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Introduetion

The role of the Grunsky inequalities for the coefficient problem in
the theory of univalent functions is well known. Using the inequalities,
one could prove the Bieberbach conjecture for functions which are close
enough to the Koebe function [2]. The purpose of the present paper is
to give a similar treatment to the coefficient problem for bounded univalent
functions which are close enough to the identity mapping f(z) = z.
The Grunsky inequalities have been sharpened for the case of bounded
univalent functions by Nehari [4]. Recently we have extended the result
of Nehari [5] and this allows us to give a precise solution of the coefficient
problem in this case.

In order to lay the groundwork and to exemplify our method, we deal
in Section 1 with the special case of @,. Here all the features of the general
case are already present, while we can give a specific condition for proximity
to the identity in order that our result be valid. In Section 2 we prepare
some formal identities and asymptotic expressions needed in the general
treatment. In Section 3 we consider the case of odd indexed coefficients
@y, under the assumption that a,,...,a, ; vanish. This special case
is particularly easy to handle and prepares the more complicated approach
to the general case. In Section 4, finally, the case of arbitrary «,, , is
settled. Now we proceed to deal with even indexed coefficients a,,. This

is achieved in Sections 5—7 by introducing the odd function £/ f (:2) and
applying the previous results.

1. The case of a,

Let S(b;) denote the family of analytic functions

[ee] o b
(1) f&)=Sb2=b>a7, a =",

v=1 y=1 bl
which are univalent in |z| << 1 and bounded, that is,
(2) f@) <1, o0<b =<1.

Our aim is to give an estimate for the coefficients @, when b, is close to 1.

This work was supported in part by contract AF 49 (638) 1345 at Stanford
University.



4 Ann. Acad. Sci. Fennice A.I. 435

Our tools in the investigation are the following concepts and inequalities.
Let

f&) — f(©) 2

(3) log =———— = > daz'(
2—5 i k=0
and
(4) —log (I —f()f(0) = 3 Bu#l*.

The matrices ((4x)) and ((Bix)) are symmetric and hermitean, respec-
tively. We recently showed the following necessary and sufficient condition
for f(z) to be univalent and bounded in |z] < 1: The inequality

N N ,
(5) Re{ > Am@nay + 2 Bun@mda =2 — — (N=1,2,..)

m,n=0 m,n=1 m=1

must hold for every complex vector {z,}. The case x, = 0 is the Nehari
condition for univalent bounded functions; it appears, however, that the
introduction of the additional variable x, is very important in the dis-
cussion of the coefficient problem.

In the case N = 3, an easy calculation leads to the relations

Agy = log by,
2
Ay = a3 —az,
2 2 3
Ay = a5 — 5y — 20,0y + 43 a3 — 5 s

2 2 :
Agy = a, — 2a; — 3aga; — 2a, 04 + 4aya; + 12a, a5 a4

+3 a — 15a3 a; — 8ala, + 14a; a5 — ?a‘a
Ay = a,
1,
Ap =a3 — 5 a3,

3
A03=a4—a2a3—§—§a2,

3
Ap =0, — 20,03 + a3,

2 ) 4
A= a5 — a3 — 2050y + 303 03 — Ay,

Agy = ag — 20y a5 — 3aza, + 5ay a3 + 4a3 a, — Tajaz + 2a; ;
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Bn = bi )

1
Bzz = Z bf + ibzfz s

1
By = 3 b? + Zb% 102+ 1057,

In order to estimate a, take z3 = 1. The coefficients a; and «;
are eliminated by choosing

Ixzz a, ,

P4

(6) 1 .
lxl = = (3a; — a3) .

From [4] we know that the best possible estimate for a, is obtained for

3 3 2 .
Re {> 4,, =, Re {a4 oy e — g a;}
7 U ! B SR B
() %o log ;! log b7 '
Thus, for N = 3, (5) assumes the form
1 6
(8) Y (L =)
l 2 3 19 3 25 2 2
=< Re l2a4 +aya, — 3a,aza, — Ta %G T 4 @
19 . 13 s 1 ) _2l
oy B4 + 12 BTy (3 + 58) “3“2[
1 2 12 1 2 4 1 4 2
o0 =250 4y = (=B e = (1= 9) |ay]

Re ]a4 -

o w

2 2
3
ay 3 — 5

log b7 " .
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We rewrite this condition by using the notation

3 2
9) t:a4—§—v2*a2a3—§a§;
1 [Re {t}]?
10 . — o (1 — b)) < ¢ - -
(10) a; — 5 (1 = b)) = 2 Re{t} log b!
_ J 19 . 1, 61 , | 17 -, 9%
7—Re‘—9a2a.3t—ﬁa3+§a2t+zfa2a§~-?a2a3+3—6-ag

1 2\ =2 | 1
Y (3—{—5b1)a2a3[ + -

4 (I — b%) [“2}4

1
(9 — 256 Jag? + = (1 — 9b%) |ay,?.

g 2

In order to estimate the right side of (10), we will utilize the following
bounds ([5], [6]):
a,] =2(1 — b)), for all b,;

lag) <1 — b7 <2(1 —b,), for e <b =<1;

2
o] = 5 (L—b) =2(1—by), for 0,65

IA

by

lIA

1

=21 —b), for e =bh =1, v=2,3.4.
This gives for ¢
16
=12+ 6(1 — by) + E (L =02 (1 —by).
When restricting ourselves to

(11) 09<bh =<1

we obtain !t} < 2,7(1 — b;). Thus, for the interval (11) the following
inequalities are wvalid:

J}a,,' =2(1—10b), »=2,3,4;

(12) P
lEtJ <271 —b).

In view of (11), the first part of the right side of (10) may be estimated
as follows:

) . [Re {¢}]? < m 2<2 1
2 Re {} — logby' = [Re {1} \2 — log b;!

IA
=}
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Hence, in the interval considered,

1 1 1
(13) @ — o (L— b)) = (9 — 250]) [y + 5 (1 — 90}) |ay "
19 5 1 1 s s 9
+ Re —9a2a3t—ﬁa3 ( 4 5b)) a;a; + 3a2t—|—7a2a3
17 1 |

70@“3“{‘2( — b)) |ay|* + a2J—I+II

Here we have divided the right side into the parts

4 1 1
I =51 (9 — 250) lay” —i—_ 5(1—95‘1})1%12‘!‘33{“ 9ayagt},
1 1 9 . o 1 1 4y 2
II = g . Z (9 —_ 25bi) ag " —+ E : _5 (]- - gbl) K2y
[ 19 1 o 1o, 6l
+ Re |~ 12 (13—5(34‘5&’1)“2“3‘1“3—“275‘1—?“2“3
~ T a +i( b)) lagl* + o= al
g T2 Ty o' g -

For I we get in view of (12)
1 2\ 1 12 1 4y 1 12 ~ 1
I = 5 (9 — 250y) |ay|” + 3 (I —9b)) |as]” + 25 (1 — by) |ay] [a,] .
The discriminant on the right side of the above expression, considered as
a quadratic form in |a,| and |ag|, is given by

(25\*
— (9 — 258%) - — (1 — 9b}) — (7) (1 —b,)2.

This is positive in the interval defined by (11). Hence, in that interval
I<o.
Next, we decompose II = II; 4 Il,:

5|

1 e [ 19
I = 55 (9 — 250 |ag* + Re | — 75 a3 ,

1 1
I, = % (1 — 957) |a,)* - Re {— - (3450 dyay
11 61 17 1 95 |
Ty at e — e+ (=) el + oo
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1 19
0, < Jagl? |5 (9 — 255) + 5 (1 — b)) -

Here [ ] <0 for the interval (11).

1
I, < layP? [—6— (1 — 95%) + (3 + 55) (1 — by)
11
+ g 22T (L= bR 6L (L= b

17 95
+?'2(1—b1)3+2(1—b1)3 +5"4(1_b1)4 .

The factor [ ] is seen to be <0 for
093<b <1.
Hence we proved the

1
Theorem: 0 =< a, = 3 (1 —bS) at least for 0,93 =b =1.

9. The structure of the coefficients Ax and B

We shall discuss the asymptotic character of the coefficients Ay and
B;. in the series developments (3) and (4) in the case that the first coefficient
b, is close to 1. This will allow us to utilize the inequalities (5) to estimate
the coeffcients @; of the function f(2) € S(by) considered. To clarify
the situation, we set up
(14) f)=bG+2az+ 2 a 2) .

=2 v=n+1
It will appear that in the asymptotics for Ay and By with 1 <mn,
k < n the first set of coefficients plays a different role than the second set.
Indeed, we obtain in view of (3) the identity

© n y—1
(15) S A, #F=1logb +log [1 + > a2
i,k=0 v=2 =0
© v—1
_|__ Z z a, 2~ Cv—:x—-l] .
y=n+1 a=0

If we develop the right-hand side into a formal power series in z and ¢
and wish to express in this way all 4a with ¢,k <=, we may disregard
all terms which are of degree of homogeneity > 2n. We thus find
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n  y—1

A, 7 =1logb + > > a,z* !

0 v=2 a=0

+ 3

(16)

VL

i,
r—1

— n y—1
5 a2e = (3 B ey
oa=0 -~ y=2 o=

0 r—1

< 2 ?—a 1, a, P Cv—-a—l
i

r=n+1 a=0

“M;

+ anpy (lea C"_a)z] + D,

where D is small of the third order in all a; and is of second order at least
in a,...,a, and does not contain terms of degree =< 2n. Comparing
now the coefficients of 2'(* on both sides of (14), we find

(17) 4, = Akl — Z VO, gy

1 k+1 h
Z 1’+1 VL“‘-I\T +""’

V=

for 1 =k=0,...,n If a, with v <2 occurs in these formulas, it is
understood to be zero.
In particular,

’ “ " + 1 2
(17 ) Ann = a2n+1 - Zq va, aanZ—v - 9 an+l + vee .
The omitted terms are of third order in all @, and quadraticin a,,...,a,.

Similarly, we consider the generating function for the matrix ((Ba)).
We have

and in view of the representation (14) for f(z) we find

0

(19) Z Byt = — log (1 — b}z é—')

230 F+i3ar+3arSa :)
1—b2z¢

—log |1 — &;

/

Clearly, we find
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for i,k <mn. Here [D(z,)];, denotes the coefficient of 2'(* in the
development @(z, {). The terms not written down are at least cubic
in a,...,a,, that is,

| ) _ .
(21) By = i b%l O 4 @i p i1 bik + @iy bil
i—1 k—1
=+ Z [y byt —ry + 5 Z ? [ay_ .10
w=2 o= 1/)’_

+ d/}—cx+1 b%a] [“i—k—(aﬂ/ﬁ)q'—l bf(k_ﬁ) + dk—i—(ﬂ-a);l bi(i_a)] +oo

As before, the deleted terms are at least of third order in all @, and quadratic
in a,...,a, Again, a; is defined to be zero.
Let us display in particular the term

(22) B,, = — bz" + z |, 2 3=t
=2
1 n—1n-—1
) zﬁZ[aaﬂ1b2ﬁ+aﬁalb2]
a=1 1

) [“—(oc—ﬂ)+1 bf( Y+ a —(3—2)=1 by Fd [ S

Clearly, a, is non-zero only for ¢ = 2. Hence, the last double sum reduces to

12 p2(f+n—2x)
Iaa—ﬁ%—ll bl( "
azp+1

and we arrive at the result

S

(23) Bnn — bin ——}— Z ]a#izb%(n—u—i—l)
n=2

(n — ) la, o3t

2

+
e
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3. The case a,—...— a,=0.

We apply the above formulas to solve the following:
Problem. The coefficient a,,.,> 0 1is to be estimated under the side
conditions

(24) g =...=a,=0.

The coefficients a,.,,...,a,, are free parameters of the problem.
Choose in the Nehari-inequalities (5) N ==, 2, =1 and

n
Re {Z 4, x,
1

Xy = )

log b7,

which is the most favorable choice for x,. We thus get

(25) Re { > Awxian} + 2 Baxid

i,k=1 i,k=1

9

[Re {z Ag, )1 w112
k=1 ||
gt T2 i

In the case (24) in question, the higher order corrections in (17), (21) and
(23) vanish. Thus,

Ay = a4, 0=sisk=n, 1<n,
n+1 |
Ann = a2n+1 - 2 Upiy s
1 2k
Bkk :Zbl s
k:]-: P

In view of (24), the inequality (25) assumes the form
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that is

(26)

We
parame
follows.

° L — —
1° oy=...=2

(27)

Here

n n

Re {x1 D Gpa ® + X szk+3—l—...

=n—1 k=n—

n n
+ qu Z g1 + oo+ Ty z Ui T
k=1

=n—gq

n—1 n+1
+ z, <k21 O 1 T+ Aoy — 2 ai+1)}

n o1
+ 3 B
k=1

[Re {an+l}]2 ||
= log b7 T ;::1 ko
a2n+1 - g (1 - b%n)
n+ 1 1 n 41 .
= ( 92 - lOg b]__]> [Re {an+l}]2 - 2 [Im {a'n+l}]“

n n
—Ref{w; > a2+ 2D ap 32 + ...
n—1 n—2

n n
+ wg Z ak+q+l Ly, + e + Tn_1 Z ak-]—n Zy,
n—gq 1

1 n—-11]

+ 3 tppam + 3 4 (0= B

will study the possible maximum of the left side by choosing the
ters a;,...,2,_; properly. The result is obtained step by step as

=0

n—1

apir — — (L= B")

IA

n 41 1 n 41 )
< 2 — log b}q) [Re {an+1}]2 — B (Im {a, }]".

n 41
2

- Tog b = 0 for

2
e "l =Zb<1.
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2
Equality occurs only in the case b, =e ""'. Consider the general case
n—+1 1
2 logby

where i < 0, which means that

2

(28) e " <b < 1.
The left-hand side in (27) is non-positive and zero only if
a,.,=0.
We continue to discuss the case of equality in the estimate for

1
- (1 — b"). In the interval (28) the condition (26) can be utilized
by putting @,., =0 on its right side.

A2pi1

o
2° wy=...=2,_;,=0

The inequality (26) assumes the form
1 2n 2 2
Aypp1 — n 1—u"=— 2Re{x1an+2} + (1 — b7) |2 |-
In case w; = d,,, we have the estimate
1
a2n»j-1 - ; (1 - b%") é - ]an+2I2 (1 + b?) .

Thus, the equality in this estimate requires that necessarily
o =0.

This process can be repeated without restriction » times, and we end
up at the following result:

Theorem. Suppose that ay = ...=a, =0 and let a, ,,...,a, be
free parameters. Then for

e "1<h =1
we have
1
(29) 0= ayy = - (1—87).
Equality in the case
2
n41 < b1 é 1

requires that necessarily

(30) By = ....=0y, =0,
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1
The conditions ay=....=0a,, =0, @, = P (1 — b{") can be

applied to the extremal conditions of the generalized Nehari inequality [5]

to determine the extremal function f(z) completely. It has to satisfy the
equation
f 2z
(31) = b —, k=2n1+1.
(1 o fk—l)m (1 _ zk—l)ﬁ

The image consists of 2n radial slits with equal lengths and starting at
points located at the corners of a regular 2n-gon. At the point

there is a one-parametric freedom of choice; a@,., can be taken as a para-
meter. This phenomenon was first observed in the case of a; (see [3], [8]).

4. a5,.,; 6, =b, <1

We shall now drop the assumption (24) and use the fact that for
0, =b; <1 all a, are small. To illustrate the method of estimation to be
used, take again a, as an example.

Write (10) in the form

1
(32) ay — 5 (1 — b))

1
(2 — W) [Re {t}]" — 2 [Im {t}]* + 4;

A=A1+A2;

1 4y 2 ! 2\ o2
A1=.—(1—961)a2—!—2(9—2561)%,

19 3 1 72\ =2

A,= Re —~9a2a3t—ﬁa3—§(3—‘—abi)a3as

U R 1 N

—{—E%t—}—Za2a3-—~2—a2a3+1(1—bi) g,
95 |

+%“2]-
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Denote max (|a,| , |az]) = M, and estimate 4, by aid of M. We find
immediately that
Ay < M- Je,
where
e=1-—-0

and A is a fixed positive constant which could easily be estimated by aid
of (12). There are now two alternatives

1) Jay) = M. 3

Take 9 — 25b7 <0, which means that b > —. Then

1
A= |5 (=98 + 2 layf;

[]= — 4+ (18+2)e—2Te2 186 — 4,56,

We get [ ] <0 for ¢ small enough. Hence, in this case

1
(33) G5 (1—b) =0
for 0<1—0b=¢; 1l—¢g=b <1
2) lagl =M 1
Take 1 — 98] <0, b1>7§.

1
A= |70 25 b3) 4 Je| |ag)® .
As before, we find (33) to hold for 1 — & = b < 1. Denote
g3 = max (g , &). The existence of an interval

(34) by=1—g,=b <1,

for which (33) holds, is thus established.

The expansions (17), (21) and (23) allow us now to repeat the above
procedure in the general case a,,.,. Let us determine the various ex-
pressions occuring in inequality (25).

I = Z A x:

i,k=1

Write I as follows:

n—1 n—1 n—1
I =iz x; lAikxk+ 2;1/11»190;'—!-4‘1"”-

=1 k=
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(17) and (17') give

k41
ik
Ay =0y — Z; Cra,a oyt -
v
(35) 0=sit=k=n, i<n;
n n+1
Ann = a’2n+l - Z rva, a2n+2—v - 2

=

Here the C* are fixed constants whose actual value is unimportant.

Hence we obtain

k1

n—1 n—1
- ik
(35') I= zl xikzl (@1 — 22 Cla,a ., ]z
i= = y=

n+1

n—1
+ 2 z (@1 — z Cya, @iipia—y] T
i-1

y=

ntl o,

n
+ a2"+1 - 2 an+l - }_, ra, a’2n+2—v + ORI
r=2

Consider, in particular, the difference

n—1 n

d =22 G 01®% — 2 00,0, ,-

i=1 =2
Denote in the latter sum
y=n-+1—1
and obtain for d

1

n—1
d=2 z Qi1 Xy — z (m+ 1 —1) Qpoy_i Qporsg
i=1

i=n—1

n—1

= Z 22, — (n 4+ 1 — t) an+1—i] Ay 14i-

i=1

The parameters x;,...,«,_;, which are at our disposal, may be selected

to eliminate d:

n-+1—1

(36) =y, 3 t=1,...,m—1.

! 2
The above choice implies that

n+1
2

(37) I = Ayl —

2
a’n+1 + E]_ s

where E,; is at least quadratic in a,, ..., a, and of third order in all a,.
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n
= Z Ay %,
k=1

It follows from (17) that

lAOk:akH"‘ é @, Wpoy oo e
lk:l,...,n,
and hence
HI=a,,+T.

(38)

Here T is quadratic in a,,...,a, and contains only these coefficients.

B ; &,
1

111 =

N

Again, divide III into the following parts

n—1 n—1

I — _f %> Budit 2Re (3 Budi) + Bun-
(21) and (23) give now
By =@, 0" +...5 k=1,...,n—1,
B = B 3 i PR
which allows us to write IIT in the form

n—1 1 ) n—1
I = 3 |of o 0+ 2Re{ > Budi} + B+ ...
A k=1

(38
S N e et VR S TR R |
S (P T e 2y BT T g
i=1 ) < 2 )bl i~ 2 [an—H.lI bl

(n'—"ﬂ—*‘ 1)[(1 |2b2(n ;rrl)_'_ b2n+

2

+

wﬁ[\/]:x

By denoting
i=n+1—u,

one obtains:



18 Ann. Acad. Sci. Fennice A.I. 435

1 U 2
2n 2(nt+1—p)
III = — b +Zn+1 <2>bl u

—+%umﬁwmwt+%m+1—mmﬁﬁwhm+””
w= n=

2
(-2

= — p" A*I 2 p2n+1-p)
(39) 111 b ﬁ; I la, [P B30 LB,

E, is again of the same nature as K.
Combining I, IT and IIT we arrive at the following form of (25)

which simplifies to

1 2
(40) @y — o (1B

n -+ 1 [Re {t}T°
5 _

= Re {#’} log bt

2 2
'u ‘u +1—p | 2 v
+3 KE)_(’“”_E) b ”J R

n=2

where
t=a,,+T.

Here E is quadraticin a,,...,a,, is of third order in all @, and consists
only of a finite number of terms.

We are now in the position to arrive again at the conclusion drawn in
the case of a, Notice first that

2 / 2
e
if
1
Iu n+l—u
2
S <b <1.
u
n+ 1 — 2
n
Since 1 < g < 5 s We see that (41) is always valid if

2

/ n n+2
(42) (n+2> <b <1.
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Further,
n+1 ) [Re {t}T*
2 T oyt
n 41 1 \ 1 \
for
2
(43) e " <bh < 1.

Finally, take into account that

{]aylgk,,e rv=2,3,...,
(44)

8:1—-61,

where k, is a constant. This can be deduced for example from Ldwner’s
coefficient representation for bounded functions by a rough estimation [9].
The nature of Z allows now to establish that

(45) |E| < M? 4, ¢,
where
M:max({az{,...,}a D

and 4, is a positive constant. Hence we read off from (40) that again the
right side of (40) is negative if 0 < e <e¢,, i.e.,

(46) §,=1—¢ <b <1.

Thus we established the following result which also has been found by
SIEWIERSKI by aid of a variational method [6].

Theorem. In the class S(b;) of bounded wunivalent functions the sharp
inequality

1
(47) O§a2n+1:%(1—b2") m=1,2,...)
s true at least for some interval
(48) o}

where 0, is a positive number << 1.
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5. The coefficient of v/ f(z*) and application to general a,,,.

Let us start by considering the expansion

(20— 2) 14

2T ()T (@22 + .. @ 2+ ')i}

VI@ = bz |1+ > (=1

= b%(Z+A323+...+A2!L+1z2#+1+"')‘

We can express the coefficients 4,,,; of the new odd function in terms of
the coefficients @, of the original function f(z) € S(b;). We write

(49) A2u+1 = %a!&l — %K”—}—A#
and define the terms K, and 4, differently in the cases u = even and
u = odd.
H)If u=2p, p=1,2,3,...,
we let

1
(50) K‘u = sz = a2 a/ZP + a3 aZp—l + ¢ + a’p ap+2 _I_ E af)J,»l

and denote by 4, = 4,, the remainder term which is cubic in a,, ... a5,
and at least quadratic in a,,...,a,.
) If p=2q+1, ¢=1,2,3,...,
we define
(51) K, =Ky 1 =001+ a0, +. ..+ . 10.,;

A4, = Ay, is quadratic in a,,...,a,.; and cubicin ay,...,a

Let us apply the generalised Nehari inequality (5) for
N=2m—1 (m=2,3,...)

in the case of the function \/ f(?). The highest order coefficient in the
inequality is

1 1
(52) A2N+l = A4m—1 = 5“ Ay — _4_- KZm—l + A2m—1 .

It will appear that we can omit the parameters x, with even index:
(53) Tyg=Xyg=...=Typ_s=20.

This means neglecting the parameter x,; hence we actually utilize the original
Nehari inequality. Moreover, when maximizing A4,y,; we have to take
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Ty =Ty 1= 1.

In Section 4 the left side of (25) was decomposed in the expressions I,
IT and IIT. We have to rewrite these expressions for the present case as
follows:

N
= Z Ay i x;
i k=1

In (35') we substitute

i=2r+1, k=2s+1, v=2¢t+1.

In view of
i=1,..., 2m—3,
k=1,..., 2m — 3,
y=3,..., 2m — 1,
we get for r, s, ¢:
r=0,...,m—2,
§s=0,...,m—2,
t=1,...,m—1.

Further, denote
R
and find
m—2 m 2

(54) I = Z Lari1 4, [A 2r+s+1)+1 z Dy A2t+ A 2Arrs—t 1)+1] Loy

m—1

+ 2 Zo [Az(r+m)+1 - z Dr A4, A2(r+m—t)+l] Tari1
r= t=1

+A4m—l z 2t+1 ’t+1A 22m—t)— 1+

The underlined coefficients give the following effective contribution to I:

m—2 m—1 ¢ —-|—- 1
I35 a, + z Arimi1 Lo2rp1 — Z 1 Aoy -
2 r=0 t=1 2
By denoting
t=m—1—r; r=m—2,...,0,

we obtain for this contribution
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1 m—2 m —r
I> E Ay m + Z’(} Lory1 — 2 Ay am+r—§-1 .
This suggests the choice
m—r
(55) w2r+l - 2 a’m~r (T - 300y m — 2)
for the parameters x; , @3, . . . , ¥y,,_3 at our disposal. Hence (54) is reduced
to
1

(56) I =75 o+ By,
where E, is quadratic in a,,...,a, and cubic in day,..., %, ;.

N
The number II = > A, x, has the coefficient z, = 0 and therefore
k=1

no effect in the present case. There remains the combination

N
III = > By,
i,k=1

From (38') we deduce by using (53)

m—2

1
’ 2 2r+1
(56') I = z [, 1] 2y 1 by

r=0

m—2

-+ 2 Re{ z B(2m~1)(25+1) Ty} + B(zm_l) @m—1) T e
s=0

where
Bimonyesin) = Asm_s_1)t1 A
1 2s+4+1
:Eam—sbl +-'-:
and
]_ m—1
2Zm— 272m—2t—
Biom_1)@m-1) = S — 1 bim Tt + zl (2m — 2t — 1) | Ay, PO" 72 4
= t—
2m—1 m22m —27—3 12 12m—27—3
zzm—lbI + 4 {a/r+2{ by™~* 4+,
=0
where

T=t—1.
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This gives

m—2 1 —2
2r+1 2s+ 1‘
I = r;; Ix"rTl!z 2y _Tji b + Re{ Z A b Ly &1}
1 b2m41 no2m — 21 -3 i 12 b"m~-z-—3
+2m 1 1 + 4 lar"’l +""'

Substituting
s=r, t=m—2—r
into (55), and combining similar terms, we finally find

1 1 m=2(m+r+ )
NI = i Y
) om—10 T4 2

(14
~1

(

The omitted terms in FE, are of the same nature as in Z,.
Applying now the formulas (55), (56) and (57) to the inequality (5), we
obtain

s gt
™ = 2m — + ,zl, 2y +1°

which implies that
~ 2 2m—1
(58) Uy — o (L =05"7)

< 1 m:l 1 2 | 272r-17 2

= 2,0 oy L [n =7 = (m A0+ 170 e " 4 B

(m = 2 ) 3 s )
The error term K is quadratic in a,.....a, and cubic in all q,.

The right side of (58) can be estimated as in (40). The estimation
is based on the nature of E and the fact that

(m—rf —(m+r+ 17" <0 (r=0....,m—2)

for

m 2
“7%’:!”1') <bl< 1.

We end up with

2
(59) Uy = 57 (L= 01"
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at least for some interval 4§, < b, <1, where 0 < 6, < 1. Hence we
proved:

Theorem. In the class S(b;) of bounded univalent functions the sharp
inequality

2
(60) 0w = (L=5b) (k=2,3,...)
is true at least for some interval
(61) =0 =1, 0<o,<1.

The result confirms the conjecture by CHARzZYNSKY—TaAmwmr [1], [10].
One extremal function is found by the solution of
2
(62) ——~—~—i—-2— =b 5 (k=2,3,...).
(1 . fk—l)’:l (1 . zk—])l?——i

The proof of uniqueness of the extremal function requires a more detailed
discussion of the error term. For a, = ...=a, = 0 a result similar to
that in Section 3 can be achieved.

7. a,, with a,=...=a,=0

Let us finally consider the following:
Problem. a,, > 0 is fto be maximized with the side conditions

(63) Iy = ...=a,=0.

The coefficients @, ,...,0,_, are free parameters of the problem.

In view of (49), the side conditions (63) give for A4,,.; the following
values: ‘
Ay =...=4,, ,=0,

(64)

[

IA2;«+1:3“M+1 w=m,....,2m—1).

The expressions (54) and (56’) simplify considerably in this case:
1 m—2 m—2

I= 92 Z Lori1 z A g2 Xagia
r==1

s=m-—1—r

m—2
+ z arJ.-m{-rl x'lr%l + H;)— a’2m s
r=0 =
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The above expressions contain no remainder terms because of the side

conditions (63).
The inequality (5) assumes now the form
2 2 1
(65) Aom — om — 1 (I —0"7)

m—2 m—2 m—2

= — Re{ Z Lar i1 Z Ui ®agiy + 2 Z()ar+m-;-l Ty, 1}
1 r=

r= s=m—1—r
i - (L — b g, o
% 27,_|__ l 1 2r+11

Exactly as in Section 3, we conclude from this the following
Theorem. Keep ay=...=a, =0 andlet a, ,,...,0,

parameters. Then for 0 << b, <1

1
— (1 — B

(66) 0<ay, = om 1
Equality is only possible if
(67) A1 = oo =0y, = 0.

Stanford University
Stanford, California, U.S.A.

University of Helsinki
Helsinki, Finland.
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