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1. Introduction

1.1. We consider a complex linear space X . Let @ denote a
Hermitian inner product on X . We assume it to be non-degenerate
(Q,y) =0 for all y€X implies v =0) and indefinite (Q(z,x)
has positive and negative values). Further,let X have a decomposition

X = X+ X~
into direct sum of two @-orthogonal linear manifolds X+, X—:
Qt,z”) = 0 for all at€ X+, 2 €X—,
Qt,at) > 0 for all at€X+, at <40,
Qz—,2z7) < 0 for all z—€X—, a—=%0.

We assume that in this »Q-canonicaly decomposition (X+,@Q|X+) and
(X, — @|X~) are Hilbert spaces; in this case (X , @) is called J-space.

Let P+ and P~ be the projectors onto X+ and X-—, respectively,
satisfying

P+P- = PPt = 0, Pr+ P = 1.

With
J = P+ — P~

the definition

Hx,y) = QJ 2z, v) for all 2o,y €X
gives a Hilbert inner product H on X . We denote the corresponding
Hilbert norm by

ol = +VH@.,x) (v€X).

In the following all topological properties are based on this norm.

1.2, A linear mapping A with the domain D(4) and the range
R(4) in X is called an operator. If D(A) is dense in X, the
operator A4 has a uniquely determined H-adjoint A*, which is a
closed operator:
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HAx,y) = H(x,A%y) for all x € D(A), y € D(A*).
Take x € D(A) and y € D(A*J), then?)

QA x,y) = HJ Ax,y) = Hx, A% Jy) = Qx,J A% Jy).
The operator
(1) A° = J A*J

is called the @-adjoint of 4. For x€D(A) and y € D(A°) we
have

In particular, we have
(2) JO = J¥ = JT = J.

Lemma. We assume that G and its inverse G~1 are conlinuous
operators defined on X . Further let A be an operator with the domain
dense in X . Then D(AG) is dense in X and

(A4 Gy = G 4%

Proof. Let x be an arbitrary element of X . Since D(4) is
dense in X there is a sequence {x,} C D(A) with a,—Gx. Then
Gla, € DAG) and G lua,—>a since G1 is continuous. This implies
that D(A @) is dense in X .

It is wellknown that?) (4 G)* D G* 4*. Since D(G*) =X we
have D(G* A*) = D(A*). For x € D(4) and y € D((4 ()*) one derives

HAx,y) = HAGG v , y) = HG x , (4dG)*y).

If y is fixed the expression H(G~'x, (4 G*)y) is a continuous function
of a. This implies by the definition of D(4%*) that y € D(A*) =
D(G* A%) . Consequently, we have D((4A G)*) € D(G* A*) which completes
the proof.

We assume that A is a closed operator with the domain D(4)
densein X . Then D(4%*) isdensein X and by the previous lemma
D(A°) = D(A* J) is also dense in X . Further we get

(JAJYE = (AJ)ysJx = Jx A% Jx = J A% J = A°.

This implies that A° is a closed operator. Since A** = A4 one
obtains

A% = J (J AR JYE S = J (A% )% J5 T = J J5 AR5 g5 ] = JPAJ = A
‘-]T—‘ﬂ(‘j;):iously Jo=J% = J,
%) E.g. [6].



V. Jarava, On spectral decompositions of operators in J-space 5

From (1) and (2) one immediately gets the rules (if the operators in
question exist):

1) (A7) = (497,
2 (v 4) = & A°,
3 (A+B)'_')A°+B°,

)
)
4) (AB)y D B°A°,
) 4 c B implies A° D B°.

Especially if A4 is a continuous operator, the rules 3) and 4) can be
replaced by

3) (44 By = A"+ B,

4y (4 B) = B°A°.

Let A be an operator (not necessarily continuous) and C a
continuous operator. If CAc AC wesaythat 4 commutes?) with
C and write A_C . The notation A--B means that 4 commutes
with every continuous operator (' commuting with B.

We give the definitions:

(a) The operator A4 is @-self-adjoint if A = A°.

(b) A continuous operator A with A°= A-! is called Q-unitary.

(¢) A closed operator A with the domain dense in X is called
@-normal if A A°= A°A4.

1.3. In his theory of linear spaces with indefinite inner products Rolf
Nevanlinna expressed the idea [4] that under some restrictive conditions it
should be possible to derive, by analogy with the spectral theory of H-self-
adjoint operators, a spectral decomposition of @-self-adjoint operators.
Erkki Pesonen [5] studied the question in details in the special case that
the self-adjoint operator is continuous and (X , H) is a separable Hilbert
space. Applying some results of Heinz Langer [3], Rolf Kiihne [2] examined
the problem from a different point of view and generalized the results of
Pesonen for general Hilbert spaces. Peter Hess recently [1] succeeded
in generalizing this for non-continuous @-self-adjoint operators.

In this paper we shall give such a modification of the results of Hess
which is also applicable for @-unitary and @-normal operators.

I express my sincerest thanks to Professor 1. S. Louhivaara for his
kind interest and many valuable advice. I also wish to thank Dr. Peter
Hess for his valuable criticism on the first manuscript of this paper.

5 B [6].
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2. Various Hilbert inner produects in J-space

2.1. Let A be the set of the continuous and @-self-adjoint
operators G for each of which there is a positive number % (depending
on @) such that

(3) QG x,x) = hlp? for all x€X.

Theorem 1. A bilinear form K defined on the space X 1is a
Hilbert imnmer product topologically equivalent to H if and only if there is
an operator G € A such that

K,y) = QG a,y) for all x,y €X.

Proof. (a) Let K Dbea Hilbert product equivalentto H . There
exists an H-self-adjoint continuous operator C such that

We write G = J C. Then we have
K,y) = QGx,y) (v,y €X),
and ¢ is @-self-adjoint:
= JOY =0J =JC*J2=JC = G.

Since the Hilbert products H and K give the same topology there
is a positive number % such that

QGx,2) = K(x,z) = hH(,x) = hla]?

for all x € X . Consequently, we have G € 4.
(b)  Suppose

Kx,y) = QGx,y) (z,y €X)

where G €4. Since G is @-self-adjoint, K 1is a Hermitian inner
product. In accordance with (3) there is a positive number A such that

Kx,z) = QGx,z) = hH(z, )
for all 2 € X. On the other hand
Kx,z) = HJGx,z) < |J G| Hx, )
for all x € X . Consequently, the forms H and K induce the same
topology.

2.2. We shall still consider an operator G € 4 and the corre-
sponding Hilbert product
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We have for =,y €X
KGz,y) = QG*x,y) = QGx,0Gy) = K@,Gy),

thus G is K-self-adjoint.
Let C be a continuous operator satisfying

K(@,y) = HC=,y) (z,y €X).

Then we have G =J C. The operator C has a continuous inverse
C-1 definedon X . Since G 1= C-1J, theoperator G hasalsoa
continuous inverse G~1 defined on X .

Theorem 2. Let A and B be two closed operators with the domains
dense in X . Then the two following propositions are equivalent.

(i) In X there exists a Hilbert product K equivalent to H so
that the operators A and B are the K-adjoints of each other.

(ii) There exists an operator G € A such that G A = B°G.

Proof. (a) First we assume that there is a Hilbert product K
equivalent to H sothat B isthe K-adjointof 4. We denote for
K-adjoint of A by A° that is B = A°. According to Theorem 1
there is such an operator G € A that

K@,y) = Q@x,y) (v,y €X).
For z€D(A) and y € D(B) one gets
Q,6GBy) = K@@,By) = Kdx.y) = QG4dx.y).
This implies G 4 C (¢ B)* = B°G.
For € DBG) and y € D(B°G) one derives
KBGz,y) = QGE@BGx,y) = QGa,BGy) = K,B Gy),

hence B°G C (BG)°.

Since @ and G-! are continuous operators defined on X , we obtain
(BG)° = G°B° =G A according to the lemma in section 1.2. Thus we
have B°GcGA.

Consequently, we have G4 = B°G.

(b) Let G €A be an operator so that G A = B°G.

We define

Kx,y) = QGx,y) (x,y €X).

According to Theorem 1 the form K is a Hilbert product equivalent to
.
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For « €D(4) and y € D(B) one has
Kdo,y) = QGAx,y) = QB Ga,y) = QGx,By) = K@, By),

therefore B c A4A°.
Because of the equation (¢ 4 = B°G we have z € D(A) if and only
if Gz €DBY. We obtain

Q(Bch;y) = Q(GAlzy) - K(Aa’»y) = K(stoy) = Q(GxaAoy),

for x€D(4) and y € D(A°). This results in A°c B = B. Con-
sequently A° equals B.

3. Application for the spectral decomposition of Q-self-adjoint, Q-unitary
and Q-normal operators

3.1. Let A be a closed operator with the domain densein X . We
assume there is such an operator G € A that

(4) G4 = A°G.

According to Theorem 2 there is a Hilbert product K equivalent to H
and K issuch that 4 is K-self-adjoint. Consequently, one has a unique
K-self-adjoint spectral family { B, | — o0 < A < o } having the following
properties:

() E,E, =E, for 1 =upu,

(b) Ez+0 = E,,

(¢ E,—-~O for > —w, E, -1 for 2 - 4+,
@ 4 = [2dg,

() B, _A.

Thus we have obtained for the operator A4 a spectral decomposition
defined above. However, the spectral family {E,} is in this case not
necessarily @-self-adjoint.

Now we assume in addition to (4) that A4 is @-self-adjoint: 4 = A4°.
Then one has

GA =AG and G1A = AG?.
From (e) it follows that G—'_E,. Hence we derive
QE,x,y) = K(GTEz,y) = KE, G a,y)
= K(G72,B,y) = Q@, E,y)
for all «,y € X. Consequently ES=FE,.
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The @-self-adjoint spectral family {£,} having the properties (a)—(e)
is uniquely determined (not depending on the special choice of K ). In
fact, let {F,} be another spectral family with the same properties. Since
F,__A we obtain F,_G; this results in {F,} being K-self-adjoint.
The implication of the last fact is that {F,} = {E,}.

Thus we have the following result of Peter Hess:

Corollary 1. Let A be a Q-self-adjoint operator. We assume the
existence of an operator G € A satisfying A G = G A. Then there is a
unique Q-self-adjoint spectral family {E,| —oo < A < + o0} having the
properties (a)—(e).

3.2. Now we assume that A and A-! are continuous. Further,
we assume there is an operator G € A such that

(5) GA = (A7) 6.

According to Theorem 2 there is a Hilbert product K equivalent to
H sothat A4 and A-' are the K-adjoints of each other. Therefore A
is K-unitary. There exists a unique K-self-adjoint spectral family
{E,| 0=¢ =2n} having the following properties:

(@) E E,=E, for 9=y,

(b) E,,=2E,,

(¢ E,=0, E, =1,
27

dy A = | edE_,
J e ar

() B, __4.

Let us assume in addition to (5) that 4 is Q-unitary. Then A1 = A°
and G4 =4G. Now we can prove as we did in section 3.1 that H,
is  @-self-adjoint. Besides, this spectral family possessing the properties
(a)—(e) is unique.

Corollary 2. Let A be a Q-unitary operator. We assume there exists
an operator G € A with the property A G = G A . Then there is a unique
Q-self-adjoint spectral family {E_ | 0 <@ =2z} having the properties
(a)—(e).

3.3. Let A be a closed operator with the domain dense in X . We
assume that there is a closed operator B with the domain dense in X
such that 4 B = B A . Moreover, we assume the existence of an operator
G € A with the property

(6) GA — BG.
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In agreement with Theorem 2 there is a Hilbert product K equivalent
to H so that A4 and B are the K-adjoints of each other.
Since 4 B = B A the operator A4 is K-normal. There exists a unique
K-self-adjoint spectral measure £ defined for the Borel sets of complex
numbers so that the following properties are valid 4):

(a) EC) =1,
by A= [1dE,
/

(c) EM)__A for each Borel set M of C.

We assume especially that B = A4°. Then the operator 4 is
@-normal: 4 A°= A°A . Since, according to (6), G A = A4 G it follows
from (c) that E(M)_G . This implies that the spectral measure E is
@-self-adjoint.

Corollary 8. Let A be a @Q-normal operator. We suppose there exists
an operator G € A satisfying A G = G A . Then there is a unique Q-self-
adjoint spectral measure L possessing the properties (a)—(c).

University of Jyvaskyla
Finland

4)  The set of all the complex numbers is denoted by C.
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