ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

436

EXTENSION OVER QUASICONFORMALLY
EQUIVALENT CURVES

BY

SEPPO RICKMAN

HELSINKI 1969
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1969.436


koskenoj
Typewritten text
doi:10.5186/aasfm.1969.436


Communicated 8 November 1968 by OrLI LEaTo and K. I. VIRTANEX

KESKUSKIRJAPAINO
HELSINKI 1969



1. Introduetion

Two Jordan curves y and p' lying in the extended complex plane
C* = CU{w} are called quasiconformally equivalent if there exists a
quasiconformal mapping of C* onto itself which maps » onto j’. In
[5] there is given a metrical condition which characterizes this equivalence
relation in terms of the existence of homeomorphisms ¢ :y ->9" which
can be extended to quasiconformal mappings of C*. Those Jordan curves
which are equivalent with circles, called quasiconformal curves or quasi-
circles, form a special equivalence class denoted here by I',. The class
I’y can also be described to consist exactly of those Jordan curves which
permit a quasiconformal reflection ([2]).

Let ¢ and ¢ be Jordan domains. We denote by E(G, G') the family
of quasiconformal mappings f:G — G’ which can be quasiconformally
extended to C*. By Satz I1.8.1 in [3] it follows that if a quasiconformal
mapping f: G — G’ has a quasiconformal extension to a domain which
contains the closure @, then f€ E(G,@). Quasiconformal curves have
the following property with respect to quasiconformal extension: If the
boundaries 0G' and 9G" belong to I, then every quasiconformal mapping
f:G— G belongs to E(G,G’). This result is an immediate consequence
of the definition of I,

In this paper we study to which extent the extension property of I
is valid for the other equivalence classes. Especially we ask whether there
is some equivalence class I" different from I, such that every quasicon-
formal mapping f: G — G’, where ¢ and G’ are Jordan domains with
boundaries in I', belongs to E(G, G'). That no such class exists is estab-
lished in Theorem 2. It is also natural to ask how small E(G, G’) can be.
Theorem 3 gives an answer in this direction and shows that there is even
an equivalence class I' such that all mappings in E(G, (), where the
boundaries 9G' and 9G’ are in I', coincide on the boundary, that is,
E(¢, G") is smallest possible according to Corollary 1 of Theorem 1.
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2. Extension properties

We first restate Theorem 3 in [5] in a special case which is more appro-
priate for our present purposes:

Theorem 1. Let f: C* — C* be a homeomorphism which is quasicon-
formal off a Jordan curve y. If there exists a quasiconformal mapping
g: C* — C* such that gly = fly, then [ is quasiconformal.

Corollary 1. Let f, and f, be quasiconformal mappings of a Jordan
domain G onto a Jordan domain @' such that they coincide on the boundary
0G. Then f, € E(G, &) if and only if f, € E(G, G').

Corollary 2. Assume f€ E(G,G") where G and G are Jordan do-
mains. If g: C* — C* is a homeomorphic extension of [ which is quasicon-
formal in C* — @, then g isa quasiconformal extension of f.

We need some notation. The complement and the euclidean diameter
of a set A are denoted by C, and d(A4) respectively. We denote by
B.(z) the open disc and by S,(z) the circle with radius r and center z.
By zz we mean the open line segment with endpoints z; and z, If «
is a Jordan arc and wy, w, €, then «(wy, wy) is the open subarc of «
with endpoints w; and w, The absolute value of the cross-ratic of the
sequence 2, %, 23, 7y is denoted by [z, 2, 23, 24 For finite distinct points
we have

|z — 20 122 — 2

=,

| ~ |
[%15 %25 73, 24| |1~ |
#1— Z4] 172 — =3,

By u(r), 0 <r <1, we denote the modulus of the unit disc slit along the
real axis from 0 to r.
The following result ([1]) is a consequence of a distortion theorem of

Teichmiiller:
Lemma 1. If f:C* — C* is a K-quasiconformal mapping, then

!f(zl)a e ’f(zél)i S L(K: izl’ et 24‘.)
holds for distinct points z, ... ,z, € C¥, where we have used the notation

1
= : —1
& LUK ) = G Bl 1) )

The fact that the class I, of quasiconformal curves is the only class
which has the special extension property mentioned earlier is stated as
follows.

Theorem 2. Let G and G be Jordan domains. Then every quasicon-
formal mapping f:G— G has a quasiconformal extension to C* if and
only if 8G and 3G’ are quasiconformal curves. Moreover, if 9G 1is mol
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quasiconformal, then for every K > 1 there exvists a K-quasiconformal map-
ping [: G- G which cannot be extended quasiconformally over 0G.

Proof. We already pointed out that if y = 06 and 9y’ = oG’ are
quasiconformal curves, then every quasiconformal mapping f:G — G’
belongs to E(@, G'). Since the inverse of a K-quasiconformal mapping
is K-quasiconformal, it suffices to prove the last part of the theorem.

Let K be greater than 1. We can assume that oo € y N »’. Suppose
that y is not quasiconformal. If 9’ is quasiconformal, the family E(G, G)
is empty. Suppose therefore that p’ is not quasiconformal at a point 2z’
([4]). If now o is quasiconformal at a point z, the conformal mapping
of G onto G’ whose extension to the boundary maps z onto z’ has no
quasiconformal extension to C*. Consequently, we can assume that yp
is not quasiconformal at any point.

Let now @ = G(z, 2,23, ) and Q' = G'(z/, 2,25, ©) be quadri-
laterals with modulus 1, and let ¢ and ¢’ be the canonical mappings of
@ and Q' respectively onto the square A4 = A(0,1,1 + 4, 7). Using the
same notation for the extension of g to the closure @ we denote w, =

gt (27, n =1,2,... . Choose 6 such that 0 << 6 <1 and 1/(1 — 0)
< VK.
Let 9,1 Vus» - -- be a sequence of open subarcs of y — {0} such

that y,,2w,m=12,..., and limd(y,,) =0. Since y is not

m—> oG

quasiconformal at w,, there exist for every m successive points aj .,
Ay oy Of 9,,, such that

n.m’> “n,m

(P! 2
ian,m U”_m |
A m
[ 3
?a/n.,m a’n.,m i

Denote by b, the first point of y,,.(al,., a®,) from a2, which belongs
to the line segment a., a’,..j=1,3. Let H,, be the bounded Jordan
domain whose boundary is ., b, Uy, (b .. b)) and let U,, be

nm “n.m

a circular neighborhood of a:, such that U, N ((y — Yum(bhm b2..)) U

n.m

n.m

by, bl = 0. Then for every n at least one of the following cases occur:

n,m

(a) anlU, cH

n.m n.m

(b) 0,NU

for infinitely many m,

c H,, for infinitely many m .

n,m

Let E, be a disc such that E, c G’ if (a) occurs for » and K, C Cg
otherwise, and such that @£, contains a point «, of ¢ (w,) where
. 1is the interval

1 b 1 o)
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of the real axis. Now denote

7 ?Z, a/,A
71 — W]

0":L(n’ e ’{)
[6n — &y’

where L is defined by (2.1) and where ¢, is the center of E,.
For every n we choose m,>n such that y,, is contained in a

disc D, for which

lu — u*| 1
(2.2) <
lw —2zf "o

it w,uw* €D, such that ¢(y,,)Co. and that ¢NU,, cH if

(@) holds for » and CgNU,, cH,, otherwise. For simplicity we
write al =al, ,bl =0b] j=1123 H,=H,, and U,=U

We define now subsets of A for every n,n =1,2,..., as follows:
| ! !
Vn=l EA[EZ‘;<RGZ<§2"—_'T[,
i 1 1|
W,=12€4 [2*2",;:1'<Rez<;227;5[,

1
an{ZGA[?ﬁ<Rez<vn}7
1|

Y, = lz €4 |v. <Rez< 52,1;2[ s

where v, = g(a}). Let h:A-—-A be a homeomorphism for which
the restrictions A}V, and A|W, are the natural affine mappings onto X,
and Y, respectively, n=1,2,.... A homeomorphism A :4 — 4
is defined similarly by the use of the numbers v, = ¢'(a.) .

According to our choice of 0, the mapping f=g'lch’'chlcg of
G onto G’ is K-quasiconformal. We claim that f has no quasiconformal
extension over y. Suppose such an extension exists, i.e. there is a K-
quasiconformal mapping F:C*¥ — C* for some K;<< co such that
F|G =f Assume n > K, If we apply Lemma 1 to the mapping F-!
and the sequence 2z, (., a,, o, we obtain from (2.2) that F(D,) and
hence F(H,) do not contain the point ¢,. Let 7, be the circular annulus
with boundary components S, (b,) and S, (b,) where 7, = |b, — b,
and t, = b — a?|. Suppose (a) holds for n. Then E,c ' and hence
ln=Fa,’)c G Let ¢, be a point of U,N I, Since ¢, € H, and
F(¢)) € OHn’ there is a point d. €1, N 0H,. But this is possible only if
d. €0,b5 and there must therefore be a point e, €1, NS, (b,). The ring

2
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T! = F(T,) separates the points F(b!) and F(e,) from the points a,
and oo. Since |F(b!) — F(e.)| > |a, — F(e,)|, we get by the modulus
theorem of Teichmiiller ([3], p. 58) the following estimate

/ 1
M) < 2 v’§> =a

The case that (a) does not hold for » is treated similarly. But lim M(7%,)
= o because e

b, — ar|
Tl)vl - bg‘i > m, — 1
and m, >n,n=1,2,..., and we have a contradiction with the quasi-

conformality of F. The theorem is proved.
Remark. By a similar but more complicated argument one can actually
show that the statement in Theorem 2 holds also for K = 1.

3. An example

Let y and p’ be quasiconformally equivalent and let ¢:C* — C*
be a quasiconformal mapping such that ¢(y) = y’. Let G be one of the
complementary domains of y and denote @ = g(G). Then f,=g|G
€ E(G, ('), and Corollary 1 of Theorem 1 says that every quasiconformal
mapping f: G — G’ which coincides with f, on the boundary belongs to
E(G, G"). Note that if Jordan domains D and D’ with 0D =y and
oD’ =o' are chosen so that ¢(D) = D’, then E(D,D’) may be empty.
We shall now establish an example which gives the following result.

Theorem 3. There is an equivalence class I' such that if G and G

[ !

—

- .

|
|
. L

I
| C1
1 "
_ L,
| dm
o) v

Figure 1.
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are Jordan domains such that 0G, 0G" € I', then all mappings in E(G, G")
cotncide on the boundary.

This follows immediately from the following theorem.

Theorem 4. There is a Jordan curve y such that of f:C* — C* is a
quasiconformal mapping which maps v onto itself, then fly s the identity
mapping.

Proof. To construct a Jordan curve with the required property we start
with the segmental Jordan curve C; and a point ¢; on () as shown in
Figure 1 where d,, = b = 1/5. We shall form a sequence Cj, C,, ... of
segmental Jordan curves inductively as follows. Suppose C,_; is constructed
and the point ¢,_; on C,_; chosen. To construct C, we deform, starting
from the point ¢,_;, the line segment parts of C,_; into successive wave-
like closed arcs Cp, . .., 0”"1 as shown in Figure 2 (which is an illustration
of the case where [ is even) such that the height and the width of the waves
satisfy certain conditions stated below. We set

™
Ol == U Cl,n
n=1

and define ¢, to be the common point of (), and C,,,,l. With this con-

struction every Cy, k > 2, is the union of successive wavelike arcs C) , .. .,
Ok,nk which come from successive line segment parts of C,_;. We denote

by M the height and by d,, the width of the waves of the arc C,

‘ h
s
dy IS ey
c e . S oA
\ 1}
= -! 1? R
e L__In L
qn . e
1 >
“TTud, Ci
<« 5 M
h,
Cl,nL ‘/\
CL-T,n‘ 4
P
i
3

Figure 2.
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(see Fig. 2). In the construction we require now the following additional
conditions for Lk > 2:

dy_1,n 1 /(A "[
3.1 hoe < min | "‘-1,*( M)
(3.1) * ] k 2k [’
dovey L1V
(3.2) dyy = lu; ERET (3}5 M-y.,p>1,
| 4hk> u >1
(53) o) <ga =1

Here L is the function defined by (2.1). It should be noted in (3.1) that
n, is determined by C,_,.

As a limit of the sequence C, C,,... we obtain a Jordan curve 7.
We claim that » has the property in the theorem. To prove this suppose
there is a K-quasiconformal mapping f:C* — C* such that f(y) =y
and such that f|y is not the identity. Let ¢ €y be the limit of the sequence
€1, €y, - . . . Because of the assumption, there is a point z €y such that
2" = f(z) # zand z, 2" s c. Suppose that the sequence c, 2, z is positively
oriented with respect to the bounded complementary domain of y. By
the Holder continuity of f there is a constant M << oo such that
|f(wy) — fw,)| < M |w; — w,|"'™ holds for points w;, w, € y.

We denote by y,, the subarc of y which comes as a limit from suc-
cessive deformations of (), in the obvious sense. Let now » > M, K
be an integer. We choose ¢ >0 such that B,(2)N B, (') =@ and
such that 49 < min {|z — ¢|, 2" — ¢|, |2" — f(c)|}. Let 9.3 2z be a subarc
of y such that y.c B,(z) and y, = f(y:) ¢ B,(2'). We can then choose
an integer k > 4 L(p, 16) such that d(y,) > 2 h,_, and such that there
is an integer n such that, if w €y,, then w€y,,. ., for some m >0,
and if w’ €y, then w' €y,,_ . for some m’ > 0.

Since d(y,) > 2 Iy_,, 7, contains a subarc y,, with d(y,,) > k,_,/2.
We denote the common points of C,, and C, , by a,,...,a, so that
the indices correspond to the successive order on C, .. Let d; be a point

on y,, closest to a; and let b; be a point on C closest to b = (),
t=1,...,7. Then |&; —¢a |=4d,, t=1,...,r—1, and Id—a,],
lbi—biI SQkk+1,2= 1,...,

Suppose that the arc o = (Cr — {cx}) (b;, b;.,) contains at least 12
successive line segment parts of C, (Fig. 3). Let ey =bi, e, ...,e, 4,
¢, = b;,, be a sequence of successive points on « such thatevery «(e,, e, ),
u=1, , 8—2, consists of four successive line segment parts of C, and
such thab a(eg, €) and «(e,_y, e,) do not contain four successive line seg-
ment parts of C,. Let e, €y, be a point such that [, —e,| <2k, if
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o< €51 “7_““‘_]
e
—
eS
Figure 3.
=1,...,5—1, and denote ¢,= b; and ¢, = Fl;ifl. Then for every
U, p=0,...,8—1, there exists an integer »,» =0,...,s—1, v — u| <2,

such that the following condition holds:
(#) The arc f, = y,(e,, ¢,,,) has a point w, such that

1@ — w,| I

IEV - Etr+1[ 4 dk,n+p ’

By applying Lemma 1 to the mapping f~! and the sequence f(w,), f(e,. ).
f(e,), f(c) we get by the choice of o the inequality

le, — w,| [ 2lf(e,) — f(w,)]
= — < L\K, =~ .
2'\61' - e;u[-l & —<_ (\ ’ tf(ev) - f(er-_»l)!i )

If now (x) is satisfied for », we have by the choice of p that
e _ o (p 2/f(e,) —f(um‘)
8 i p " If(e,) — fle, )]
The condition (3.3) implies then that
26) —fw)| _ 4h
l.f(év) - f(61'+1)! dk,n )
But, by the construction of 7, this is possible only if
(3.4) d(fB) <2, .

If the condition (*) is not satisfied for » = u, we estimate as follows.
Let », |y — u] <2, be an integer such that (x) is satisfied for ». Then
there is a point (, € #, such that

sup |E,, — w]

weP,
= =8.
iev - Cvi

Again by applying Lemma 1 to the mapping f and the sequence w, ,,
e,, ¢, where w € f8,, we get by the choice of ¢ and p the inequality
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_,z}l(/lg)[f(gu) — w'|
fe) gy =@ 10

This together with (3.4) implies
d(f(B,) = 4 L(p, 16) d(f(5,)) = 8 L(p, 16) I, ..,

and since s < mn,,/4, we get thus

|, — @ | = ff(z.) —fi ) =20 L(p, 16) by .

From m, fy, <dy,/k and from the choice of £k it follows that

\d; — d; 1| < dy, /2. But then

|

a — | <l — @) @G — G|+ Ay — @ <4k F dk,nk/2
<o /2 + A, /2 < dyy s

which is a contradiction. Hence the arc x contains less than 12 line seg-
ment parts of C,.

We have now proved that the arc 4 = (C,, — {¢;}) (b1, b,) contains at
most 12(r — 1) line segment parts of €. Let now z,=0y,2,...,2,_1,
z, = b, be a sequence of successive points on (), which divide 4 into
subarcs similarly as the arc x was divided by the sequence ey, ... ,e
above. Then 1 < 3r. It is now observed that if z,z,, , €C,, for some
t and if w=1,...,2—2, then [z, —z, .,/ =2d,,. Otherwise we
have |z, —z,.,] <2Mh. Since in any case d,,. ,/d;, < 1/48, one can
conclude that

AcUq,

i==0
for some ¢. It then follows the estimate
‘!gl - zri S 4 hk 1 _I_ 8 hk + 6 rdk.nvp < 9 kk + 6Tdk,n—]~p .
By the use of (3.1) and (3.2) we get

- - 1 (hk_l')k r (1 ')P i g
by — b,] <3\ 9k +Z(?p 2y i s

and from k> 4 L(p,16) > p and r < 2h,_,/d,, the inequality

Py ‘)"
2p

@—M<(

Combining this with |d; — d,| > h,_,/2 we are led to the contradiction
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iy — d,] = |f(B) — f(,)] > plby — b,/ > M[b, — b,

’

is positively oriented with respect to
1

In the case that the sequence c, 2, z
the bounded complementary domain of p, the Hélder continuity of f-
is used. The theorem is proved.

University of Helsinki
Helsinki, Finland
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