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On languages representable in rational probabilistic automata

In a probabilistic automaton the initial vector as well as the transition
matrices are stochastic and the final vector consists of 0’s and 1's only.
If the elements of these vectors and matrices are replaced by arbitrary real
numbers, then we get the so-called generalized automaton. However, this
generalization is not essential as far as the family of representable languages
is concerned; we have proved in [2] that a language can be represented in
a generalized automaton if and only if it can be represented in a probabilistic
automaton. This result is a useful tool in the investigation of languages
representable in probabilistic automata.

In this paper, we first (sections 1 and 2) present two different notions
of the representability of languages in probabilistic automata and prove,
by using generalized automata, that they lead to the same family of lan-
guages, which we call the family of stochastic languages.

In section 3, we investigate probabilistic automata where the elements
of the initial vector and of the transition matrices are rational numbers.
The family <Z,, of languages representable in these automata with rational
cut-points contains all regular languages as a proper subfamily. It turns
out that <£, , coincides with the family <£,, by which we mean the family
of languages representable with integer-valued cut-points in generalized
automata where the elements of the initial vector, of the final vector and
of the matrices are integers. By using generalized automata, we prove that
the family <£,,, is closed under complementation. As it is well-known, the
corresponding problem for the whole family of stochastic languages is open.
In section 3, we also introduce another subfamily of stochastic languages
containing all regular languages as a proper subfamily.

Finally, in section 4 generalized automata are used in establishing that
the language {a"y"|n = 1} is a stochastic language.

1. By an alphabet I we mean a finite non-empty set. The set of words,
including the empty word A, over the alphabet I is denoted by W(I).
Subsets of W(I) are called languages over I. The union, the intersection
and the product of two languages L, and L, are denoted, respectively,
by L; + L,, LN L, and IL,L,. The complement of a language L with
respect to W(I) is denoted by L. We also use the notations
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L —ILy=I,N0L, L*=>L

i—=0

where L% = {A}.

Definition. A generalized automaton over the alphabet I is an ordered
quadruple ®A = (S, M, 7y, f,) where S = {s;,...,s,} is a finite non-
empty set (the set of states), M is a mapping of I into the set of 7 X n
matrices with real elements, m, is an n-dimensional row vector with real
components (the initial vector) and f, is an n-dimensional column vector
with real components (the final vector).

The domain of M is extended from I to W(I) by defining
M(A) = E, (nxXn identity matrix),
M (wyzcy - -+ ) = M(wy) M(x,) « - M(xx)

where k> 1 and x; €1.

If the initial vector 7, aswell as the matrices M (x) (x € I) are stochastic
and the final vector f, consists of 0’s and 1’s only, then G is called
a probabilistic automaton. In this case we also use the notation PBU.

By a rational probabilistic automaton RPA we mean a probabilistic
automaton PBUA = (S, M, 7y, f,) where the elements of =z, and of the
matrices M(x) (x € I) are rational numbers.

An integer-valued gemeralized automaton IGA = (8, M, 7y, fo) s a
generalized automaton where the elements of =, f, and of the matrices
M(zx) (x € I) are integers.

For any real number 7, the language represented in- G with the cut-
point 7 is defined to be the set

L(®A,n) = {P € W) | 7e M(P) fo > 4} -

If G is a probabilistic automaton, then L(®U,7) is called a sto-
chastic language.

For any probabilistic automaton RUA = (S, M, x,, f;) and for any real
numbers 5 and & (e = 0), we define

(1) LB, n, &) = (P € W) | (P) fy — | < e}

Let <£ be the family consisting of the languages L over I such that,
for some B, % and &, L = L(PA, n, ¢). In what follows, we also use the
notation <Z,, (£;.) to mean the family of languages L over I such
that, for some RPA (SGA) and some rational number 7 (integer 7),
L = LRBA, n) (L = LISGA, n)).

It should be noted that the family of regular languages over I is a
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proper subfamily of <£,, (cf., for instance, the example of [2], p. 19).
On the other hand, <£,, is denumerable and, consequently, a proper

“rat

subfamily of stochastic languages.

Lemma 1. A language L can be represented in a generalized automaton
if and only if it can be represented in a probabilistic automaton, i.c., if and
only if it is a stochastic language.

This lemma has been proved in [2] by using a constructive method.
The following lemma has been proved in [2] for the so-called generalized
probabilistic automata, but the same proof is valid for generalized automata.

Lemma 2. For two generalized automata &UA; = (Sy, My, 7y, f;) and
GAy, = (Sy, My, 7y, f5) over I, there exist gemeralized automata GA =
(S, M, my, fy) and GW = (S', M’, m,, f,) such that, for any word P € W(I),

7 M (P) fo = 7 My(P) fi + 7 Mo(P) fo
and
a,M'(P) fy = (1, M,(P) fy) (mM(P) [5) -

2. In this section, we show that the family -<£ obtained from the
definition (1) coincides with the family of stochastic languages.

Theorem 1. A language L belongs to the family <L if and only if it is
a stochastic language.

Proof. For the »ifs-part, assume that L is a stochastic language over
I, ie., L=L(BA») (n=1) for a probabilistic automaton PUA =
(S, M, ny, f,). Thus,

L = {P| 7M(P) fo > 1} »
which can be expressed in the form
L={P aM®P)fy—1 <1 —y}.

This implies that L € <£.

To establish the »only ify-part, let L € <L be arbitrary. By the definition
of £, there exist a probabilistic automaton RUA = (S,, M,, 7, f;) and
real numbers 7, ¢ (¢ = 0) such that

L ={P| |mM(P) fy — | < &}.

Since & = 0, this can be written in the form
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(2) L = {P| (mM(P) fy — n)* < €%} .

There exists a generalized automaton A" = (S,, My, 7,, f;) such that,
for any word P € W(I), mMy(P)f, = — ». This implies, by Lemma 2,
that for some generalized automaton ®&U’ = (S, M, 7, f;) the equation

(3) 7y M(P) fo = (m My(P) f — )
holds for any word P € W(I). From formulas (2) and (3) it now follows
that

L = {P|mM(P) (—fo) > — &} .

In other words, L = L(GUA, —e?) for GA = (S, M, ny, —f,). By Lemma
1, this implies that L is a stochastic language. Theorem 1 is thus proved.

Remark. For any generalized automaton &%, the language L(®, 7, €)
can be defined in the same way as L(R,7,¢) in (1). Also in this
case the corresponding family of languages coincides with the family of
stochastic languages. The proof is the same as that of Theorem 1.

3. This section deals with rational probabilistic automata. We need
the following two lemmas.

Lemma 3. The family L., is a subfamily of <L,,.

“~int

The validity of this lemma is verified by considering the constructive
proof of Lemma 1 in [2].

Lemma 4. If L €<L,,, then there exists an integer-valued generalized
automaton IGUA such that L = LIGA, 0).

Proof. Let L €<L, be arbitrary. By definition, L = L(RBA, 7)
for some RPUA = (S;, M;, 7y, f;) and some rational number ;. Denote

)
f 1, = f 1
1
Note that the components of f; are rational numbers. Since = M(P) is
a stochastic vector for every word P € W(I), we have

0, My(P) fi = mMy(P) f, — u for all P € W(I).
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This implies that, for &U = (Sy, My, 7y, f1), L = L(GA, 0). Since the
elements of , f; and of the matrices M,(x) (x € I) are rational, there
exists a natural number K such that the elements of

= Kmy, fo=Ef1, M) = KM() (x€1I)

are integers. Clearly, for any word P € W(I), = M,(P)f . > 0 if and only if
7, M (P) f,> 0. This implies that, for JGUA = (S, M, 7y, fo), L = LSGU, 0),
whence the lemma follows.

As an immediate consequence of Lemmas 3 and 4, we obtain the fol-
lowing

Theorem 2. The families <L, and <L, are equal.

It is not known whether or not the family of stochastic languages is
closed under complementation. In the following theorem we solve this
problem for the subfamily <Z,, of stochastic languages.

Theorem 3. The family <L, is closed under complementation. Thus,
if L€L,,, then L is a stochastic language.

rats

Proof. Let L €<L, be arbitrary. By Lemma 4, L = L(S®%, 0) for
an integer-valued generalized automaton JIGUA = (S, M, 7, fy). It follows
that
(4) 7, M(P) f, is an integer for all P € W(I).

Since
L ={P| 7 (P)f, =0},

we infer from (4) that

L = {P| 7 M(P) f, < 1}
= {P| 7 M(P) (— fo) > — 1}

Hence L = L(SGA’, — 1) for the integer-valued generalized automaton
IGA = (S, M, 7y, — f,). Theorem 3 now follows from Theorem 2.

For any probabilistic automaton RU = (S, M, n,, f;) over I, we
denote

L(PA, 9, =) ={P € W) | mM(P) fo = n} -

Let <£(=) be the family consisting of the languages L over I such that,
for some PA and some real number u, L = L(PA, 7, =). Let L (=)
be the family of languages L over I such that, for some RPA and
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some rational number 7, L = LRV, 5, =). (Thus, £, (=) is a sub-
family of <4£(=).)

Theorem 4. The family of regular languages over I is a proper subfamily
of L,u(=). The family <L, .(=) is a proper subfamily of stochastic lan-
guages.

Proof. Every deterministic automaton can be rewritten as a proba-
" bilistic automaton where the initial vector and the rows of the transition
matrices are co-ordinate vectors. Thus, for any regular language L over
I, there exists a deterministic automaton PUA = (S, M, n,, f,) such that
L = {P| 7, M(P) fy = 1}. This implies that L € <£ ,(=). The first part
of Theorem 3 now follows from the fact that, for example, the non-regular
language {a"yx"y |n = 1} + ayy belongs to <L (=) (cf. [1]).
To prove the last sentence of the theorem, let L € £, (=) be arbitrary.
From the proof of Lemma 4 we conclude that

L ={P | 7M(P)f, = 0}

for an integer-valued generalized automaton J®&UA = (S, M, x,, f,). It
follows that =, M(P) f, is an integer for all P € W(I). Consequently,

L = {P| (7] (P) fo)? < 1}.

As in the proof of the »only ifs-part of Theorem 1, it is verified that L is
a stochastic language. The proof is now complete, because <£ (=) is
denumerable.

The problem whether or not “£(=) is a subfamily of stochastic languages
is open. We have established in [2] that if there exists a language L € (=)
which is not stochastic, then the family of stochastic languages is not
closed under complementation.

4. TFinally, we show that the language {z"y"|n = 1} is a stochastic
language. The following lemma is needed.

Lemma 5. There exists a generalized automaton U = (S, M, =, f,)
over {x,y} such that the elements of m,, fy and of the matrices M(x), M(y)
are rational and

{PlagM(P) fy = 0} = {a"y" [n = 1} + ((x + y)* — aa*yy™) .
Proof. Denote
Li={ey |n=1}, L= @+y)* —awiyy*, L=1L+ L,.
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x(§) yF)

X() (2

Fig. 1.

Consider the generalized automaton U = (S, M, n,, f)) over {=,y}
where S = {s;,...,8;},

(S

7=(3,%,0,...,0), fi=(©0,...,0,2,—2)

(fi means the transpose of f,) and the mapping M is defined by the
graph of Figure 1.
It is verified that, for any nonnegative integers »n and £k,

_ [BL)" (D) — (3)") is P if of the form a"+ly*+Y,

T M(P)fy |0 otherwise.

This implies our lemma.
Theorem 5. The language {x"y" | n = 1} is a stochastic language.

Proof. Let L, L, and L be as in the proof of Lemma 5. From this
lemma and the proof of Lemma 4 it follows that
L = {P| meM(P)f, = 0}

for an integer-valued generalized automaton JGUA = (S, M, 7, f,). We
consider the language L, in the form
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(5) L=LNL,.

Since L, is a regular language, there exists a deterministic automaton
?BQI = (S17 Mp n]_yfl) such that

(6) E2 ={P | mM,(P) f, = 1}.

Denote f;=f, —(1,...,1)". Formula (6) now implies that, for the
integer-valued generalized automaton JI®UA, = (Sy, My, 7, f1)s

Z2= {P[nlMl(P)f{ =0}.

By Lemma 2, there exists a generalized automaton U, = (Sy, My, 75, f5)
over {z,y} such that, for all P € (x 4 »)*,

ay,My(P) fo = (M (P) fo)? -+ (m M(P) fi)?
Consequently, by formula (5),

L, = {P | mMyP) f, = 0}.
For all P € (x—{— J)* the numbers nollf )f, and 7, M,(P)f; are integers.
Thus also 7, M,(P) f, is an integer. This implies that

Ly = {P| |mMy(P) fo| < 1}.

As in the proof of the »only if»-part of Theorem 1, it is now verified that
L, is a stochastic language.
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