(#).

§ 11. Generalized automata

11.1. As we have seen, the generalization of 7z, is not essential as far
as the family of representable languages is concerned. In what follows, we
show that this holds even if the elements of x, and of the matrices M (x)
are allowed to be arbitrary real numbers.

Definition 3. A generalized automaton over the alphabet I is an ordered
quadruple &A= (S, M ,n,,f,), where S ={s;,...,s.} is a finite
non-empty set (the set of internal states), M is a mapping of I into the
set of nmXxXmnm matrices with real elements, =z, is an n-dimensional row
vector with real components (the initial vector) and f, is an n-dimensional
column vector with real components (the final vector).

The domain of M is extended from I to W(I) in the same way as
before.

For any real number 7, the language represented in & with the
cut-point 7 is defined to be the set

LG, ) = (P € W(I) | 7M(P)fy > 1} .

A language L is called a ®A-language if and only if, for some GA and
n, L = L(GUA,n).
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11.2. In the following four lemmas we show how, for any given
generalized automaton, a generalized probabilistic automaton representing
the same language can be constructed.

Lemma 12. Every &U-language L can be represented in a generalized
automaton &S, = (S;, M, , 7, f,) where, for each x €I, the row and
column sums of M,(x) equal zero.

Proof. Let L = L(®UA , ), where BUA = (S, M ,my,f,) is an n-state
generalized automaton. Clearly, for each x € I, there exist real numbers

O(x) ... .. 0a(®), o(®) .. .., yu(x) such that in the matrix
—o0o oo 01 0~
—— ——
01(x) E 0
! i
! |
(11.1) M) =| . M(x) i
I
i i
On() '. 0
(@) @) ya(@) 0

every row and column sum equals 0. From this construction it follows that,
for each non-empty word P € W(I) and for some real numbers
0,(P) ... 0u(P), po(P),...,vu(P), M(P) is obtained from (11.1) by
replacing 2 by P. Consequently, if we define =, = (0,7,,0) and
fi=(0,fF,0)7, then, for the (n -+ 2)-state generalized automaton
&A= (S;, M, .7, f1), the equation

o My (P)f, = mM(P)f,

holds whenever P € WI'([). This implies that L = L(®; ,#), whence
the lemma follows.

Lemma 13. Every &U-language L can be represented in a generalized
automaton A, = (S;, My, 7, , f) where, for each x € I, the elements of
the matrix  M,(x) are non-negative.

Proof. By Lemma 12, we may assume that L = L(GU ,#) for an n-state
generalized automaton G = (S, M ,mn,,fy) such that the row and
column sums of the matrices M(x) (x € I) equal 0.

For any real number «, denote by N(a) the nxn matrix whose
elements equal a. Let 6 > 0 be so large that, for each « € I, the elements
of the matrix M,(z) = M(x) + N(d) are non-negative. By the assumption



Paavo TURAKAINEN, On probabilistic automata and their generalizations 45

concerning the matrices M(z) (¢ € I), both M(x)N(e) and N(a)M(x)
are zero matrices. This implies that, for any «* € I and y € I,

(11.2) My(xy) = My()Myly) = M(ay) + N(no?) .

It is easy to verify that the row and column sums of M(xy) equal 0. Let
P € W) be an arbitrary non-empty word. Proceeding inductively, we
infer from (11.2) that

(11.3) My(P) = M(P) -+ N@'® =1 @)y,

Let A be the 2x2 matrix whose rows equal (0, 1). Consider the
(2n + 2)-state generalized automaton G&A; = (S;, M;,x ,f;) where

ﬂlz(nosﬂO?ﬂof():O): f1:(f$,—ﬁf,l,0)T

and, for each x €1,

Myx) 0 0
M,(x) = 0 N@) 0
0 0 A

Consequently, for any non-empty word P € W(I),

[ M,(P) 0 0
(11.4) M (P) = 0 N@® -1 @) ¢
0 0 A

Formulas (11.3) and (11.4) together with the definition of M,(A4) now imply
that, for any word P € W(I),

mM(P)fy = 7 M (P)f, .

Thus L = L(®, , ), whence the lemma follows.

Lemma 14. Every &W-language L can be represented in a generalized
automaton W, = (S;, My, 7, f;) where the matrices M,(x) (x €I)
are stochastic.

Proof. By Lemma 13, we may assume that L = L(GU , ») for an n-state
generalized automaton G&U = (S, M ,n,,f,) where the elements of the
matrices M(x) (x €I) are non-negative.

Let 6> 1 be a real number larger than the largest row sum in the



46 Ann. Acad. Sci. Fennice A 1. 429

matrices M(x) (x € I). For each «x € I, there exist real numbers o:(x),
=1,

0 = 6:i(2) (¢=1,...,n) such that the matrix
100
0,(x)
I
My(x) =
2(%) 5-1M ()
On(2)

is stochastic. From this construction it follows that, for any non-empty
word P € W(I) and for some real numbers 6,(P), ..., o.(P),

1 ; 0---0
BT
Ul B PRV
|
5.(P)] B

Consider the (n + 3)-state generalized automaton G, = (S;., M, ., 7, . f;)
where

=(00,m,%,0), fi=(0,f,—1,0)7

and, for each z €1,

Mi(x) =

o |
a—l(P) 1 — 6 I(P)

M,(P) =

0 1
We now conclude that, for any word P € W(I),

o My(P)fy = 67 " PN M(P)fy — ) .
Thus L = L(GY;,0), whence the lemma follows.
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Lemma 15. Bvery &U-language L can be represented in a generalized
probabilistic automaton.

Proof. By Lemma 14, we may assume that L = L(GU,») for an
n-state generalized automaton GUA = (S, M ,n,,f;) where the matrices
M(x) (x €1I) are stochastic.

Let 6> 0 be so large that, for =y = (p;,...,ps), the com-
ponents of the wvector (p;+0,...,p.-+ 6) are positive. Denote
y=1p+ ...+ p.+ 2r6. Thus y > 0. Consider the 2n-state generalized
probabilistic automaton GVUA = (S;, M;, w; ,f;) where

f"\
Ay =y Py O e P 8,0, 0), flz{ f"J
L—Jo
and, for each x €1,
M(x) 0
Ml(x)z[ }
0 M(z)

We conclude that, for any word P € W(I),
0 My (P)fy = y~'mg M (P)fy -
Thus L = L(GPBA, #/y), whence the lemma follows.

11.3. As an immediate consequence of Lemma 15 and Theorem 16 we
obtain

Theorem 21. A language L can be represented in a generalized automaton
if and only if it can be represented in a probabilistic automaton, i.e., if and
only if it is a stochastic language.

Thus, the family of languages representable in generalized automata
equals the family <£,.

By the mirror image of a language L, in symbols mi(L), we mean the
language obtained from L by writing all words backwards. By means of
Theorem 21, we now establish the following

Theorem 22. A4 language L 1is stochastic if and only if the mirror image
of L 1is stochastic.

Proof. Since mi(mi(L)) = L, it suffices to prove that if L is a stochastic
language, so is mi (L
Let L = L(RA, 7

, where BUA = (S, M ,n,,F) is a probabilistic

~—~ ~—
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automaton. Consider the generalized automaton ®&U = (S, M, ,n, ,f1)
where 7, = iy, f, = a7 and, for each « € I, M,(x) = M(x)". For each
word P € W(I), we now obtain

My (mi(P))fy = meM (P)ry .

which implies that mi (L) = L(®A, ). Theorem 22 now follows from
Theorem 21.

The right derivative of a language L with respect to a word P is defined
by
5PL = {Qf QP EL;.

Clearly, mi (9pL) is the left derivative of mi (L) with respect to the word
mi (P). By Theorem 22 and Lemma 8, we now obtain the following

Theorem 23. All right derivatives of a stochastic lunguage are stochastic
languages. Conversely, if there exists an integer k such that all right derivatives
of a language L with respect to words of length k are stochastic languages,
then L is a stochastic language.

We give another proof for the first part of this theorem. Let
L = L(RA, ), where PA = (S, M , 7, ,F). Let P be an arbitrary word.
The language 9L is represented in the generalized probabilistic automaton
GPA = (S, M , 7y, M(P)ny). By Theorem 16, we conclude that 9L is
a stochastic language.

Theorem 23 implies that Theorem 14 holds for right derivatives, too.

§ 12. Realizability of mappings

12.1. Let V, be the set of n-dimensional stochastic row vectors and Z
a mapping of W([I) into V,. Then Z is said to be realizable by a prob-
abilistic automaton if and only if, for some RUA = (S. M .=, , F) over I,

Z(P) = wyM(P) for all P € 1(]).

Clearly, Z is realized by a probabilistic automaton if and only if, for each
x € I, there exists a stochastic nxXn matrix M(x) such that

Z(Px) = Z(P)M(x) for all P € W(I).
If » is the maximal number of linearly independent vectors Z(P),

and Z(P;),...,Z(P,) are linearly independent. then we say that these
vectors form a basis of Z.
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SaromaA [16] has proved that the following two conditions are both
necessary and sufficient for a mapping Z: W(I) — V. to be realizable by
a probabilistic automaton:

k

(i) For all Pe€ W) and all x €1, iof Z(P)= Z x:Z(Q;) then
k i=1
Z(Px) = )" xiZ(Qiw).

i=1

(i) If Z(Q),....Z(Q.), where 1 =t =mn, are linearly independent
and x €I, then there exist n-dimensional row wvectors Z, ,, ..., Zn,
U.1,..., U, such that the matrix

T ZQ) |7 ZQe)

Z(Q) Z(Qu)

Zt 41 []t +1
Zn bvn

s stochastic.
Another criterion can be found in [2] and [3].

Remark 3. The existence of vectors Z;, U; 1 =¢t-+1,...,n) for
some basis of Z only is sufficient in the condition (ii).

12.2. Using the conditions (i) and (ii), we establish the following criterion.

Theorem 24. Let Z(P)),...,Z(P,) form a basis of a mapping
Z: W)~ V.. Then Z is realizable by a probabilistic automaton if and only
if the following two conditions are satisfied: .

(i) For all P€ W) and all x€I, if Z(P)= Z x: Z(P;) then

r i=1
Z(Px) = Y xZ(P).

i=1
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(i) For all z € I, there exist n-dimensional row vectors Z, ,, ..., Z..

U, 1,..., U, such that

zp) |7 AP

Z(P,) Z(P.x)
(12.1) Ax) =

Zr+ 1 Ur +1

Zn LT”

s a matrix with non-negative elements and, furthermore, the sum of the com-
ponents of Z; equals the sum of the components of U; (¢t =r 4 1,...,n).

Proof. Assume first that Z is realizable by a probabilistic automaton.
Then the conditions (i) and (ii) are satisfied. This implies that (i)’ is satisfied.
By the condition (ii), there exist row vectors Z;, U; (¢ =r 4 1,...,n)
such that (12.1) is a stochastic matrix. Thus, its elements are non-negative.
Furthermore,

Z(Pyx) Z(Py)
Z X r
(12.2) (Pa) | | 2@ A(x)
Ur+ 1 Zr ~1
[/Tn _ Zn

Since A(x) is a stochastic matrix, it follows that the sum of the com-
ponents of U; equals the sum of the componentsof Z; (¢t =7r 4 1,...,n).
Thus, also the condition (ii)’ is satisfied.
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Conversely, assume that (i)’ and (i)’ are satisfied. To prove that (i) is
satisfied, let P € W(I) and a €I be arbitrarily fixed and let Z(P) =

i B: Z(Q). Now Z(Q Z B Z(P;), so that

=1 =1
k

2(P) = i( " i i) Z(P,)

=1 i=1

By the condition (i)', we now have

r

)
=2 S nb2 = 352

j=1

so that Z(Px) Y piZ(Q:x). Thus, the condition (i) is satisfied.

;=

From the condition (ii)" we obtain the equation (12.2) where the elements
of A4(xz) are non-negative. Denote in (12.2) the first factor of the matrix
on the right by [z;]. The row sums of A(x) satisfy the equations

1 for o=1,...,7r

bl

By Fn T lai for 1=7r+1,...,n,

where a; denotes the sum of the components of U;. For this inhomogenous
system of » equations, the determinant of coefficients is different from
zero. Thus, the solution is uniquely determined. Since 2; = ... =, =1
is a solution, we conclude that the row sums of A(x) equal 1. Consequently,
A(x) is a stochastic matrix. We have thus verified that, for the basis
Z(Py) . ..., Z(P,), the condition (ii) is satisfied. From Remark 3 it now
follows that Z is realizable by a probabilistic automaton. The proofis thus
complete.

Using Theorem 24, it can be verified that the condition (i)’ may be
replaced by the following condition:

@)y If Z,.,,..., %, are n-dimensional stochastic row vectors and, for
each 1 =1,...,n,

5 o Z(Pj) + $ wij 2

j= =1 ]gr +1
ts a stochastic vector, then, for each x € I, there exist n-dimensional row
vectors U, 1,..., U, independent on i such that

4. o Z(Pi) + ; o Uj

j=1 }—r -1

is a stochastic vector for each ©=1,..., n.
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If » = n, then (ii)" gets the following simpler form:

If Y «Z(P) is a stochastic vector and x € I, then Y o;Z(Pw) isa
i=1 i=1

stochastic wvector.

12.3. Finally, we consider the realizability of mappings Z : W(I) — W,
by generalized automata, where W, denotes the set of all n-dimensional
row vectors with real components. The notion of the realizability by
generalized automata is defined as in section 12.1. As we show in the
following theorem, only the condition (i)’ is now needed.

Theorem 25. Let Z(P,),...,Z(P,) form a basis of a mapping
Z:W(I)— W,. Then Z is realizable by a generalized automaton if and only

if the following condition is satisfied: .
For all P € W(I) and all « €1, if Z(P) = ) : Z(P:) then Z(Px) =
r i=1
N ~i Z(Pi).

A

i=1

Proof. The »only ify-part follows from the distributive law of
matrix multiplication. For the »ify-part, assume that the condition is

satisfied. We choose vectors Z;, U, € W, (¢t =r -+ 1,...,n) such that
ZP)....,Z(P), Z,_y,...,Z, are linearly independent, and form the
matrix (12.1). Then

(12.3) Z(Pw) = Z(P)A(x) (i=1,....,7).

Let P € W(I) be an arbitrarv word. Since Z(P,),...,Z(P,) form a
basis of Z, we have

Our assumption now implies that

Z(Px) = Zr o; Z(Px) .

i=1

Consequently, by (12.3), Z(Pxz) = Z(P)A(z). The proof is thus complete.

University of Turku
Turku, Finland
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