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INTRODUCTION

The definite automata constitute one of the earliest and best known
classes of finite automata. From the historical point of view, the concept
has its origin in the paper [11] by McCuirocH and Prrts, published in
1943. In this paper the loop-free neural nets were characterized in terms
of logical calculus. As is well known, an automaton is definite iff it is real-
izable by a loopfree sequential network. The notion of definite events
(here languages) was actually introduced 1956 by KLEENE [9] in his famous
paper, where he also gave a new formulation of the McCulloch-Pitts theory.
The definition of definite languages has then been formulated in two
equivalent ways in modern terminology.

Brzozowskr [1] calls a language definite iff it can be given by a regular
expression E - X*F, where E and F denote finite languages. The
simplicity of these definite expressions allows him to define a canonical
representation for definite languages. This result (with an extension by
Paz and PeLEG [14]) is still one of the few partial solutions of the general
problem of canonical forms of regular languages.

The other definition was given by PERLES, RaBIN and SHAMIR [15],
who also introduced the related concept of definite transition tables (here
transition systems). We adopt their definitions, but derive the fundamental
properties needed using a special regular expression, called the k-form,
for the definite language. In particular, we obtain the results of [15] that a
reduced k-definite automaton has a k-definite transition system and at
least k + 1 states by considering the derivatives of the k-form (§ 1).

The S.P. partitions of definite transition systems are considered in
§ 2. Thereby a new formulation and some generalizations of the contrac-
tion theory by PERLES et al. are presented. The partitions and the corres-
ponding homomorphic images of the transition system are then used in
the second testing and analysis method given in § 3.

In § 4 we consider automaton partitions on the semigroup of input
words. Definite automaton partitions are defined, and it is shown that
any automaton partition defined by an S.P. partition of a definite transi-
tion system is definite. The special form of definite expressions makes it
possible to develop an effective synthesis algorithm for definite languages
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from a method presented by Lerrrsevskr [10]. The method is based on
the automaton partition theory and gives the minimal solution for any
collection of definite languages. A bound for the number of refinements
needed is given.

The remaining part of the first chapter deals with definite sequential
machines and compositions of definite transition systems.

The relevance of definiteness in the theory of noninitial automata
was noted by STARKE [19]. We treat noninitial antomata in Chapter IT
starting with a slightly different definition of representation. In § 7 neces-
sary and sufficient conditions under which a noninitial automaton repre-
sents a language are given. In § 8 a synthesis method giving the minimal
solution for any collection of representable languages is developed through
a suitable counterpart to the automaton partition theory.

A great number of different varieties and generalizations of definiteness
appear in automaton theory. Such as the reverse definiteness by Brzo-
ZOWSKI [1], ultimate-definiteness by Paz and PELEG [14], and generalized
definiteness by GixzBuRa [4]. In the theory of probalistic automata we
note the definite and quasi-definite tables, and quasi-definite languages
introduced by Paz [13], [14]. BrzozowskI and SixeH [3] have considered
definite asynchronous sequential circuits. Recently, Saromaa [17] has
introduced the notion of time-variant definite languages.

We begin Chapter IIT with a treatment of reverse definite automata
and transition systems. Thereby a criterion for reverse definiteness is
given.

In § 10 we introduce the multidefinite languages. The mode of generali-
zation in question can be explained as follows. A sufficiently long word
belongs to a given definite language iff it has a suffix of a specified length
belonging to the language. A sufficiently long word belongs to a given
multidefinite language iff it has some number of subwords, including a
prefix and a suffix, of some specified lengths such that the concatenation
of these subwords belongs to the language. We accomplish this generaliza-
tion starting with the definition of definite languages by PERLES ef al.
From Theorem 23 it follows that the same family of languages could be
obtained by starting with Brzozowskis definition.

Besides the definite languages, the family of multidefinite languages
includes the reverse definite and the generalized definite languages. Through
a canonical expansion we define a hierarchy of complexity for the multi-
definite languages. Hereby the empty language and the universal language
get the rank 0, all other definite and reverse definite languages the rank 1,
and so forth.

In § 11 the corresponding generalization of definite transition systems
is introduced and studied. It turns out that the rank of a multidefinite
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transition system cannot exceed 2. In § 12 some properties of multidefinite
automata are presented. From Theorem 27 it follows that a reduced auto-
maton has a multidefinite transition system iff it is generalized definite.

PRELIMINARIES

An alphabet is a nonempty finite set. For the alphabet X we denote
by X* the set of all finite sequences (words) of letters from X , including
the empty word 4. The union or sum of two subsets (languages) of X*
U and V is denoted by U -+ V, their product is defined by UV =
Plp=w,u€U, ve€V}. Using the denotations U® = {1}, U'*! =
UU@=0,1,...), the iteration of U is defined by

U=} LU+ U2 +...— U,
i=0

The length of a word p is denoted by L(p) and the length of a language
U == @ is defined by

L(U) = max {L(p)  p €U }.

For U=0, we put L(J)= —1.

The unit languages {p}, with p in X*, are written without paren-
theses: {p} = p. We use the symbol X to denote the sum of the letters
in X, too. Then X* (k=0,1,2,...) denotes the set of words of
length £ .

Let p, p’ and p” be words such that p = p'p” and L(p") =k
(k=0,1,...). Then we call p” the k-suffix of p and denote it by
plk .

We give the definition of definite languages as it was formulated by
PeRrLES, RABIN and Smamir [15].

Definition 1. Let % be a non-negative integer. The language D is
weakly k-definite iff, for any word p satisfying L(p) >k, p €D iff
pk €D.

When k> 1, D is k-definite, iff it is weakly k-definite but not weakly
(k — 1)-definite. A language is O-definite iff it is weakly O-definite. The
degree of D (denoted by degD) is k iff D is k-definite.

A language is definite iff it is k-definite for some k .



10 Ann. Acad. Sci. Fennice A. 1. 444

It is easily seen that if D is weakly k-definite, then it is weakly &'-
definite for any k' >k, and k’-definite for some unique F<k.

The definite languages can be introduced equivalently by calling a
language definite iff it has a representation

1) D=@Q -+ X*R,

where Q and R are finite languages. We call (1) a definite expression
for D iff @ and R are regular expressions denoting finite languages,
where only the sum operation applied on words is used. If D is weakly
k-definite, then it has a definite expression (1), where R c X* and
L(Q) < k. Suppose further that the terms in @ and R are arranged
in order of increasing length and words of equal length in some given
alphabetical order. This unique definite expression we call the k-form of
D.

Note. We shall not bring forth explicitly the distinction between a
regular expression and the language denoted by it. Thence we use the
symbol of a regular expression to denote also the corresponding language.

The canonical regular expressions introduced by BRz0zOWSKI [1] pro-
vide another useful — and in general more compact — way of describing
definite languages.

We call two languages U and V almost equal iff

U—=VI+[V-U <,

where |W| denotes the cardinality of the set W .

If D, =@, X*R, and D, = @, + X*R, are two definite expres-
sions with R; = R,, then the languages D; and D, are almost equal.
Moreover the following lemma is obvious.

Lemma 1. Two weakly k-definite languages @, + X*R;, and
Q, - X*R,, given in their k-forms, are almost equal if and only if R, =
R, .

Hence almost equality divides the class of weakly k-definite languages
into equivalence classes, each class corresponding to a unique subset of
Xk,

An (initial) automaton over the alphabet X is an ordered quadruple

A=(S,d,8,F),

where S = @ is the set of states, d : § X X — 8§ the next-state function,
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8y € S the initial state and F € § the set of final (or representing) states.
The pair (S, d) is referred to as a transition system, and (S, d,s,) as
an initial transition system. The automaton or transition system is called
finite iff S is a finite set.

Following the common practice we extend the domain of 6 to § x X*.
We denote d(s,p) by sp for any state s and word p. Foraset S;c S
and word p we denote

0(Sy, p) = {s €8] s;p = s forsome s; €8,}.

The language represented by U is defined as T'(A) = {p € X*|syp € F'}.
The finite automaton is called definite or (weakly) k-definite iff 7'() is
definite or (weakly) k-definite, respectively.

Alanguage U is said to be representable in the initial transition system
A =(S,0,s,) iff there exists a set F < S such that U = T(A) for
A= (S,08,s,F). -

We shall frequently deal with partititons on a state set or on X*.
Let = be a partition on a nonempty set S . Identifying n with the cor-
responding equivalence relation on S we denote, for any s,s'€S, sus’
iff s and s’ belong to the same class in =« .

Let =! and #* be two partitions on §. We denote at <x2 and
call 7' a refinement of m? iff for each class n} €x' there exists a class
7 €2 such that aj, C 75, We write a' << a2 iff the refinement is proper.
The relation < defines a partial ordering in the set of all partitions on
S . It is easy to see that the set of all partitions on S forms a lattice
relative to <. Hereby, the infimum and supremum of the partitions =!
and z* are given by n'-n? and a! 4 2%, respectively, where the meet
operation + and the join operation - are defined as follows.

1. For any s,s' €8, s(a'-a?s iff sals’ and sa2s’.

2. For any s,s' €8, s(at + =?s’ iff there exists a sequence

’

S0 =8,8,8s...,8 =38

of elements in § such that, for any ¢ =10,1,...,n — 1, sals; ; or
SiTLQSi TN

The greatest element of this lattice is the identity partition I = {S},
and the least element is the null partition 0 ={{s}|s €S}.

A partition on a state set is called a state partition and a partition on
X* an input partition.
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CHAPTER 1
DEFINITE AUTOMATA AND TRANSITION SYSTEMS

§ 1. Derivatives of definite languages

1.1. The (left) derivative of a language U with respect to a given word
p is defined as the language

8,U — {g€X* | pg € U}.

The set of all distinet derivatives of a regular language U, here de-
noted by U, corresponds in a well-known way to the state set of the
minimal finite automaton representing U (cf. Brzozowskr [2]). The
special applicability of the synthesis method provided by this fact to
definite automata was demonstrated by Brzozowskr [1]. We shall make
use of the derivatives to find some fundamental properties of definite
automata in a simple way.

1.2. Let D = @Q + X* R be a definite expression. Then for any letter
x in X

(1.1) 0.D = 0.Q + 0.R + X*R .
The derivative is definite and by repeated use of (1.1) and the general
rule 0p,U = 9,(6,U), we get for an arbitrary nonempty word p =
Xy oo T !
apD = ap[n—l (axl‘D)
— 8,02 (8, (2, @ + 3, R + X* R))
= 0y1n_3 (0y, (0, @ + 00, B + 0., R + X* R))

:apQ_l_apR+ap!n-lR+"-+a.vnR+X*R.

If we denote for any word p of length » and language U
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U =Ua,,U

i=1

(especially o'U = 0), we get
(1.2) 3,D — 3,Q + o*R - X*R.

Clearly (1.2) holds also when p = 1.
Suppose that D is weakly k-definite and that @ + X*R is its k-form.
Then

L(3,Q + 9"R) < k.

Hence the derivative is weakly k-definite and (1.2) gives its k-form when
the words in 0,¢ + 0PR are ordered properly. Using Lemma 1 we get

Lemma 2. The derivatives of a weakly k-definite language D are
weakly k-definite and almost equal to D .

It is to be noted that deg D isin general not retained in derivation.
Similarly we get from formula (1.2) and Lemma 2

Lemma 3. Let D, and D, be two almost equal weakly k-definite
languages. Then 0,0, = 0,D,, for any word p satisfying L(p) > k.
If k>0 and L(p)=4k — 1, then 0,D; and 0,D, differ at most by
the empty word 4.

Theorem 1. A language is weakly k-definite if and only if, for any
fixed word ¢ of length &, all derivatives 6,(9,D) are equal.

Proof. Suppose that 0,(0, D) = 0,(0, D) for all words p, and p,
whenever L(q) = k. Let p = p'(pk) be an arbitrary word satisfying
L(p) > k. Then by our assumption

8D = 9,,(8,D) = 8,,,(3,D) = 8, .

plk

But this implies that p € D if and only if pk € D, and hence D is

weakly k-definite. The converse part follows from Lemmas 2 and 3.
From Theorem 1 and Lemma 3 we get the following

Corollary 1.1. If % > 0, then any k-definite language has two deriva-
tives differing only by the empty word 4.
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Theorem 2. A k-definite language has at least k -+ 1 different deri-
vatives.

Proof. The case k = 0 is obvious. We suppose that k> 0. Let D
be a k-definite language. For every integer ¢ =0,1,2,... we define
an equivalence relation ' on 9D by the condition 0,DQ'd,D iff
0p(0uD) = 0,(0,D) for all p € X*.

Clearly 0,D3,D implies 9,D 2*'9,D. Thus we have a nonde-
scending chain of partitions on 0 D

(1.3) 0= <N<,.,. . <P '<O=1T.
The last equality follows from Theorem 1. Clearly
0. DQ' 1 3,D iff 0,.DLQ*9..D forany x in X .
Suppose that for some i=10,1,...,k—1, QF'=0". We make
the induction hypothesis that Q'*" = Q. Then the following chain
of equivalences is valid:
9, DQ "1 9,D iff 9,.DQ'*"9,.D for any x in X
iff 0,.DQ"0,.D for any « in X
iff 9.D Q' *"'9,D
iff 9,DQ d,D .
Hence Q'F!'= Q" implies Q=0 T'=...=0"1=0"=17]. But
this contradicts Theorem 1. Hence all inclusions in (1.3) must be proper,
and thus the number of derivatives must exceed k.
From this we obtain immediately the following result proved in another

way by PERLES et al. [15].

Corollary 2.1. A k-definite finite automaton has at least k& + 1 states.

§ 2. Definite transition systems

2.1. The definiteness of a transition system was defined in [15] as fol-

lows.
The transition system (S, ) is weakly k-definite (k > 0) iff for every
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word p, L(p)=Fk implies d(s,p) = d(s’,p) for any pair of states
s,s" in 8. The notions of k-definite and definite transition system as
well as the degree deg 6 of a definite transition system are derived from
this in the way of Definition 1.

As a direct consequence of Theorem 1 we can state the following result
due to PERLES, RABIN and SHAMIR [15].

Theorem 3. A reduced finite automaton is k-definite if and only if its
transition system is k-definite.

2.2 Let z be a state partition of a transition system (S, ). Follow-
ing the terminology of [7] we call = a partition with substitution property
or shortly an S.P. partition iff, for any states s and s’ in S and any
letter =,

sms’ implies d(s,x) 7w d(s, ).

Hence a state partition n on S is an S.P. partition iff for each class
7, € and each letter 2 in X there exists a class m; €r such that
o, , x) € y. Clearly =z, is unique and thus a transition system

(8,0), = (7,9,),
the z-image of (S, d) can be introduced by defining
0, (g, 2) = 7y iff O(m,,2) C 7y,

for all m,,7n;€x and z € X.

Theorem 4. All n-images of a k-definite transition system are weakly
k-definite. Hence all homomorphic images of a k-definite transition system
are weakly k-definite.

The proof of this theorem is straightforward. The second proposition
follows from the first because each homomorphic image of a transition
system is isomorphic to the z-image, where = is the S.P. partition induced
by the homomorphism.

2.3. We now introduce an important class of S.P. partitions of a transi-
tion system. The concepts defined in the following two definitions are
generalizations of those (for n = 1) used in [15].
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Definition 2. Two states s and s of a transition system (S, 0) are
n-equivalent (n=0,1,...) iff d(s,p) = 06(s’,p) for any word p of
length = .

Clearly this is for every = an equivalence relation on S corresponding
to that introduced for derivatives of a given language in the proof of Theo-
rem 2. We denote the relation and the corresponding partition on S by
o

Lemma 4. For every n =0,1,...

(a) Q™ is an S.P. partition,

(b) @* < Q"' and

(¢) if Q"F'= 0", then Q""" = 0" for every 1=0,1,....

Proof. The properties (a) and (b) follow easily from definitions, and
(¢) can be proven by a technique similar to that used in the proof of Theorem
2.

From Lemma 4 we get the following theorem, which includes the
existence of l-equivalent states proved by Simon [18].

Theorem 5. The transition system (S, d) is weakly k-definite if and
only if Q%= I . If the transition system is k-definite with £ > 0, then

QD N < QL O =T,

Hence there exists for every ¢ = 1,2 ...,k a pair of i-equivalent states
which are not (¢ — 1)-equivalent.

As noted in Lemma 4 the partitions £ are S.P. partitions. We shall
now show that the £0"images can be constructed practically by means
of the strong contractions used in [15].

Definition 8. The nth (strong) contraction (S., d.), n > 0, ofa transi-
tion system (S, d) is defined recursively as follows.

1. (Sy, 0 = (S, 9).

2. Given  (S;, &%), ¢=0,1,...,(S;.;,90,.,) is obtained from
(S:i, 8;) by identifying the states in each class of l-equivalent states as
one state.

The identifications in 2 can be performed by choosing from each set
of l-equivalent states a representative, removing the other states from the
state set and replacing them in the remaining transition table by their
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representatives. Hence we may suppose that §,.,C S,c S for every
n . We suppose that the representatives are always chosen according to
some prescribed rule. Then a contraction operator C' performing the con-
tractions can be introduced: C(S,d) = (S;, ;) and COs is the represen-
tative of the class of 1l-equivalent states in (S, d) to which s belongs.
In general, we can write C"(S,d) for (S.,d,), and C"s for the repre-
sentative of s in S,. Hereby C° is the identity operator. If ("s = C" s’ ,
then we say that s and s’ are identified in S, .

Lemma 5. If d(s,x) =s", then 6.(C"s,2)=0C" (n=0,1,...).

Proof. The proposition holds in the cases n =0 and n = 1 per defi-
nitionem. Suppose that it holds for » =4, and that d(s,z) = s’. Clear-
ly, €% and (' are l-equivalent to C'*'s and C**ls’, respectively,
in (S:, é;). Hence

5(C* s z) = 8i(C's , &) = O’

by the induction hypothesis. The definition of (S +1,9;,,) implies now
that

0, (C'F s, x)=Ct1g,

Theorem 6. Two states of the transition system (S, ) are identified
in the nth contraction (S,,d,), n=0,1,...,if and only if they are
n-equivalent. Hence (S.,d,) is the Q™image of (S, 9).

Proof. The validity of the theorem for n = 0 is obvious. Suppose
that it holds for n =¢,7 =0,1,..., and consider the case n =14 1.

First let s and s" be (i + 1)-equivalent states. Then (sx)g = (s'z)q ,
for any word xg in X'*'. Hence sz and s’z are identified in S;, for
any letter @ in X . But this implies by Lemma 5 that the representatives
of s and s are l-equivalent in (8;,d;) and hence identified in
(Sic1s0is1).

Suppose conversely that the states s and s’ are identified in S, i1
Then their representatives § and § in 8; are l-equivalent (possibly
equal) in (S;, ), ie. 0&(5,x) = &(§' ,z) for any x. But on the other
hand, 6:$,x) and 6(5',x) are the representatives of sx and sz in
S;. Hence by the induction hypothesis szQ's'z for every letter x.

This implies sQ'*'s’ .
Hence each class of ©" has a unique representative in S,. If s and

s’ are the representatives of the classes Q} and 07, then 0(£7, x)
2
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c 07 implies d.(s,2) = s, and conversely. Thus (S., 6,) is isomorphic
to (S, 0)pn .

Combining Theorem 6 with Theorem 5 we get, successively, the follow-
ing results presented or implicit in [15].

Corollary 6.1. The transition system (S, ) is k-definite iff S, =
SD8,282...08, and S/ =1.

Corollary 6.2. The transition system (S, 0) is k-definite iff (S., d.)
is (k — n)-definite, for any n=10,1,...,k.

Corollary 6.3. If the transition system (S, d) is definite, then it is
weakly (|S| — 1)-definite.

Corollaries 6.1. and 6.3. constitute the basis for the method of testing
definiteness of a reduced finite automaton by PERLES et al. In § 3 we use
the contractions (S,,d,) to find a definite expression for the language
represented by a reduced definite automaton.

2.4 To remove the restriction of the finite automaton being reduced
we introduce now another type of equivalence relations in S and the
corresponding contractions. As opposed to the relations Q" these will
depend on the set of final states, and are thence defined only for transition
systems of automata.

Definition 4. Two states s and s of a finite automaton A =
(S,0,8,,F) are n-indistinguishable, n =10.1.2... . iff

d(s,p) €F if and only if o(s". p) €F .
for every word p satisfying L(p) > n.

For every » = 0,1,... we denote this equivalence relation and the
corresponding state partition by X". These partitions resemble in many
respects the partitions £Q".

Lemma 6. For every n =0,1,...,

(a) 2™ is an S.P. partition,

(b) 2n < 2™t

(¢) if X' =23 then 2""'=23", for any i =0,1,2,...,
(d) £~ < 2™, and

(e) if the finite automaton is reduced, then X" = Q.
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Proof. The properties (a), (b) and (d) follow easily from definitions,
(¢) can be proven by the technique used in the proof of Theorem 2.

Suppose that s 2"s” holds for a pair of states s,s” €S . Then, for any
words p € X* and r € X*, spr€F iff s'pr €F. Hence the states
sp and s'p are indistinguishable. Hence sp = s'p, for any p € X",
if A is reduced. This implies together with (d) that 2" = Q"

From Theorem 1 and Lemma 6 we get

Theorem 7. A connected finite automaton A = (S,0,s,,F) is k-
definite if and only if

D0 X< D o 3 =T,

Definition 5. By the nih indistinguishability (i.d.) contraction (S, , 9,)
of the transition system of a finite automaton A == (S, ¢, s,, F) we mean
the 2™image of (S, 0).

As for the sets S, we may suppose that S,.,CS,C S, for every
n. To construct the i.d. contractions we do not know of such a simple
recursive method as for the contractions (S.,d,). They must be con-
structed by first finding the partitions 2" and using the following obvious
counterpart to Lemma 3.

Lemma 7. If o(s,x) =s", and if § and §& are the representatives
for s and s’ in S,, then 0.,(5,x) =§".

To find the partitions 2™ we can use the following relations considered
in [15].
Write s A", n=0,1,..., for two states s,s" €S, iff

sp € F exactly in case s'p € F

for any word p of length n. These relations are equivalence relations
in S and they can be used [15] to test the definiteness of an arbitrary
connected finite automaton: the automaton is weakly k-definite if and
only if A* = I. In general the corresponding partitions A™ on S are
not S.P. partitions and the relations A" < A""' donot hold. The partitions
can be formed practically as follows.

1. s A%s" iff s, €F or s,s’ €S —F.

2. s A+l iff sx A's’x forall x in X, ¢=0,1,....

In general it is not easy to find the partitions 2", but when the auto-
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maton is k-definite, then A* = A**' = A*** = ..., and the partitions
2" can be found as indicated in the following

Lemma 8. If the finite automaton 9 is k-definite, then
Ir= A AL Ak

for every n=0,1,...,k.

§ 3. Testing definiteness and analysis of definite automata

3.1. Consider the following problem. Given a finite automaton it must
be decided whether or not it is definite. If the answer is affirmative, the
degree and a definite expression for the language represented must be
found.

PerrEs, RaBIN and SHAMIR [15] have given two methods to solve the
questions about definiteness and degree. The first method uses the (strong)
contractions (or alternatively a weaker type of contractions) and is appli-
cable to reduced finite automata. GiNzBURrG [4] has formulated this test
by means of graphs. The second method using the partitions A" is appli-
cable to any connected automaton.

We shall present two decision methods which also solve the analysis
problem and give the language represented by a definite expression. Brzo-
zowskI [1] has given such a method involving the construction of the
reverse (dual) automaton. Our second method makes use of this idea.

3.2. Method I. Let A = (S,0d,s,,F) be a given connected auto-
maton with n states s,, 8;,..., s,_;. Toevery word p we associate
the state vector

tp - (6(80,Z’)a 6(81 ,]9):- CEEI 6(snAl ’p))

If all components of #, belong to F we call f, purely positive, and if
they all belong to 8 — F, purely negative.

Lemma 9. A connected finite automaton is weakly k-definite if and only
if ¢, is for every word p of length k either purely positive or purely
negative.

This lemma is a direct consequence of Theorem 1 (or 6) and it suggests
the following simple testing and analysis method.
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The transition table is successively written for words of length (0, 1,)
2, 3,... so that the row corresponding to each word p gives the vector
tp . If a row is purely positive or negative it is marked by the sign 4 or —,
respectively. The process is continued until the first % is reached such that
all rows corresponding to words of length %k are marked. If there exists
such a k, then Y is k-definite and the k-form

TO) =Q - X*R

is obtained from the constructed table by taking to @ all words p with
L(p) < k for which the first component of ¢, belongs to ¥, and to R
the words of length % marked by +. Corollary 2.1 guarantees that only
a finite continuation is needed. For if no & less than = satisfies the above
condition, then 9 cannot be definite.

Example 1. Consider the 6-state automaton A given by Table 1 (a),
where S ={a,b,c,1,2,3}, s=a and F ={a,b,c}. From the
continued Table 1 (b) we see that A is 2-definite and

TU) = A+ 2+ X*ay.

Table 1.

6 la b ¢ 1 2 3 Z]la b ¢ 1 2 3
b 2 2 2 3 2 c|b 2 2 2 3 2
y |1 1 1 y|1l ¢ 1 1 ¢ ¢
(a) zz {2 3 3 3 2 3 -

zyle ¢ ¢ ¢ ¢ ¢ -+

ye |2 2 2 2 2 2 —

yy|l 1 1 1 1 1 —

—
>
~

The continuation is facilitated if we note that the column under any
state s corresponding to the words ap, with € X and L(p)=
(j=1,2,...), is the same as that under J(s,x) corresponding to
the words of length j, when the words of equal length are always written
in the same alphabetical order.

If the automaton has proven to be k-definite, then the indistinguishable
states can be found from the continued table, for obviously any pair of
distinguishable states can be distinguished by a word of length less than
k. Thus in Example 1 we find from Table 1 (b) considering ¢, , £, and #,
that the states 2 and 3 are indistinguishable.
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The procedure described above can often be considerably shortened
and the canonical expression (cf. [1]) is obtained by omitting in the con-
tinuation every word having as a suffix some word previously marked.
Then for k-definiteness it is necessary and sufficient that the table has
some rows for words of length £, which are all marked and thus no rows
for words of length more than k. The canonical representation

TO) = Q + X*R

is obtained by taking to R, without changing their order, all words
marked by + and to @ all other words whose state vector has a final
state as the first component. Also from this table the indistinguishable
states can be found.

Example 2. In the case indicated by Table 2, where s, =1 and F =
{a, b}, the table is continued for only those words of length 3 which
end with 2y and only for those words of length 4 which end with axy .
The language represented is 4-definite and we get the canonical expression

TQ) = 4 axy + X*yy .

Table 2.

A 1 2 3 a

(=l

[N

xx
ry
yx
vy
xry
yxy
rxry
yaxy

[ O ORI SIS U ORI )

N TW N WS W

B 1O DD S W W W

N0 TW S WY N

DS W WS w
|

Instead of the 31 rows of the complete table Table 2 has only 11 rows.

Method I is technically simple and it gives the languages represented
by any choice of initial state, but the maximal length of the table increases
rapidly with the number of states.

3.3. Method II. This method involves two stages. First sufficiently
many contractions of the transition system of A are formed and from
these the definiteness is tested. If the automaton proves to be definite,
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then the language represented is obtained as a definite expression from a
graph which is constructed by means of the contractions.

First let U be reduced. The contractions (S., d,) are successively
formed as indicated in 2.3. The initial state is always taken as the repre-
sentative for its class in any contraction. Then Theorem 3 and Corollary
6.1. provide the criterion of PERLES et al.: if (Sk, o) is the first contraction
admitting no further proper contractions, then U is definite iff |Sif = 1.
If 1Sy =1, then deg T(A) = k.

Suppose that 2 has proven to be k-definite. Then construct a graph
') as follows.

The nodes of I'(A) correspond to subsets of § and we assign them
orders in the following way.

1. The initial node s; = F is the only node of order 0.

2. When the nodes of order ¢ (i =0,1,...) are constructed, then
the nodes of order i -~ 1 are obtained from the table of (S;, ;) as fol-
lows. To each node s, =S, ; (for i=0,s, #+5) of order 4 and
letter « we introduce a node

Sy =18 € Sildi(s, @) €5, },

if this is nonempty, and lead a transition labelled by x from s, to s, .
Equal nodes of the same order may be identified as one node. If s, = g,
then a transition labelled by « is led to a common empty node sz (In
practice this node and transitions leading to it may be neglected).

3. If for a node s, of order i,s, =28, (for ¢ =0, s/ =9),
ie., if s contains all states of the transition system from which it was
constructed, then no nodes s, are introduced, but a transition labelled
by all input letters is led from s, to itself.

Evidently the construction terminates and the last nonempty nodes
are of order k or k — 1.

Let 6- be the transition function of I'() and denote by 9, the
finite automaton (S, 4 .s, F) for any state s in §. If we further denote
by p~ the reverse of the word p (ie., P~ =2Tmlm_y...2; if p=
3% .. .%m, and 2~ = 7), then the connection between I'(2) and A
can be explained by the following

Theorem 8. Let p be an arbitrary word. Then for any state s in S:
p~ €T(A,) if and only if 07(s7 ,p) contains a state identified with s
in the contraction from which 7 (s; ,p) was constructed.

Proof. First suppose that ¢7(s; ,p) contains a state § identified
with s. From the construction of I'() it follows that the order of



24 Ann. Acad. Sci. Fennicae A T. 444

07(sy ,p) does not exceed the length m of the word p. Hence s O™
by Theorem 6. On the other hand it follows from the construction of the
graph that (5, p~) €s; = F. Hence also (s, p~) belongs to F.

Suppose now that p~ € 7'(%,) . We proceed by induction on L(p) =
m. If m=0, then p =1 and s € F = s, . Suppose that the theorem
is true for any state and any word of length ¢, and let m be i + 1.
We write p—=gx. Denote §= CVs and s’ = Cisx, where j<t is
the order of 67(s;7,¢). Then by Lemma 5 &(5,2) = s’. Hence _

SE{s" €8l 0(s", x) €07 (57 ,9) } = 07(s7 ,p).

The definite expression 7(A) = Q + X* R can be found from I’ (A)
by taking to R the reverses of all words of length 7 leading from the
initial node to a node S;_;, of order i (i =1,..., k) and to @ the
reverses of all words leading to some other node containing the initial
state s, of .

Example 3. Consider the finite automaton 9 — (S,0,8,, F) with
F={a,b,c} and s,=1 given by Table 3. The contractions (81, 9y)
and (S,,0,) are given in the same table. From (S5, d,) we see that
2 is 3-definite because |S;| = 1. The graph I'() is shown in Figure 1.
The nodes s; ={a,b,c},s; ={1} and s ={3,4,a,c} were
read from (S,,4), s, =48, and s, ={2,4} from (S,,4,), and
Sy =8y from (S,,d,). The empty node and transitions leading to it
have been omitted. From the graph we get

TA) = + X*y + yyy) .

Table 3.
G| 1 2 3 4 a b ¢ l.eq. states
x a 3 3 3 3 3 3/|/{20}3, a},
y 2 4 b ¢ b 4 ¢ {4, c}
11 2 3 4
x| 3 3 3 3 {1, 3}, {2, 4
y |2 4 2 4
G| 1 2
x| 1 o1 a, 2
Y
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(]
Ut

If the finite automaton 9 is not known to be reduced, then the con-
tractions must be replaced by the i.d. contractions. The analysis procedure
consists then of three stages.

1. The partitions A" (n=10,1,2,...) are computed by the re-
cursive formulas of PERLES et al. (see § 2) until a partition A* = I is ob-
tained. The possible nondefiniteness is revealed at this stage. For if no
k < |S| satisfies this condition, then A cannot be definite.

2. If the automaton has proven to be k-definite, the partitions 1"
for n=1Fk,k—1,...,0 are computed using Lemma 8, and the corres-
ponding i.d. contractions are formed using Lemma 7.

3. A graph I"(N) is constructed just as I(A) but using instead
of the contractions (S, ,d,) the i.d. contractions (S, ,9,).

A definite expression for 7'(Y) can be read from I7(A) in the same
way as from () above. The justification of this method can be given
along the same lines as in the method for a reduced automaton.

§ 4. Definite automaton partitions and synthesis of definite automata

4.1. A partition I on X* is called an automaton partition (or right
invariant) iff for each class IT, € IT and letter x € X there exists a block
I1; € IT such that Il C Il

GrLusHKOV [5], [6] has shown that the automaton partitions form a
lattice relative to the partial ordering <. The infimum and supremum
of the automaton partitions /1! and II®> are given by II'-II*> and
IT* - JI?, respectively.

An automaton partition I7 defines an initial transition system

A(H):(H96:H/)’

where II, € IT is the class containing 4, and 6:II X X —II is defined
by the condition

o1, ,x) =11, iff Il,xCIl,,
for any II,, II; €Il and z €X.

Conversely, let 4 = (S, 0,5s,) be a connected initial transition system
and 7 a partition on S . By the input partition defined by =« we mean
the partition

{7} = {T,) | 7, €},
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where A, = (S,9,s,,7,). The following theorem is a generalization of
a result implicit in the well-known representability theorem by NERODE
(cf. [16]) and explicitly presented in [6].

Theorem 9. Let A = (S,0,s,) be a connected initial transition
system and =z a partition on S. Then II = [I{n} is an automaton
partition if and only if & is an S.P. partition.

Proof. Let p, and p, be two words in the same class 17, € IT, and
x aletter. Then syp; @ syp,, andif & is an S.P. partition also syp; X7 PoT ,
which implies pxllp,x .

On the other hand, if # is not an S.P. partition, then there exist classes
T, ,7m; €, states s;,s, €x,, and a letter x such that s@ €x; but
syv € 1, . Because A is connected there exist words p; and p, such
that s, = sgp; and s, = sgp, . Now p,/Ip,, but not pxlipyx .

We note that all automaton partitions defined by S.P. partitions of
finite transition systems are finite. The following theorem reveals the
isomorphism between the lattice of the S.P. partitions of a given initial
transition system and a sublattice of the automaton partitions.

Theorem 10. Let A4 = (S, 0,s,) be a connected initial transition
svstem, and 7' and =% two of its S.P. partitions. Then

(a) @t < @2 implies I{#'} < [I{n%},

(b) II{n' - 7%} = I{n'} - [I{n?}, and

(¢) I{a* + =%} = IKa'} + II{n%} .

The proof of this theorem is staightforward.

4.2. We call an input partition weakly k-definite iff all of its classes
are weakly k-definite languages. The notions of k-definite and definite parti-
tions, and their degree are introduced as the corresponding concepts for
languages in Definition 1. Hence a partition is k-definite iff all of its classes
are weakly k-definite languages and at least one is k-definite. We note
that a definite input partition is always finite.

Theorem 11. The infimum and supremum of two weakly k-definite
input partitions (k = 0,1,...) are weakly k-definite. Hence the definite
input partitions form a lattice relative to the relation <, and the weakly
k-definite (k= 0,1,...) partitions a sublattice of this lattice.

The easy proof based on the fact that the unions and intersections
of weakly k-definite languages are weakly k-definite is omitted. As a con-
sequence we get
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Corollary 11.1. The definite (weakly k-definite) automaton partitions
form a lattice relative to <.

Theorem 12. Let A = (S, d,s,, F) be a k-definite connected finite
automaton and X" (n =0,1,...,k) the state partition into n-indis-
tinguishable states. Then II" = II{X"} is a (k — n)-definite automaton
partition.

Proof. As noted in Lemma 6 X" is an S.P. partition and II"* thus by
Theorem 9 an automaton partition.

Let p € X¥-" and ¢ € X* be chosen arbitrarily. For any word r satis-
fying L(r) > n, we have L(pr) >k, and thus sypr € F iff sgpr € F.
Hence s,p X"sqp and pll"qp . This implies that II" is weakly
(k — »n)-definite.

By Theorem 7 2* = I and thus I1* is 0-definite. Suppose that & > 0
and 0 <n <k — 1. Because U is not weakly (k — 1)-definite there
exist two words p € X*~1 and q € X* such that sgp € F' but sgp € F,
or s,p € F but syqp € F. Denote p = p'p", where L(p') =k —n — 1
and L(p") =n. Then p’ and ¢p’ belong to distinct classes in II" be-
cause sop’ XZ"s,qp’ does not hold. Thus /7" is not weakly (k —n — 1)-
definite.

We get the following corollaries with the assumptions of Theorem 12.

Corollary 12.1. The state partition of  into indistinguishable states
defines a k-definite automaton partition.

Corollary 12.2. If 2" < =, for the state partition z, then II{m} is
weakly (k — n)-definite.

Corollary 12.3. If 9 is reduced, then each of its state partitions defines
a weakly k-definite input partition.

4.3. Let C be a family of partitions on X* . The automaton partition
IT is a maximal automaton refinement of € iff

(1) II refines every partition in €, and

(2) [T is not a proper refinement of any automaton partition which
refines every partition in C'.

GrusHKOV [6] has shown that each family C has a unique maximal
automaton refinement.

Let K=1{U,,U,,...,U,} be a nonempty collection of languages.
Each U; defines an input partition o' = {U;, X* — U;}. When all
languages in K are regular, then the maximal automaton refinement
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II of {y',y*,...,y"} is finite and all languages of K are represen-
table in the initial transition system A(II). Moreover it was shown
in [6] that every initial transition system in which the languages of K
are representable can be mapped homomorphically onto A(J1). Hence
A(II) is minimal. LETITSEVSKI [10] has given the following method for
finding IT.

First define II° as the input partition I79 = ' y2. .4". Suppose
that II' has been constructed (¢ = 0,1,...). Then define a refinement
II'*' of II' dividing each block H' G]T in maximal subsets J1}, =
II*' as follows. For any letter x there exists a class II' € I’ such
that I 2 € II{ . In this way a descending sequence

I > 11" > I1? >

of input partitions (termed here Letitsevski partitions) is obtained. The
procedure is stopped when a partition II™ is reached for which no refine-
ment is needed, ie., I[I™*' = IT™. This II™ is the maximal automaton
refinement, and each U; of K is represented in A(II™) by the set of
states corresponding to the classes constituting U;. We do not know
any practical method for finding the refinements II° in the case where
the languages in K are general regular languages. In Section +{.4. we
present such a method for definite languages.

Lemma 10. Let 71°, II', II?,... be the Letitsevski partitions for
some collection K of languages, and ¢,j a pair of non-negative integers
satisfying ¢ > j . For any word p of length 7 — j and any class I7. € IT’
there exists a class H’ € ITV such that ITp [ H’

The lemma is easily established by induction on 7 — j. In the follow-
ing theorem we give an upper bound for the number of refinements needed
when all languages in the family are definite.

Theorem 13. Let K ={U,,U,,...,U.} (n>1) be a collection
of weakly k-definite languages and I7°,IT*, ... the corresponding Leti-
tsevski partitions. If £ > 0, then J/I*~1 is an automaton partition. If
k=0, then II° is an automaton partition.

Proof. The cases k=0 and k=1 are trivial. We suppose now that
k> 1. Let II5~! be an arbitrary class in I7*-1. We prove by reversed
induction on A==%k —1,...,1 that for every word p of length &
there exists a class II;~" € II*~* such that IT%~'pc II}~"
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First we note that for every word p, with L(p) > k, there exists
a class 1) € IT° such that IT,"'p € II;. This follows from the weakly
k-definiteness of the languages in K which implies that the class of a word
gp in II° is uniquely determined by p .

Suppose now that L(p) =k — 1. By Lemma 10 there exists a class
11} € II° such that IIy"'pcIly. For any x in X, L(px) =k and
thus there exists a class II, € II° such that It~ ' pa c I, . But this
implies that all words of II;~'p must belong to the same class I ; € I
because they belong to the same class IT; in II°. The first step of the
induction is thus established.

Suppose now that the proposition is true for some » =k —1,...,2.
Let p be a word of length A — 1. By the induction hypothesis there
exists for every letter 2 a class II;~" € II*~" such that IT, 'px C I =",
On the other hand IT%'p € II*~" for some II;~" € II*"" by Lemma 10.
Thus the words of IT*~'p belong to the same classin I7*~*+1. This com-
pletes the induction, and for h =1 we get the result that, for any letter
x there exists a class IT5~' € I[T*7" such that Iy~ 'ac Iyt

4.4. We now describe a method based on the above considerations to
find the minimal initial transition system in which all languages of a col-
lection of definite languages are representable.

Let ¢ ={U,,U,,...,U, (n>1) be a collection of definite lan-
guages and k the least integer such that all languages in C' are weakly
k-definite. Write a table having a row for each word of length & or less.
To each language associate a column such that the entry corresponding
to a word p contains 1 (0)if p € U; (p € Ui). Hence each word in the
table will be indexed by a sequence of length n of 1’sand 0’s. If n > 1,
these sequences are replaced by simple indexes (e.g. by taking the sequences
as binary numbers). After this index column write a column for each input
letter so that in the column of 2 in the row of p we write the index of
pa. orif L(p) =k the index of px'k. Hereby every word gets a new
sequence of indexes. These are again replaced by simple indexes so that
two words get the same index iff their index sequences are identical. This
procedure is repeated until every pair of words having equal indexes also
gets equal index rows. These last indexes can be taken as the states of the
transition system to be constructed, and the last columns give the cor-
responding transition table (vertically written and with eventual repeti-
tions). The initial state is the index of 4 and the final states representing
the language U; are the indexes of the words in the table which belong
to U;. Theorem 13 guarantees that at most & (or oneif k = 0) indexing
steps are needed. Observation of the obvious periodicities in the formation
of the table facilitates the work considerably.
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Example 4. We construct the minimal transition system in which the
2-definite languages U; = 4 + & + X* (xx 4+ ay) and U, = o + y — X*
(xx 4 yx -+ yy) are representable. The construction is given by Table 4
and the obtained transition system by Table 5. The initial state is « ., and
U, is represented by {a,b,d} and U, by {b,c,e}.

Table 4. Table 5.

U, U, wy Yy | a b ¢ d e

s 1 0 =231 = abe x b b e e D

x 1 1= 332=bbd y ¢c d ¢ ¢ d
Y 0 1 =111 = cec
xx 1 1= 332=bbd
xy 1 0= 211 = dec
yx 0 1=132=ebd
yy | 0 1 =111 = cec

4.5. Let p be any word of length k. From the construction in 4.4
we see that X* p is a subset of some class /1, of the maximal automaton
refinement 7. On the other hand, for any class 7, € IT, II.pc X*p.
Thus in A(I1) oI, ,p) = II, for any state I, € IT. Hence we get the
following generalization of Theorem 3.

Theorem 14. The minimal initial transition system in which a given
collection of weakly k-definite languages is representable is weakly k-
definite.

§ 5. Definite sequential machines

5.1. A Mealy machine is an ordered quadruple M = (S, X ,95.0m),
where S (state set), X (input alphabet) and Y (output alphabet) are
finite nonempty sets,

0: 8§ x X—8 (next-state function)
and
w: 8 X X—Y (output function)

functions. The domains of § and o are extended to S > X* in the usual
way. If o can be considered as a function from S to 1", then M isa
Moore machine.

Adding to the quadruple a specified initial state s, we get an initial
Mealy machine. The language represented by the set Y, of output letters
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in the initial Mealy machine is denoted by T'(O , sy, Y;), when the initial
state is s;.

Clearly, the only 0-definite language representable in a Mealy-machine
is O . Excluding this trivial case we restrict the consideration to k-definite
languages with £ > 0.

5.2. We consider now the transition system (S, 0) of a Mealy machine
M for which T(M,s,, Y;) is definite, for some s, and Y;. That M
is reduced as a sequential machine does not imply the definiteness of its
transition system. We define a stronger concept of reducedness.

Two states s,s' €S are said to be Y -distinguishable, for some
Y,c Y, iff there exists a word p such that o(s,p)€Y; but
(s’ ,p)€Y,, or vice versa. We call I Y,-reduced iff every pair of its
states is Y;-distinguishable.

Theorem 15. Let It be a Mealy machine connected for the initial
state s,. If there exists a set Y, of output letters such that 7'(M , sy, Y,)
is k-definite (k> 1) and M is Y, reduced, then M has a (b — 1)-
definite transition system.

Conversely, if a Mealy machine 9 has a k-definite (k > 0) transition
system, then 7T'(M,s,, Y;) is weakly (k- 1)-definite for any choice
of s,€8 and Y, C Y.

Proof. Suppose that the conditions of the first part are fulfilled, but
that there exists a word p of length & — 1 and states s;,s, such that
s; = 0(s;,, p) # O(s5,p) =s,. Let p;, and p, be words such that
8, = 0(8y, 1) and s, = 0(sy, p,) . For any word ¢ of length greater
than or equal to 1 L(pq) > k. Thus

(o, p1pg) € Yy f sy, popg) € Ty,
or equivalently,
o(s;,q) €Y, iff o(s;,q) €7T;.
This contradicts the assumption that M is 1;-reduced. Hence the transi-
tion system must be weakly (k — 1)-definite. That it is (k — 1)-definite
follows from the converse part of the theorem. This, in turn, follows from

the fact that, for any s, €S and Y, c ¥V,

TR, sy, Yy) = UTwx,

x€X
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where for each x € X, 7. is the weakly k-definite language represented
in the initial transition system (S, ¢, s,) by the set

S ={s€8lw(s,z) € Y}

of final states.

Clearly the minimal Mealy machine representing a k-definite (k > 1)
language satisfies the conditions of the first part of Theorem 15. Thus we
get the following corollaries.

Corollary 15.1. The minimal Mealy machine representing a k-definite
(k > 1) language has a (k — 1)-definite transition system.

Corollary 15.2. A Mealy machine representing a k-definite (k> 1)
language has at least £ states.

. From Theorem 14 it follows that the minimal Moore machine represent-
ing a set of weakly k-definite languages has a weakly k-definite transition
svstem. As shown by IBArRRA [8] the equivalent minimal Mealy machine
can be constructed from this by identifying all 1-equivalent states. Thus
the transition system of the minimal Mealy machine is the 1st contraction
of the transition system of the Moore machine. Using Corollaries 6.2. and
6.1. we get

Theorem 16. The minimal Mealy machine representing a collection of
weakly k-definite (k > 1) languages has a (k — 1)-definite transition
system.

If the corresponding minimal Moore machine has » states, then the
minimal Mealy machine has at most n — 1 states.

5.3. We now modify the synthesis and analysis methods presented
above for Mealy machines.

The minimal Mealy machine representing a collection of definite lan-
guages is obtained by assigning outputs to the states of the minimal initial
transition system constructed by the partition method and transforming
this Moore machine into a Mealy machine by the method of IBARRA.

Let M= (S,X,Y,d,w) be connected for the initial state s,, and
Y, c Y agiven set of representing output letters. To test the definiteness
of T(M,sy,Y,;) and to find, in the affirmative case, a definite regular
expression for it, we construct a graph I'(M, Y,;) as follows.

1. The initial node is Y;.

2. For each x € X introduce a node corresponding to the set S.,
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and lead a transition from Y; to §. labelled by x. Nodes corresponding
to equal sets S, are identified, and nodes corresponding to an empty set
S. may be omitted.

3. Starting from each nonempty 8. the graph I'(.) is constructed
as in § 3 for the finite automaton A. = (S, d,s,,S:). If we know that
M is Y,reduced, then the contractions (S,., d.) are first constructed
and the subgraphs I (%.) can be found by means of them.

Clearly T(M, sy, Y,) is definite iff all languages T'(.) are definite.
More accurately — if the languages 7'(2.) are all definite and at least
one of them nonempty, then

deg T'(M , sy, Y1) = max T'(W) + 1.
x€EX
A definite expression for T'(M,s,, Y;) can be found from I'(M, Y,)
just as 7'(A) was found from I'(A) in § 3.

§ 6. Compositions of definite transition systems

6.1. We consider now the preservation of definiteness in various com-
positions of transition systems.

In the following theorem the parallel connection may be understood
in any of the current meanings of the word. The serial connection is defined
in the following general way (cf. [6]).

Let 4, = (S;,6;) and A4, = (S;,d,) be transition systems over the
alphabets X, and X,, respectively, and let ¢: S; X X; — X, be any
mapping. Then the transition system A4, = (8; X 8;, ) over the alphabet
X, is a serial connection of A, and A,, where ¢ is defined by the con-
dition

6((81,82),:76):((51(81,1),62(82,(]?(81,:76))),
for any (s;,s,) €85; x S, and z € X;.

Theorem 17. The parallel connection 4 of any definite transition
systems A4,,..., 4, is definite, and

deg A = max {deg 4, ,...,deg 4.}.

Let 4, = (S;,0;) and 4, = (S,,d,) be definite transition systems
over the alphabets X; and X,, respectively. Their series connection
A4, is definite and

G

3
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deg A, < deg A; + deg 4,,
for any mapping ¢: §; X X;—>X,.
Proof. The first part of the theorem is obvious. We prove the second
proposition.
The mapping ¢ can be extended to a mapping ¢: S; X Xf— X¥
putting for any s€S; ¢(s,4) =1 and

(s, p) =q@(s,2) @y, %) .. @(s2y. .. 2, _1,2,),

for any word p = 2325 ...2, (> 1). Then for any (s;,s,) €S; X S,
and p € X¥

O( (51, 82) , P) = (01 (81, D), 0a(S2, ¢ (51, P)) ) -
Let (s;,s,) and (s;,s;) be arbitrary states of A4, and p = p;p,
any word of length k&, + k,, where L(p,) =k, = deg 4, and L(p,) =

ky = deg A,. Now 0,(s;,p1) = 0:(s1, p;) because A4, was Fki-definite.
Hence

¢ (815 0) = ¢ (815 01) ¢ (5171 Po)
and
P51, P) = ¢ (81, P1) (5171 )
have a common k,-suffix, and thence
Oa(Sa 5 ¢ (51, D)) = 0s(s5, ¢ (51, p)) -
Thus we get
O((81,8), ) = (0u(81, D) 05825 ¢ (51.9)))
= (0x(s1, ), 0afs2, ¢ (51, 1))
— 8 (st 51), p).-

Hence A, is weakly (k; + k,)-definite. The actual degree of A4 depends
on @.

Corollary 17.1. Any series-parallel connection of definite transition
systems is definite.
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Corollary 17.2. A language representable in a series-parallel connection
of finite automata or sequential machines with definite transition systems
is definite.

Of course, definiteness is not retained in general in a feedback con-
nection of definite transition systems.

CHAPTER II

NONINITIAL AUTOMATA

§ 7. Representability in noninitial finite automata

7.1. A noninitial automaton over the alphabet X is an ordered triple
(S,0,F), where (S,9) is a transition system and FcC S a set of
final states. The noninitial automata considered here are always finite,
ie. S is a finite set.

Consider the following straightforward extension of the concept of
representation from finite automata to noninitial automata; The language
U is represented in A = (8,6, F) iff p € U implies §(s,p) € F for
any s€4S, and p € U implies d(s,p) € F, for any s €S . It is easy
to see that then only the languages @ and X* are representable in a
noninitial automaton. This was noted by STARKE [19] and he introduced
a weaker type of representation for noninitial automata. Our definition
differs from that of STARKE in that the restriction is imposed only on the
mode of representation and not on the words of the language represented,

Definition 6. The noninitial automaton A = (S, 6, F) k-represents
(k a non-negative integer) a language U iff, for any word p satisfying
the condition L(p) >k,

(i) o6(s,p) €F, for all states s €S, if p €U, and

(ii) o(s,p) €& F, for all states s€S, if peU.

Hence the noninitial automaton is required to decide only about words
possessing a given minimum length % whether or not they belong to U .

The following results formulated in our terminology can be derived
from [19].
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A language k-represented in a noninitial automaton is weakly k-definite,
and for any weakly k-definite language (in [19] of type X* R, R c X*)
a noninitial automaton representing it can be found.

7.2. Obviously the conditions for k-representation are still so strict
that it may happen that a given noninitial automaton does not k-represent
any language for any k. We consider the analysis problem of deciding
whether a noninitial automaton k-represents some language for some &
and finding the languages k-represented.

Theorem 18. The noninitial automaton A = (S, d, F) k-represents
(k > 0) some language if and only if

(a) all languages 7 = T'(U;), where A; = (S,d,s,F) and s; €S,
are weakly k-definite and almost equal.

If (a) is satisfied, then 9 k-represents a language 7' if and only if T
is weakly k-definite and almost equal to the languages 7' .

Proof. Suppose that the language 7' is k-represented in 9 . Consider
any state s; €S and let » be an arbitrary word with L(p) > k. Write
p=gqr, where r =pk. If p€T;, then s;p €F and hence p€T.
Furthermore (sig)r € F/ implies that r» € 7', and hence s € F, which
implies r €7T;. Similarly we see that » €7; implies r € 7. Hence
especially  (siq)r =sip € F, and so p€T; and p €T . Therefore 7:
is weakly k-definite and any of its words of length & or more belongs to 7.

On the other hand, if p € 7' and L(p) >k, then sp € F and thus
p €T:i. Hence T and T; are almost equal, for they can differ only by
words of length less than k. From this we can conclude that 7' is weakly
k-definite, and that all languages 7'; are almost equal.

Conversely, assume that the languages 7'; are weakly k-definite and
almost equal. Then they have k-forms 7 = @Q; + X* R, where R c X*
is the same set for every <. Let 7' be any weakly k-definite language
almost equal to the languages 7';. Then 7' has the k-form Q - X* R .
Hence for any state s; and any word p satisfying L(p) > k:

sp€F iff pel; iff pe X*R iff peT.
Thus T is k-represented.

Consider now the state vectors t, used in Section 3.2. Either by Theorem
18 or directly from definitions we get

Corollary 18.1. The noninitial automaton 9 k-represents some language
if and only if the vector ¢, is either purely positive or purely negative,
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for any word p of length k. If this condition is satisfied, then A k-
represents the weakly k-definite languages almost equal to X* R, where
R = {p € X*| t, purely positive}.

Hence the analysis of a noninitial automaton can be accomplished by
Method I described in Section 3.2. Note that the transition system of 9
need now not be connected for any initial state.

If A is connected for some initial state — say s,, then for any state
s; there exists a word p such, that sp = s . Hence T; = 0,7, is by
Lemma 2 weakly k-definite and almost equal to 7, whenever T, is
weakly k-definite. Thus we get

Corollary 18.2. If the noninitial automaton 9 is connected for some
initial state s,, then 9 k-represents some language if and only if the
corresponding initial automaton 9, is weakly k-definite. If this condi-
tion is satisfied, then the k-represented languages are the weakly k-definite
languages almost equal to 7'(,) .

Thus we get an alternative method for analyzing a noninitial auto-
maton. The automaton is divided into connected subautomata, which
are then tested for definiteness and analyzed by any method. If the sub-
automata are all definite, then the languages represented are finally com-
pared with respect to almost equality.

§ 8. Synthesis of noninitial automata by partitions

8.1. Let 4 = (S, 6) be a finite transition system and % a non-negative
integer. We say that the language U is k-representable in A iff there
exists a set FC S such that U is k-represented in the noninitial auto-
maton A= (8,6,F).

Theorem 19. The languages of a given family are all k-representable
in the same transition system if and only if the languages are all weakly
k-definite.

Proof. The necessity of the condition follows from Theorem 18. Let
Uy,Uy,..., U, be some weakly k-definite languages. They are all k-

representable in the transition system A4 = (X*, §), where

6(.’p > x) = px]k >
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for any p€X* and x €X. The language U;(¢ =1,...,n) is k-
represented by the set F; = {p € X*|p € U;} of final states.

The transition system 9 has in general unnecessarily many states.
In what follows we shall develop a method for finding the minimal solution
of the synthesis problem. The method is based on a modification of the
concept of automaton partition.

In this connection we note that the minimal automaton of an equi-
valence class (under almost equality) considered in [15] gives the minimal
transition system for one definite language.

8.2,

Definition 7. Let k& be a non-negative integer. We call a partition 17
on X* an automaton k-partition iff, for each class 7, € IT and each letter
x € X, there exists a class I, € II such that

Hac X1,

The proof of the following lemma is straightforward.

Lemma 11. The infimum [/'-[/? and supremum [I' -+ II?> of two
automaton k-partitions I/' and /> are automaton k-partitions.

Let C' be a family of partitions on X*. We call the automaton k-
partition I7 a maximal automaton k-refinement of C iff

(1) IT refines every partition in C', and

(2) II is not a proper refinement of any automaton k-partition which
refines every partition in C'.

Theorem 20. Every family of partitions on X* (k > 0) has a unique
maximal automaton k-refinement.

Proof. There exist only a finite number of partitions on X* and the
trivial partition 0 = { {p}|p € X*} on X* is an automaton k-partition
refining any partition on X*. Thus a maximal automaton k-refinement
of any given family C exists. Suppose that II' and /I? are both maximal
automaton k-refinements of C'. Then also [I' -4 [I? refines every parti-
tion in €', and furthermore [/*+ I/? is by Lemma 11 an automaton
k-partition. Thus [IT' 4 [1%? = II' = [I*, because II' <[I*+ [I*> and
Iz <1t 4+ I12.
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83. Let K={U,,U,,...,U,} (n>1) be a family of weakly k-
definite languages given in their k-forms U;= @i+ X*R;, 1=1,

.,n. Every language U; defines a partition 9 ={Ri, X* — Ri}
on XF.

Each automaton k-partition IT defines a unique transition system

A(IT) = (1T, 9)
where, for any II,,II, €Il and z € X,
S, ,x) =1, iff Hxc X-1,.
Clearly, for any p € X* X* and any states I1,,1[; €I,
oI, , p) = II, iff plk € II,.

Hence a weakly k-definite language U =@ + X* R, L(Q) < k and
R C X*, is krepresentable in A(/I) if and only if R is the union of
some classes in [T.

Thus the languages of K are all k-representable in the transition
system defined by the maximal automaton k-refinement of the family
C ={y',y*,...,y"}. This can be found by the following modification
of the method of LETITSEVSKI (cf. 4.3.).

First put 19 = y-y*- -9y". Suppose that the partition IT*
(¢=0,1,...) has been found. Then IT'*! is defined as the maximal
refinement of IT¢ such that, for each II:"'€II'*" and each z€ X,
there exists a class II; € IT' satisfying the condition "'z c XII; .

Similarly as in the proof of Theorem 13 it is seen that /T k=1 (for k> 0)
gives the wanted refinement.

The maximal automaton k-refinement can be found by a similar tabu-
lar method as that presented in 4.4. The table is now written only for
words of length %, and the index of the word p in the column of x is
the index of pxlk .

Example 5. We construct a transition system in which the 3-definite
languages U; = X* (vyx -+ yax + yyx) and U, = X* (xax + yox -+ yay)
can be 3-represented. The construction is given in Table 6 and the result-
ing transition system in Figure 2. U, is 3-represented by the set {c, d}
and U, by the set {a,d,e}.

We now show that the described method gives the minimal solution.
This follows from



40 Ann. Acad. Sci. Fennicae A.T. 444

Table 6.
U, 0, zy xy }
xXr 0 1=110= qab
xxy 0 0= 020 = beh
Yz 1 0= 231 = cde
ryy 0 0= 020 = bed
yrx | 1 1 = 310 = dab
yxy 0 1 =120 =ech
yyx 1 0= 231 = cde o
yyy | 0 0 = 020 = beb Figure 2

Theorem 21. Let K ={U;=@Qi+ X*R;|i=1,...,n} be a
family of weakly k-definite languages in their k-forms, ' the family of
the partitions o' = {R;, X* — R} (i=1,...,n), and IT the maximal
automaton k-refinement of C. Then A(/7) is the minimal transition
system in which the languages of K are all k-representable.

Proof. Let A" = (8", 6') be a transition system in which the languages
of K are all k-representable. Because any subsystem of A4’ k-represents
the same languages as A’, we may suppose that A’ is strongly connected.

Assume that there exist two states s; and s, in S’ such that for some
word p € X*

81 = 61(81 ’p) #= 61(52 ,P) = 8; .

Clearly the languages of K are k-representable in the transition system
obtained from A’ by removing s, and replacing the occurrences of it
in the transition table by s’;. Hence if A’ is minimal it must be weakly
k-definite. Then A’ defines a partition

II'={II, | s € §'}
on X*, where for each s €8’
I ={p €X*| §'(s",p) =s for any s €S}.

This partition refines every partition v, i=1,...,n. Let II' be
any class in /1" and z any letter. Then II/xC X -7, , where s —
0’(s,x). Thus II' is an automaton k-partition. Hence II' << IT and so
I8’ = |[I'| = |II| . Furthermore we can map A’ homomorphically on
A(IT) by mapping each state s €S’ to the class II, € I for which
II, C IT,. Hence the minimal transition system is uniquely determined
up to isomorphism.
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CHAPTER III

MULTIDEFINITE AUTOMATA

§ 9. Reverse definite automata

9.1. Before defining the multidefinite automata we discuss a special
case known as reverse definite automata (cf. [1]). We shall define and treat
them in a way similar to that adopted above in the discussion of definite
automata.

A word p, is called the k-prefiz of the word p, denoted by kip,
iff p=pp, and L(p,) = k.

A language U is termed weakly reverse (w.r.) k-definite (k > 0) iff,
for any word p satisfying L(p) >k, p € U exactly in case kjp € U.

The notions of reverse (r.) k-definite and reverse definite languages, and
the degree are derived from this in analogy with Definition 1.

Clearly, a language is w.r. k-definite iff its reverse is weakly k-definite.

Every w.r. k-definite language U has a unique representation —
we call it the k-form —

U= Q+ RX*,

where L(Q) <k, Rc X* and the words in @ and R are ordered as in
the k-form of a definite language.

9.2. A transition system (S, ) is weakly reverse (w.r.) k-definite (k > 0)
iff, for any state s in S, words p and ¢, d(s,p) = d(s, pg), when-
ever L(p) =k . Reverse (r.) k-definiteness, reverse definiteness and the
degree are again introduced as in Definition 1.

This definition is equivalent to that given by GiNzBURG [4], but com-
pleted by the degree.

We now present a method for testing the reverse k-definiteness of a
transition system from its transition table.

Definiton 8. A state s of a transition system (S, ) is 0-absorbed
iff, for any letter 2, d(s,z) =s. A state s is (1 + 1)-absorbed (i =
0,1,...) iff, for any letter =, (s, ) is i-absorbed.

It is to be noted that an n-absorbed state is n’-absorbed for any »’ > n .
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Lemma 12. A transition system is w.r. k-definite if and only if all of its
states are k-absorbed.

Proof. Let (S,0) be a w.r. k-definite transition system and s €S
arbitrary. If k=0, then sx =si=s for any x, and thus s is 0-
absorbed. Suppose that k&> 0 and let p =z, ... be any word of
length k. Now (sp)x = sp, for any x, implies that sp is a 0-absorbed
state. Because this holds for any ., we can conclude that o(s, (k — 1)[p)
is 1-absorbed. In general, we see that, for any 0 <¢ <k, d(s, (k — ©)|p)
is i-absorbed, and especially for ¢ = k, that s is k-absorbed.

On the other hand, if all states are k-absorbed, then sp is 0-absorbed
for any state s and p € X*. Hence spg = sp, for any word ¢.

We call a state s of (S, d) quasi-absorbing iff there exist letters x
and y such that 6(s,x) =s, but d(s,y) #s. Clearly, a quasi-absorb-
ing state cannot be n-absorbed for any = .

Definition 9. The nth reduction (S™, 6") of a transition system (S, 0)
is defined recursively as follows.

1. The Oth reduction is (S, 0).

2. Suppose that the ith reduction (8%, 0") (i =0,1,...) is given.
All 0-absorbed states in it, except those quasi-absorbing in (S, ), are
removed. The remaining states constitute S°*'. Forany s € S"' and
letter «, we put

i1 ) _y[éi(s,x), if oi(s,x)€es 1,
07 (s, @) | s otherwise.

Lemma 138. Let (S, 0) be a transition system. For any n =0,1,...

(a) 8"t 8",

(b) if S**'= 8", then (8"F%, 6" ") =(S",6"), forany i =1,2,...,
and

(c) if (S, 0) is connected, for some initial state, then also (8", ")
is connected or S" = .

These properties follow easily from Definition 9.

Lemma 14. A state of (S, ) is a state of (8" T',0" "), n=0,1,...,
if and only if it is not n-absorbed in (S, 9) .

Proof. The statement is true for n = 0. We suppose that it is true
for some n=1¢, t=0,1....
If s€S ! is (i + 1)-absorbed in (S, d), then, for any x, d(s, )
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is i-absorbed and hence (s, ) € 8'*! by the induction hypothesis. Clearly,
O'(s,a) g S'*' or di(s,x) =s. In any case, 6 T'(s,x) =s. Because
s cannot be quasi-absorbing in (S, §), this implies that s € S°¥2,

Suppose that se S *t*. If s€8*', then s is 0O-absorbed in
(S*71,6'7") and not quasi-absorbing in (S, ). Hence ¢i(s,z) & S !
or d(s,x)=s, for any x, and if &(s,z)=s, then O(s,x)€8".
In any case, d(s,x) ¢S "' and d(s,z) is by the induction hypothesis
i-absorbed. Hence s is (i -~ 1)-absorbed. The case s &S ™! is trivial.

Combining Lemmas 12, 13 and 14 we obtain the following criterion
for reverse definiteness (for another criterion cf. [4]).

Theorem 22. A transition system (S, d) is reverse k-definite if and
only if
S=8>D8>...08>28""=0.

Especially we note that a transition system having a quasi-absorbing
state cannot be reverse definite. Further we get immediately the

Corollary 22.1. If the transition system (S, d) is reverse k-definite,
then 'S >k 4+ 1.

9.3. The notion of reverse definite automaton is introduced in the natural
way. As shown by GiNzeUre [4], a reduced w.r. k-definite automaton
has a w.r. k-definite transition system. This fact can easily be established
by means of derivatives. Let U = @ 4+ RX* be a w.r. k-definite language
in its k-form. Then for any p € X*

O,if peR,
a”U:{X*, if peR.

In any case 0,,U = 9,U, for any word ¢ .

Thus Theorem 22 provides an efficient method for testing reverse
definiteness of an automaton, for obviously any language representable
in a w.r. k-definite transition system is w.r. k-definite. Another criterion
using the graph of the automaton was given by Brzozowskr [1].

It is easy to develop an analysis method for reverse definite automata
similar to Method II in § 3.

Suppose W = (S,d,s,, F) is reduced and reverse k-definite. For
any state s € F' a graph I() is constructed as follows.

1. The initial node s is the only node of order 0.

2. Given a node s" of order 7+ (1=0,1,...), a node s” of order
¢ + 1 is introduced for any letter  and s” # s’ such that ¢'(s”,x) = s".
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A transition labelled by « isled from s’ to s”. Nodes corresponding to
the same state of 9 may be identified.

Clearly I'y(2) is a directed tree whose terminal nodes correspond to
So. If " €F occurs as a node of Iy(A), then I, (A) is a subgraph
of I'y(A) and need not be constructed separately. A regular expression
TA) =@ + RX*, where @ and R are finite, is obtained from these
graphs as follows. To R we take the reverse of any word leading to a node
so from s in Iy(A), where s is the 0-absorbed state in F . All words
obtained in the same way from the other graphs constitute @ .

Example 6. Consider the automaton 9 given by Table 7, where s, =
1 and F ={a,b}. The reductions are also shown in this table. Note
that there are no quasi-absorbing states in (S, §) .

Table 7.
|11 2 3 4 5 a b 0-abs. states
z |a 4 3 3 3 b 3, b
y |12 5 3 b 4 b
St
x |a 4 4 5 a 4, 5
y|2 5 4 5 4
o2
z |a 2 a 2, a
y |12 2 a
53
x 1 1
y |1

Figure 3.

The automaton is reverse 3-definite because S8*= . The graph
I'y(A) is shown in Fig. 3. We note that I,() is a subgraph of it. From
I,(A) we obtain

R = zyy + yxy + yyx + yyy ,

and from I'(A) @ ==x.
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§ 10. Multidefinite languages

10.1. Let p;,py,...,0. (n>2) and p be some words. We call
(P1:PasevvosPn) & (ky,ky, ..., ka)-subword sequence of p iff L(p) =
ki, for each ¢ =1,...,n, and there exist words ¢,,..., q._, such
that p =P1qiPy- - Pu_1Gu_1P0n-

Definition 10. A language U is weakly (w.) (ky,ky, ..., k) — definite
n=2; k>0, i =1,...,n) iff, for any word p satisfying L(p) >

ky— ...+ k., p€U exactly in case there exists a (ky,..., k) —
subword sequence (p;,...,p.,) of p such that p,p,...p. €U .
A language is multidefinite iff it is w . (k,, ..., k.)-definite, for some

n>2and ky,...,k.>0.

This concept generalizes both definite and reverse definite languages.
A language is weakly k-definite iff it is w. (0, k)-definite, and w.r. k-
definite iff it is w. (&, 0)-definite. The following lemma is easily estab-
lished.

Lemma 15. A language U is w. (ky,..., k.)-definite if and only
if it can be expressed in the form

(10.1) U=@Q + UpaX*ppX*... X*p,,

i=1
where m >0, L(p;) =k for any ¢ =1,...,m and j=1,...,n,
and L(Q) <k, + ...+ k..

We call (10.1) the (k,, ..., k.)-form of U, when the words in @
are ordered according to increasing length and words of equal length
alphabetically, and the terms in the sum in alphabetical order of p,; p,,
-+« Pw - Clearly the (k;, ..., k)-form is then unique.

Lemma 16.If U is w. (k;, ..., k.)-definite, thenitis w. (b, ... M)-

definite for any numbers A, ,..., % > 0 and [ satisfving the conditions:
() I>n, and
(2) there exists a sequence 1 =1i; <i,<<...<i,=1 such that

by <h kg <h,... k. <h,.

Proof. Let U be a w. (ky,...,k.)-definite language of the form
(10.1.). and 7%;,...,l a set of numbers satisfying the conditions of
Lemma 16. Each language p,X*p,,...X*%p, can be written in the
form
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(10.2) Q: + R X*R;, ... X*Ry,
where for each ¢ =1,...,1,

h — k. . .
R [ py Xl if ¢ =1,
ic — h . . . .
1X¢, if ¢ty 0. 00,0,

and E(Q:) < by -+ ...+ Fu. The languages (10.2) can further be written
in the form

(103) Qi + U Ti]-X*TizX* .o X*f’il )
where the sum ranges over all sequences (7;, ig,. -+ , 7it) € Ry X B> .. X Ry.
The languages (10.3), and thus their sum and U, are w. (hy, ..., hu)-

definite by Lemma 15.

Lemma 17. The union of two w. (ky, . .., ka)-definite languages is w .
(ky, ..., k)-definite, and the union of two multidefinite languages is
multidefinite.

Proof. The first proposition follows directly from Lemma 15. Let U,

be a w. (ky,...,k)-definite, and U, a w. (k,..., k;)-definite
Janguage. Because a w. (ky,...,k.)-definite language is always
(ky,0,ky,...,kd-definite, we may suppose that [=n. Then U,
and U, are by Lemma 16 both w. (K7, ..., k")-definite, if we choose
k! = max {k;, k;}, i=1,...,n Hence their sumis also w. (ky, ..., k-
definite.

From Lemmas 15 and 17 the following characterisation of multidefinite
languages is easily obtained.

Theorem 28. A language U is multidefinite if and only if it can be
expressed in the form

(10.4) U=0Q -+ UR,X*R,X* ... X*Rin, ,

i=1
where m > 0, and the languages @ and Rj; are all finite.

10.2. Consider the w. (2,1)-definite language X2X*X . Writing it
in the form XX*XX*X we see that it is w. (1,1, 1)-definite, in the
form X3X*A w. (3,0)-definite, and so forth. From this example it is
evident that a multidefinite language cannot be termed (ki ,....#kx)-
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definite by simply demanding the minimality of the numbers k. One
way to obtain uniqueness is presented in the following definition.

Definition 11. A language U is (ky,..., ka)-definite iff it is w.
, , k.)-definite, where
(1) » is minimal,
(2) the number of ks distinet from 0 is minimal,
) k
)

(e

(3) k; is minimal such that (1) and (2) are valid, and

(4)each ki, 1 =2,...,n, has been chosen minimal after the choice
of ky,...,k_, so that (1) and (2) remain valid.

Theorem 24. Every multidefinite language is (k;, ..., k.)-definite
for some unique (k;,..., k).

The theorem is a direct consequence of Definition 11. We call the
(ky, ..., k)-form of a (ky,..., k.)-definite language its canonical expan-
sion. The canonical expansion of a multidefinite language given in the
form (10.4) can always be found, but we do not know of any practical
algorithm for doing this. We use the canonical expansion to define a meas-
ure for the complexity of a multidefinite language.

Denote for any language 7V,

. 0, if V=9,
a(”_{ 1, if V0,

and for any non-negative integer k,

o, if k=0,
1, if E>0.
Definition 12. Let U be a (k;, ..., k.)-definite language and (10.1)

its canonical expansion. Then we say that U is of rank max {a(Q), o(k;) -

o(ky) + ...+ o(ka)}

The empty language @ and X* are the only multidefinite languages
of rank 0. All other definite languages are multidefinite of rank 1.
If U is k-definite and U = Q 4~ X* R its k-form, then its canonical
expansion is

(10.5) U=Q+UiX*p.

PER

Let U =@ + RX* be a reverse k-definite language in its k-form.
Then n = 2 in the canonical expansion (10.1) of U . If U is not definite,
too, then its canonical expansion is of the form
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U=@Q+ UpX*1.
PER

If U is also definite, then its canonical expansion is of the form (10.5).
In any case U is multidefinite of rank 1 provided that &> 0. We note
that the minimimality condition (2) in Definition 12 guarantees that a
reverse definite language cannot be (k,, k,)-definite with %, > 0 and
ky > 0, which would imply that the language is of rank 2.

Besides the definite and reverse definite languages there exists a third
tlass of multidefinite languages of rank 1. These are the languages of the
cype

U=Q+ X* RX*,

where @ and R are finite,and @ = @ or R # 1, i.e.the w. (0,k,0)-
definite languages distinet from @ and X*.

The generalized definite languages considered by GINZBURG [4] are
multidefinite of rank 2 if they do not belong to some of the types mentioned
above. A language is generalized definite iff it can be written in the form

U=Q+ P X*R, + ...+ PuX*Ry,

where m > 0, and the languages @, P:; and R; are all finite. It is
an immediate consequence of Lemmas 15, 16 and 17 that a generalized
definite language is w. (k,, k,)-definite for some (k,,k,). Of course,
the converse is also true.

§ 11. Multidefinite transition systems

11.1. We now state a definition of multidefinite transition systems in
analogy with Definition 10. The concept generalizes both definite and
reverse definite transition systems, but it turns out that the correspondence
between multidefinite transition systems and multidefinite languages is
not complete.

Definition 13. A transition system (S, 0) is weakly (w.) (k;, ..., ka)-
definite (n>2; ky,...,k.>0) iff, for any state s€S8, words
p€XM ., p.€X, and ¢q;,...,q._, € X*,

S, P1qiPa- - Tn_1Pn) = (S, P1P2- - - D) -

We call (S, d) multidefinite iff it is w. (k;, ..., k.)-definite, for some
(klﬂ""k")'
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A transition system is w.r. k-definite iff it is w. (k, 0)-definite.
A weakly k-definite transition system is always w. (0, k)-definite, and
a connected w. (0, k)-definite system is weakly k-definite The cor-
respondence could have been made complete by defining definite transi-
tion systems similarly as the reverse definite transition systems.

Lemma 18. A transition system (S, 0) is w. (ky, ..., k.)-definite if
and only if, for any p, € X*, ..., p.€X*, i=1,...,n—1, z€X,
and s€S8,

(1L.1) O, Py - Di®Pigy - Pn) = 0(S, D1+ DiDis1---Pn)-

If (8,0,s,) is connected for some s, €S, then it suffices that (11.1) is
satisfied for s = s, .

Proof. Clearly the condition is necessary. Suppose now that it is satis-
fied. Let p1,...,Pn; ¢15---,9._1 and s be as in Definition 13. Denote
P =P1¢1Ps- - - ¢u_1Pn - If at least one of the words g¢; is non-empty,
then L(p)>Fky+ky+ ...+ ko and p'=(ky;+ ...+ ka4 1)|p has
at least one occurrence of some letter due to some word ¢; . A (kq,, ..., kn)-
subword sequence of p’ can be formed so that one of these occurrences
does not belong to any of the subwords of the sequence. Let p” be the
word obtained from p’ by removing this letter. Then by assumption
o(s,p’) = 6(s,p"). Hence p’ can be replaced by p” in p without alter-
ing the state sp . The same argument applies to this new word. The re-
movings are repeated until the remaining word is of length &, + ... + k..
Then all letters due to the words ¢;,...,¢,_; have been removed and
the remaining word is p;p,...p.. Hence d(s,p) = 6(s, piPa-- - Pn)-

Assume now that (S,d,s,) is connected and that (11.1) is always

satisfied for s = s,. Let s be any state, p;,...,p., 2 and ¢ as before,
and ¢ a word such that s,¢ = s. Choose any (kq, ..., k.)-subword
sequence of r==gqp;...p;ap;,, ...p. so that x does not belong to

any of the subwords. As in the first part of the proof, all letters not belong-
ing to the subwords of the sequence can be removed from r without alter-
ing s,r. If all other letters except a are replaced in their proper
places, the final state remains still unaltered. Hence, if we write

Pr---DiXPiy1 -+ -Pn=2D,
0(s,p) = 0(sg,7) = (S, qP1 - - - PiPis1 -+ -Pn) = O(S: P1P2 - - -Pn) -

From the first part of the lemma it follows that (S, d) is w. (ky, ..., ku)-
definite.

4
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11.2. We consider now the effect of the contraction operation on multi-
definite transition systems.

Lemma 19. The transition system (S, 0) is w. (k;,.. ., k.)-definite,
with k. > 0, if and only if its 1st contraction (S,,d;) is w. (ky,...,
k._1, ku — 1)-definite .

If (S,0) is w. (ky,...,k,_,,0)-definite, then (S;, d,) is also w.
(ky,...,k,_1,0)-definite .

Proof. Let the transition system (S,d) be w. (k,..., k.)-definite

and k, > 0. Consider any words p, € X" ,...,p, ,€X-1, p, € Xkn—1,
letter x and state s. Given a number ¢, 1 <7 <n — 1, we denote

8126(S’p1"'pixpi+l-'~pn)
and
Sg=0(8, Py -DiPii1---DPn)-
Then, for any letter ¥,
0(81,Y) =08, Py - DiTDi 1+ DnY)
=0(8,P1---PiPif1---PnY)
= 6(82’:’/)'

L

Hence s, Q's,, ie. Cs; = Cs,, and thus

01(Cs,pye v PixPi 1 Pa) = 0o(Cs, Py DDy Pa) -
Because Cs ranges over all states in S;, we may conclude by Lemma 18
that (8;,6;) is w. (ky,...%k,_1,k, — 1)-definite.

Suppose now that (S;,9d;) is w. (ky,...,k.,_1, k, — 1)-definite,
with k., > 0. Let p,,...,pP., , ¢ and s be as above. Then

0,(Cs,py .. .0:XD; 1+ -Dn) =04(S, D1« DiPis1---DPn)
implies that

O(S, Py - DD 1+ Pn) 2VO(S, Py DiDis1eeDPn),
and this further that

S, P1-- PEPif1- - PnY) =0(8,P1.- - PiPis1---DPnY),
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for any letter y. Hence the result follows again from Lemma 18. The
last sentence of the lemma is obvious.

Lemma 20. If (S,0) is w. (ky,...,k,_;,0)-definite, then it is . r.
(ky + ... 4+ k,_,)-definite.

Proof. Let s be an arbitrary state and p any word of length
ky +...+k,_;. Then, for any letter a, d(s,pz) = d(s,p). Hence
every state accessible by a word of length £, + ...+ k, ;, from some
state is 0-absorbed. This implies that every statein § is (k; + ...+ k,_,)-
absorbed. Lemma 15 implies now the assertion.

We consider now an arbitrary multidefinite transition system (S, 0) .

Ifitis w. (ky,..., k.)-definite, with %, > 0, we apply the contraction
operator k, times on it. The obtained contraction (Sk, ) is by Lemma
19 w. (ky,...,k,_,,0)definite, and hence by Lemma 20 w.
(ky + ...+ k,_,,0)-definite. Using now Lemma 19 in the converse

direction we obtain the following

Theorem 25. Every multidefinite transition system is weakly (A, k)-
definite, for some numbers A and k.

The (ky, ..., ki)-definite transition systems can be defined in a way
similar to Definition 11, and then the rank of a (k,, ..., k.)-definite
system is o (k) + ...+ o (k.), where o is as in Definition 12. It follows
from Theorem 25 that the rank of a transition system cannot exceed 2.

11.3. The previous results provide also a method for testing the multi-
definiteness of a transition system, when we add to them the following
lemma. The easy proof of this lemma is omitted.

Lemma 21. If there exist numbers %2 and %k such that £ > 0 and
(8,0) is w. (h,k)-definite, but not w. (&, k — 1)-definite, then there
exist two distinet 1-equivalent states in S.

To test the multidefiniteness of a given transition system (S, d) we
apply on it the contraction operation repeatedly until a contraction (Sk , o)
is obtained which does not allow any further contraction. Then we know
by Theorem 25, Lemmas 19 and 21 that (S, d) is multidefinite if and
only if (Sk, dk) is reverse definite. This can be tested by the method of
reductions given in § 9. If (Si, ) proves to be reverse h-definite, then
(S,0) is w. (b, k)-definite.
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11.4 We consider now the compositions of multidefinite transition
systems. As stated in the following theorem, the closure properties of
multidefiniteness are essentially the same as those holding for definiteness.

Theorem 26. Let A4; be a w. (h,k)-definite transition system,
for each ¢=1,...,m. The parallel connection of the systems
Ay ,...,An is w. (h,k)-definite, where h = max{h,,...,kn} and
k=max{ky,...,kn}.

Let 4, = (S;,0;) be a w. (hy,k,)-definite transition system over
the alphabet X; and A4, = (S,,0,) a w. (hy, ky)-definite transition
system over the alphabet X,. Then, for any ¢:8; X X;—X,, their
series connection A, is w. (k,k)-definite, where & = max{h,,h,)
and k =k, + k,.

Proof. The first part of the theorem is obvious. We consider the series
connection. Let (s;,s,) €8; X S, be any state of 4 _, p € X*,q € X*

and r € X* any words. We write ¢ = ¢,q,, where L(¢q,) =k; and
L(q,) = ky. As in the proof of Theorem 17 we can write

¢ (s1,P9) = ¢ (81,P) P (512> 1) P (510915 92)
and
P (81, 0rq) = ¢ (81, 0) ¢ (12, 7) ¢ (51975 91) ¢ (197415 G) -
From these representations we see that
hy | @ (51, 09) = ha | ¢ (51, Prq)
and, because s;pq; = s;prq; , that
¢ (s1,P9) | by = ¢ (51, prq) | Rz -

Hence

8( (s1,85),prq) = 0( (51, 52) » 7) -

§ 12. Multidefinite automata

12.1. We call an automaton A weakly (w.) (ky,...,kn)-definite
iff T(A) is w. (ky, ..., kd)-definite, and multidefinite iff T'(A) is multi-
definite. The rank of A is the rank of T'(N).
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for any letter y. Hence the result follows again from Lemma 18. The
last sentence of the lemma is obvious.

Lemma 20. If (S,0) is w. (k;,...,k,_,, 0)-definite, then it is . r.
(ky + ...+ k,_,)-definite.

Proof. Let s be an arbitrary state and p any word of length
ky+ ...+ k,_y. Then, for any letter x, d(s,px) = d(s,p). Hence
every state accessible by a word of length &, + ...k, , from some
state is 0-absorbed. This implies that every statein S is (ky + ...+ k,_,)-
absorbed. Lemma 15 implies now the assertion.

We consider now an arbitrary multidefinite transition system (S, 6) .

Ifitis w. (ky,..., k.)-definite, with %, > 0, we apply the contraction
operator k. times on it. The obtained contraction (Sk, dx) is by Lemma
19 w. (ky,...,k,_;,0)-definite, and hence by Lemma 20 w.
(ky + ...+ k,_,, 0)-definite. Using now Lemma 19 in the converse

direction we obtain the following

Theorem 25. Every multidefinite transition system is weakly (&, k)-
definite, for some numbers & and k.

The (ky, ..., ki)-definite transition systems can be defined in a way
similar to Definition 11, and then the rank of a (ky 5 ..., k.)-definite
system is o (k;) + ... 4 o (k.), where o is as in Definition 12. It follows
from Theorem 25 that the rank of a transition system cannot exceed 2.

11.3. The previous results provide also a method for testing the multi-
definiteness of a transition system, when we add to them the following
lemma. The easy proof of this lemma is omitted.

Lemma 21. If there exist numbers % and k such that &> 0 and
(S,0) is w. (h,k)-definite, but not w. (b, k — 1)-definite, then there
exist two distinet 1-equivalent states in S .

To test the multidefiniteness of a given transition system (S, ) we
apply on it the contraction operation repeatedly until a contraction (S , d;)
is obtained which does not allow any further contraction. Then we know
by Theorem 25, Lemmas 19 and 21 that (S, 6) is multidefinite if and
only if (S, ox) is reverse definite. This can be tested by the method of
reductions given in § 9. If (Si, &) proves to be reverse h-definite, then
(S,9) is w. (h,k)-definite.
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11.4 We consider now the compositions of multidefinite transition
systems. As stated in the following theorem, the closure properties of
multidefiniteness are essentially the same as those holding for definiteness.

Theorem 26. Let A; be a w. (hi,k)-definite transition system,
for each i =1,...,m. The parallel connection of the systems
Ayyoo o An is w. (R, k)-definite, where h = max{h,..., hn} and
k=max{ky,...,kn}.

Let A, = (S;,0,) be a w. (hy,k;)-definite transition system over
the alphabet X; and A, = (S;,0,) a w. (hy 5 ky)-definite transition
system over the alphabet X,. Then, for any ¢: S, x X;—X,, their
series connection A is w. (h,k)-definite, where h = max {h;, hy)
and k =k, + k.

Proof. The first part of the theorem is obvious. We consider the series
connection. Let (s;,8,) €S8; X S, be any state of A4, , p € Xt q€X*

and r € X* any words. We write ¢ = q,q,, where L(q;) = k; and
L(q,) = k, . As in the proof of Theorem 17 we can write

¢ (51, 29) = 7 (81, P) ¢ (512 5 1) ¢ (51 P15 0a)
and
P (81, Prq) = @ (51, 2) ¢ (512, 7) ¢ (8127, 1) ¢ (512715 G2) -
TFrom these representations we see that
hy | g (51, p9) = ha | @ (51, Pr9)
and, because s,pq; = s;prq; , that

@ (s1,29) | ke = @ (51, prq) | s .

Hence
6( (815 82) ,pTQ) = 6( (815 82) 9pQ) .
§ 12. Multidefinite automata
12.1. We call an automaton A weakly (w.) (ky,...,k.)-definite

iff T(N) is w. (ky, ..., kd)-definite, and multidefinite iff T(A) is multi-
definite. The rank of 9 is the rank of T'().
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Because the rank of a transition system cannot exceed 2, while the
rank of an automaton can get any value, a complete generalization of
Theorem 3 cannot hold. In fact, it follows from Theorem 27 below, that
the transition system of a reduced automaton is multidefinite if and only
if the automaton is w . (h , k)-definite for some (&, k), i.e. iff it is general-
ized definite. Here we shall restrict our attention mainly to this case, for
which an effective testing and analysis method will be given. But first
we present a result which may be useful in the general case, too.

Let 8’ be a subset of the state set S of the finite automaton A =
(8,0,8,F). If (S8',0) (6 restricted on 8" X X) is strongly connected,
then any state s’ in S’ defines a strongly connected subautomaton WA =

(8,8, ,F) of A, where F' =8"NF.

Lemma 22. The strongly connected subautomata of a connected w .
(ky, ..., kn)-definite automaton are all weakly k.-definite. If the auto-
maton is reduced, then its strongly connected transition subsystems are
weakly kn.-definite.

Proof. Let A and A’ be as above, and suppose that A is connected
and w. (k;, ..., k.)-definite. Let » be a word of length k.,q any word
and r a word such that sy =s'.

Assume first that p € T(A’). We choose a word u % 4 and an in-
teger m so that s'u=s" and L(ru™p) >k, + ...+ k,_,. Then

O(sy , rum™p) = o(s’ , p) EF,

and thus 7ru"p € T(A). Because L(ru™p) >k, + ...+ k., there
exists a (ky, . . . , k.)-subword sequence of ru™p such that p,p,...p. € T().
Hereby p. = p. On the other hand, (p;,...,p.) is a (ky,..., k-
subword sequence of ru™gp , too. Hence

0(s", qp) = 0(sy , ru"qp) € I,
and thus ¢qp € T'(A') .
Suppose now that ¢p € 7(A'). We denote s" = s'q. Because A’
is strongly connected, there exists a word v such that s"» =s", and a

non-empty word w such that s"w = s”. We choose m sothat L(rquw™) >
Ey+...+k,_,. Now

o(sy , rqw™p) = (s’ , qp) €F.

Hence there exists a (ky, ..., k.)-subword sequence (p;,...,P.) of



54 Ann. Acad. Sci. Fennica A L. 444

rqw™p , where p,=p, such that p;p,...p.€T(A). On the other
hand, (py,...,».) is a (ky,...,k.)-subword sequence of rqu™vp .
Hence

”

o(s", p) = 0(s” , vp) = O(sy , rquw™vp) € F .

Thus p € T(A') .

We have shown that 7'(%’) is weakly k,-definite. If QA is reduced,
then also A’ is reduced and has thence a weakly k,-definite transition
system.

12.2. It was shown by GINZBURG [4] that a reduced generalized definite
automaton remains generalized definite for any choice of initial state and
the final states. This follows from the following theorem, too.

Theorem 27. A reduced w . (h, k)-definite automaton has a w. (h, k)-
definite transition system.

Any language representable in a w . (&, k)-definite transition system
is w. (h,k)-definite.

Proof. Suppose that U = (S,9,s,,F) is w. (h,k)-definite. Con-
sider any words p € X", g€ X*, r € X* and letter 2. Then

0(sg , pagqr) € F iff o(s,, pqr) € F ,

because h|pxqr = h|pgr and pxqrlk = pqrik . Because A was reduced,
this implies that syprq = sypg, and hence by Lemma 18, that (S, ¢)
is w. (h,k)-definite.

Assume now that (S, 9) is w. (h, k)-definite. Given a pair of states,
s,s €8, we denote A, = (8,0,s,{s'}). Then

T(s)lss') = Q + U.pX* q ’

where L(Q) < h + k and the sum ranges over all pairs p € X", ¢ € X*,
for which spq = s’ . Any language representable in (S, d) is a sum of
languages of this type and thus w. (h, k)-definite.

12.3. The contraction and reduction method described in 11.3 can be
used to test the w. (h, k)-definiteness of a reduced automaton. From the
analysis point of view it is more convenient to test the w . (b , k)-definiteness
as follows.
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Let (8", 0) be a strongly connected transition subsystem of the con-
nected automaton A = (S,d,s,,F). We call s' €8 an initial state
of (8, 0) iff there exists a word p = 2@, ...%, or p = A such that
ssp=2¢8 and S N{sy,8L,...,%pF={s}.

Let S. be the set of all states in S which belong to some strongly
connected subsystem, and S, the set of all initial states of these subsystems.
We denote S. =8 — (S, — Ss) and define a transition system (S., d.)
over X by the condition

5i(s @) = [ O(s,a),if s€8 — S,
- | s, if s€S,,

for any s €8. and x € X. The transition system is well-defined, for
s €8, — 8, implies that d(s,z)€S.— Sy, ie. that od(s,x)€S.,
for any letter x. The assumption that 9 is connected is needed here.

Lemma 23. A reduced automaton A= (S,d,s,,F) is w. (h,k)-
definite for some A if and only if

(1) (S:, d.) is reverse definite, and

(2) all strongly connected transition subsystems of 9 are weakly
k-definite.

Proof. Suppose that (S.,d) is 7. h-definite and that also (2) is
satisfied. Consider any words p € X*, ¢ € X* and letter a. The state
0c(sy, p) is O-absorbed in (S, d.) because s, is h-absorbed. Hence
dc(sy » p) is an initial state of some strongly connected subsystem of (S, 9),
and (s, p) thus a state of such a subsystem. The assumption (2) implies
now that (s, prq) = 6(sy, pq) . Hence (S,0) is w. (h,k)-definite
by Lemma 18.

Assume now that U is w. (b, k)-definite for some (A, k). The con-
dition (2) follows from Lemma 22. Consider any words p € X" and ¢ € X*.
We show that s; = d(sy, pq) is a state of some strongly connected sub-
system. Let « be an arbitrary word, and denote s, = s;u . Now pgrlk =
pqugrlk , for any word r. Hence

0(seq , 1) = (g , pquqr) € F iff o(s;, 1) = 0(sy, pgr) € F.

Because A is reduced this implies that s,g = s,. Hence d.(s,,pg) is
an initial state of a strongly connected subsystem of 9 and thus 0-absorbed
in (Sc,d). Because (S., d.,s,) is connected, this implies that all states
of (8., d.) are (b + k)-absorbed. Hence (S., d.) is w.r. (h + k)-definite.
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The analysis of a reduced w. (h,k)-definite automaton U =
(8,0,5,,F) can now be performed as follows.
1. The strongly connected subsystems of (S, ) are found and their

definiteness is tested. Let s;,...,s. be the initial states of these sub-
systems and let A;,..., Q%A be the corresponding strongly connected
subautomata.

2. If the subsystems are all definite, then (S., d.) is formed and its
reverse definiteness is tested.

3. Suppose that (8., d.) is reverse h-definite. Denote U = (S., o,
So>{si}) and T() = RX*, where L(R) < h,foreach ¢=1,...,n.
Then

TO) = @ + U R T ,

i=1

where ¢ is the finite language represented by the set F N (S. — S;) in
(Se, 0e 5 ) -

University of Turku
Turku, Finland
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