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1. Introduction

Starting from the idea of Grunsky there has recently been an important
development in extremal problems of univalent functions. In these works
the emphasis has been laid upon the functional side, while the question of
the extremal function is often left without detailed discussion.

The present paper is concerned with the problem of determining all the
extremal functions. It appears that, on each occasion when the functional
in question can be maximized, the related conditions for the Grunsky
parameters are able completely to characterize also the extremal function.
This is a remarkable state of things, not encountered in extremal methods
based on sequences [3].

In many cases, there pre-exists a conjecture of the extremal function.
The state of things mentioned above accordingly provides an indication
in attempts to effect further development of the Grunsky type of methods
for more advances problems.

Let us concentrate on the class S(b;). This consists of functions f, for
which we suppose that

lf(z)zblz—{—bzzz_:_...;
M) V<1, yi<1:
l0<b1§1.

The 8(b,)-functions are analytic, univalent and bounded in the above
manner in the unit dise. In S(b,), the first positive coefficient b, is kept
constant. This means the division of class S of all univalent functions in
certain subclasses, which also approximate arbitrarily the unbounded
univalent functions § . Clearly, the solution of an extremal problem for
all b, implies determination of the extremal functional in S also. How-
ever, this leaves open the question of all the extremal functions in &.
The complete solution in S requires that the corresponding Grunsky type
of condition is first transformed to S.
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2. The area inequality for S(b,)

Let g(w) be analytic in D, where D is a simple domain of integration
in the w-plane. The starting point of all the inequalities to be used is the
integral inequality

1
(2) 0 é// 9'(w) = /Re{g(w)}g'(W) dw

oD

This is a direct consequence of Green’s basic formula and remains true also
if Im {g(w)} is multivalued in D, while Re {g(w)} is single valued there.
In the case that g(w) itself is single valued in D, (2) gives

(3) 0<//m w——/ﬁ?wmm.

We first use this formula by choosing
0D = 90K, UyU —CUy,
in accordance with Figure 1. Here
C=f0K,), r<l1.

w = f(2)

Figure 1.

The function g¢(w) is choosen as

() ) = b~ ).

Since
/wmum=/ﬁWMm—/WWMm

oD 0K,
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and f vanishes, there is obtained
9K,

1 _
(5) 0§2—i/g(%)g(w dw = — ==

oD
1 2,1—_— d .
=—7 /g(f(Z)) 7 @) de, z=rd”.

We will utilize the expansion

by

(6) @)

which gives

:z—1+2xyz”, 0<zl<1,
U

gmm=ﬂ+%+§muo<m<1,
B, =«, — b b, r=12,...);

d
W){wwagww}.=—ﬂ+EWﬁm+$Kw

i
z=re 7

(1e70)
From this and (5), there follows

o0
SRR = 5. 0<r<1;
1
Zi,[ﬂv[2r2l'§ 7_2 B O<7‘< ]--
1

Passing to the limit by letting, » — 1, N — oo is permitted in the present
case and gives

(8) N, — Db, 2 <1

-8

Apply now the rotation 77!f(7z), 'z =1, to f(z). This gives

9) g1 f(12)) = 271~ 17 + ?j 7Y%, — byb,) 2
and hence we have got:

Theorem: If f(z) € S(by), the following area-inequality holds
(10) Z 21,y =1, —bd,, 7] =1.

1

Here «,:s are the coefficients of (6)
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The main meaning of (10) is the condition
(11) nl=1.
Equality here is possible exactly for

(12) Yyo=y3="""=0.

As will be seen, equality in (11) is actually achieved, and hence the extremal
case is characterized by the conditions (12).

Choose 7 so that 72, is real and negative. The corresponding coeffi-
cients of 7! f(7z) are again denoted by b,. In this rotated extremal case,
accordingly,

i

o = — x4
and (11) gives |og| + 0] < 1;
(13) | = lay — a3 =1 — 0}

In the normalized extremal case, we have y; = — 1 and (12) is true.
From (9) there follows for the extremal function:

1
9f) = —a—= (50 = — ) ,

f %
14 = .
(14) f2—1 b1z2+a2z—l
This is the necessary condition for the extremal f for which y; = —1

is achieved. Because (14) actually yields functions of S(b,) we have checked
that (14) is the necessary and sufficient condition for the extremal f.
Consequently it gives all the extremal functions connected to (13) and
normalized by rotation.

The right side of (14) is # oo for |z| << 1. This requires that the roots

1

of 22+ ayz — 1 =0 are of the form z,. — — with || = 1. Hence, (14)
“0

assumes the form

(15)
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The function
2

o (3_30)('3—[“ zi)

0
maps the unit circle K;(0): [z) <1 on to the w-plane slit along positive
and negative imaginary axes, as illustrated in Figure 2.

zo+ 1

Figure 2.

With this basic mapping taken as the starting point, the maps of the
unit circle given by the left and right side of (15) are drawn in Figure 3.

_i,_
2 Uiz, i
x i
2 —b o — 12
f b, z
T 1
f*— (z — :0)(‘z + "5_0

Figure 3.
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The requirement needed for a S(b;)-mapping is

( by by ) 1
(16) max ot i ) = 5 -
1
If 0=Im{z} =1, then P < W ip Thus, in this case
b 1 1
gy —i2 = 2
1 N o
b, = 5 2o — 12 =1 —Im {7},
(17) 0=Im{z}=1—0,.
Similarly, for — 1 < Im {2} <0 we find
(18) — (1 —=0b) =Im{z} 0.
This leads to the extremal domains illustrated in Figure 4.
10
1 —b, { 2°
‘30
J. - bl { \ 40
~— -
B0 2
1° 20 3° 4° 3°
Figure 4.

Theorem. In S(b,), there holds the inequality
(19) lag —a3| =1 — 8.

Equality holds only for the two-radial slit functions which satisfy

L:bl - -
f2—1 1
=zl )
(20) ) ’
My = — (zo— g) = —2Im {7z},
2l =1, Im{z} =1 —0.
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Thus, for each by, there belongs a one parametric family of extremal mappings
(Figure 4), where ay or z, is a parameler.

Tt should be noticed that in the class S of unbounded functions f(z) =
z 4+ ap? 4 ..., a similar result can be derived from the area inequality,
obtained formally from (10) by taking b, = 0. There holds

{a’3 - a’%l g 1 )
and the normalized extremal function is

z

T& = a1

where @, is a free real parameter.

/

1
In [7], [8], [9] a study was made of the functional a; — kl — ;) a3 for

0 < p < . Only for one value of b, (= e”) the one parametric family
of extremal functions was encountered in this case. The present result is
peculiar, since a one parametric family of extremal functions is found to
belong to each value of b;.

3. The generalized Nehari inequality for N=1.

In [5] formula (2) is applied by the choice of D as in Figure 1, and by
taking

N N T 1)
(21) g(w) = xylog w + MZ1 o F.(w) — o~ F. (_1/: } .
Here x, is real and ., are complex parameters. Fn(w) is the m:th
Faber polynomial of f.
For g¢(f(z)), the properties of Faber polynomials give the following
development

N Zm =
g(f(z)) = x() log z — Z _/n? Z—m + Z Omzm ,
=1 =0
(22) . ” P
On = 2. (&ndmn + &Bn) m=0,1,2,....
n=0

The coefficients Amm, Bmn are certain combinations of the coefficients
b, of f(z), according to the definitions
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llOg f(zz%_—?é‘) = i Amnzmé-n s
(23) o
l— log (1 — f(2) f)) = > Buw"C".

m,n=1

Expression (21) of ¢ implies that g(w) =0 for w € d K,. Hence (2)
gives

1
0= 5= C/ Re {g(w)} ¢'(w) dw
2 1 = !x | ——m 1 2m
:xologr—l—xoRe{Oo}—{—E— . m : Zm]C 2.

As in the former case, it is deduced from this that

@ N !xmlz
(24) z m|Cnl2 < > P 2x, Re {C,} .
m=0 m=1
Clearly, if x, is so chosen that
'V
(25) Re {Co} = Re { > 2,4,,} =0,
m=0
then (24) gives
N N |2
(26) 2. m|Cnft = >
m=0 m=1 MM
and equality here is possible only for
(27) Oy, =0Cy.s=...=0.

It will appear, that those coefficient problems which can be solved by
the use of (26) belong to cases (25), (27). Further, these conditions are able
completely to characterize the extremal function.

In the general case, one can proceed by estimating the linear combination

N
(28) S=>1C,
r=1

with free complex parameters ¢, This is effected with aid of Schwarz’s
inequality and (26):

N N I2 N
Re {S}? < | ztm => - 21}]0,,}2
1
_ X P X P
B U A v Y
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On specializing ¢, = x,, there is obtained the generalized Nehari inequality

le’[z
, r=1,2

PRI

N N
Re{Yn0}=> "o
1 T 7

(29)
Re{C)} =0.

Equality here is possible only if (27) is true.

Especial consideration is now given to the case N = 1. In [5], the
coefficient a, was maximized for e~! < b; < 1 by using the corresponding
inequality (29). Since z; was chosen as 1, we observe that (21) reduces
to the form

/ \

(30) g(w) = xylog w + b, (w — ;u—) .

This function is accordingly the most natural first generalization of (4) used
in derivation of the area inequality. It should further be noticed that the
use of Schwarz inequality may be omitted by the direct application of (26),
which in the present case gives

01 =135
JRe {dywg+ 4y + By =1,
(31) lRe {@o Ao + Ao} = 05
JRe{a2x0+a3—a§+bl} <1,
Re {a,}
oy Rl
0g 0,
By rotation normalize a; > 0 and find
, 2y [Re{a}P
a; — (1 — b)) < Re{a;} — T
3 ( l) = { 2} 108 b;l

1
- fq 12 2
lOg bl—ll [Re La2}] [In] {a’2}] .
From this the maximal a; for e <b, =<1 is found to be 1 — b?, and
the maximum occurs only for
(33) a,=01if e <bh, < 1.

Since ecuality in (31) is in fact achieved in the maximum case, then
in this case also necessarily

Cp=Cy=---=0.
According to (33), «, = 0, and thus
Oy=A4y +By=a;+0]=1.

(32) a; — (1 —bj) = [1
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For the extremal f, presentations (22) and (30) give

SIS NS

Consideration is further given to the point b, = e™!. Now, in the extre-
mal case, a, is a free real parameter.

zy = Re{ay} = a,,
C, =14y + 4y + By = a;+ay —a; + 0 =1.
For the extremal f, (22) and (30) now give

[ 1 1
a, log f + bl(f— 7) = aylogz 4z — P

Theorem. In S(b,)
0<a,=1—bjforel=0b =1.
For the totality of the extremal functions f the following holds
(34) el<b,=1:f—f1=0b'(z—27);
(35) by =el:by(f —fY) +aylogf=2—21+aylogz.
Here, a, is a free real parameter.

Tt is known by the Lowner method that the above results (34) and (35)
hold at least for some extremal f [8], [9]. The present completion is needed
since the Lowner-method, as a sequence procedure, is unable to provide
information of all the extremal functions.

1
In [7], the functional a; — (1 — ;) a; for 0 < p < oo was maxim-

ized. Tor this (32) gives

Re oy — (1 — )] — -0

I\

[1 1 ] \ 1 \
p ot ! [Re {a,}]* — » [Tm {a,}]*.

It is checked from this that for e® < b, =1 the totality of extremal
functions agrees with those found in [8].
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4. The Nehari inequality for +/ f(z*) and N=3

In [4] the problem of a, in S(b;) was solved for b; close to 1, and
close to 0. The result was arrived at by replacing f(z) by the related odd
function

VI = Bue 4 A+ ).

Here
BIZb}’/z,
A2y=0 =12, ),
)
A, = —
3 2’
2
as Ay
A, = — — — |
o 2 8,
ay 1 L
A7=§—Za2a3+1—6a2.

We have to take N =3, ay =2, =0, x; = 1. This leaves one free
parameter x;, and g(w) assumes the form

(36)  g(w) = &, Fy(w) — 2, F, (wi ) T HF s(w) = Fs (wiﬂ

- 1 B 1
:Bl(xl—E_Ag)w—Bl(fCl—!—A;});_}_ 3 w3—$ )

19
According to [4], p. 77, for 32 = =1

2
(37) aW=g (L0,

with equality only for
(38) ry=0a,=0, a;3=0.
According to (22), in this case
‘ Co = 43,
Oy = Ay + By,
loz=A23+Bzza
C3 = Ag3 + By .
Since for odd wu +»
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we obtain

C,=0,=C,=0,

S

7 1 1
03:A7—3A3A5+EA;-!——?;-Bf—[—B%[As!Z.—_ .

ETgb?.

On a combination of (22) to (36), there is found for the extremal f
3/2

5 P — )

1_3 1 B 1b3 )
=37 + g(l“ 1)’|‘—3' 1] 7

which implies for f = f(2):

bi z
(39) (1 _ f3)2/3 = bl (1 _ 23)2/3 .

2 19
Theorem. In S(b;) 0 <a =5 (1 — b}) at least for g =h=1

Equality holds only for the two-radial slit function f which satisfies (39).

Next we want to establish, that for b; close enouch to 0 the condition
for g with a proper x; implies the radial slit mapping f defined by

f b *
e ) R S
In [4], [10], there was derived an estimate for @, when b, is close to 0.

This estimate is true in all the other cases but the radial slit case (40).
x; was chosen to be

(40)

|

RI ——Ea? + b, Re {a,
elas 4 Zl“ 1 {a,}

2(1 — b,) — Re {a,}

(+1)

X, =

This estimate allowed to exclude the corresponding «,. Thus it was found
that the radial slit case (40) was the only possible maximum case. Conse-
quently, the extremal function question is completely solved in this pro-
blem. The expression (41) is undetermined for (40). We are interested in
the correct value of x; needed to determine g(w) belonging to the radial
slit case.
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In case (40), we have the following coefficients

ay =2 — 2b,,

a; = 3 — 8b; + 5b7,

a, = 4 — 20b; - 3067 — 1403 ;
Ay =1—1b,,

As = (1 —10) (1 —2by),

A7 = (1 —by) (1_5b1+5b?)-

Take a; = &; and write (36) in the form

1 1 1)
g(w) = By (x; + l—bl)(w—a>—|—§Bf<w3—&;’).

In the present case (22) gives

Co=0,=0,
Iol—xl:

o 1

3= g

Hence, for w (22) and (36) imply:
3B, (2, + 1 — by) (w — w ) + B} (ud — w)
=3x; (z —2z71) 4+ 23 — 2738,
By squaring we obtain from this
b (f* + %) + 601 (2, + €) (f2 4 f2)
+ [96y (@1 + &) — 6b; (21 + )] (f + f7)
— 290, (2 + €)* + b))

= 34 073 4 6wy (32 + 07 + (9] — 6ay) (C - &) — 2(927 4- 1)

Here, we have denoted
w=f(),2=C(,e=1—0,.
Finally, compare the result with the condition

B+ — 2P =+ —2p

obtained from (40). This shows that complete identity is achieved by taking

= —1.
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Result. In the inequality method for V) j—"—(g‘% with N = 3 conditions
(21) and (22) determine the radial slit mapping f by the choice of

(42) Tog=ay=0,03=1;2,=—1.

5. The generalized Nehari inequality for N=n and
a=...=a,=0.

In [6], there was solved the problem of maximizing @, when b; is
close to one. In particular, for a,,,, with the side conditions a, = ... =
a, = 0 the extremal conditions a,., =...=a,, =0 were determined.
Let us check the uniqueness of the extremal domain in this case.

From the recursion formula

C | © 1
(43) > Rl e = —log (L—tf@) = > rfer
for the Faber polynomials, there follows for the function
(44) J@) = b (z + gy 2L
in question
(45) F@) =0t (v=1,...,n).
Because
1 2
a2:---:“2n207“2n+125(1 —b)™,

we get for the coefficients A,, and B,, of (23), according to the formulae
of [6]

1
Ann= a2n+1 = z (l_bfn)y
A, =0,i=0,...,n—1;t<k=0,...n,
(46) .
B, =0,0=i1<k=n,
1o
By,==-b",k=1,...,n.
k
According to [6], in the maximum case
Yoy=0=...=x, , =02, =

Thus, from (21)

1 1 /1) o
(47) g(’LU) - _,',: Fn(w) - Fn (_) = (wn - ,u)—") .
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From (22) we get

1

Cl:"':O"—IZO’On:AnII+Bnn:;b—;
4: 1 —n 1 n
(48) 9(f@) = — ="+ 7

Thus, comparison of (47) and (48) yields
bl; (fn _f—n) — z" _ z—" ;
f z

1=b1 1

(1 __on); (1 _ ZQn)n

The case a,, with @y, = ... = a, = 0 is further solved in [6]. Deter-
mination of the extremal function succeeds in the above manner. Thus,
we arrive at the conclusion.

Theorem. In S(b,) the problem of maximizing a,,., with the side con-

ditions ay = ... = a, = 0 leads to the only extremal function which satisfies
f 2
(49) s =b
(1 fk—l)k—-l (1 o Zlu—‘)k—l

for k=2n+1 (n=1,2,...) and

Similarly, the problem of maximizing a,, with ay = ...=a, =0 has
the extremal function determined by (49) for k=2n (n=1,2,...) and
0<b =1.

6. Discussion on the choice of g(w).

Finally, let us discuss about modifications of the function g(w). We
omit the question of irrational functions, which evidently is needed for a,
with b, close to 0. We ask here the meaning of the most natural generaliza-
tion of the above use of Faber polynoms (3°). By this is meant the procedure,
in which F, is replaced by a general polynom of m:th degree (1°). This
choice is compared with the power method (2°), which is obtained by re-
placing F, simply by w™. All these choices appear to be mutually equi-
valent.
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1°. The polynom method.
We omit the effect of the term x, log w and consider the combination

N { _ 1\]
(50) 9) = 3 |Gn P () = 9, P (5) [
where
(51) P, (w) = i Cc.w

is a polynom of m:th degree and has free complex coefficients. The numbers
Ym are supposed to be free complex parameters. This freedoom of ¥, and
Cn leaves for the coefficients of

y"’" 'Pm (w) = Z (ym Orrw) w”
r=1

the role of new free parameters. This shows us, that the most general poly-
nom method is arrived at by taking

IX\ _ / 1
(52) o) = X [p,,, () — Pa —)J

m— W )

with free complex coefficients C,, .

2°. The power method.
Rearrange the sum of (52) as follows:

N N N N N
(53) SPaw) =3 SO, u =S ( » om) wn
m=1 m=1 p=1 m=1 \v=m /

The freedoom of the numbers C,, further shows, that the only effective
free parameters in (52) are

N
(54) tw = > C (m=1,...,N).
Accordingly, instead of (52) we are led to the equivalent choice

(b W™ — tp w™™) .
1

(55) g(w) =

3
1Mz

3°. Connection with Faber polynom method.
In particular, start now from the Faber polynom form for ¢ (equation

(21)):

N [ @ X (10
(56) gw) = > | - Fu(w) — = Fn (;)J :
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This means that in (52) we take

(57) Pn(w) = = Fn(w).

(58) F,.(w) = i k™ w (m=1,2,...).

Thus we obtain

This shows that we are led to the form (55) by taking as new complex
parameters

N1
(59) t,,.:Za:y;kf,‘;) (m=1,...,N).

Clearly, the connection (59) between the complex parameter spaces
C™N = {t = (t;,..., ty) |t, €0},
C™ = {x= (2;,...,2y) | €0}

is surjective.
Result. Consider the methods 1°, 2°, 3° defined by the choices (52), (55),
(56) of function g(w). These methods are so connected with each other that

1° = 2° = 3°.

As a conclusion, it may be noted that in Grunsky type of inequalities
the use of Faber polynoms may be avoided by the simple power choice (55).
Furthermore, to construct more effective choices of ¢ than 1°, 2° 3°
g(w) must be extended outside the range of polynoms. The coice (21)
with the additional term =, log w provides an example of this. Additional
examples of extensions of this kind are given by [1] and [2].

Institute of Mathematics
University of Helsinki
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