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Degree and point-inverses of mappings on spheres

The purpose of this paper is to prove a theorem suggested by considera-
tions in [1], p. 270. Although the theorem has some obvious generalizations
(see theorem 2), we shall prove the following original form of it:

Theorem 1. If f is a continuous mapping of the n-sphere S" into
S* and if |deg(f)| =k > 0, then the set of points y € S* for which f~(y)
contains at least k points is dense in S™.

In what follows, f will always mean a continuous mapping of S" into
S*. For a point y € 8", we call f~Y(y) the point-inverse of y. By a domain
we shall mean an open, non-empty, connected subset of S". The letter D
stands as a symbol for a domain. A neighbourhood of a point x € S", de-
noted by U(x), is also always assumed to be a domain. The boundary
of a set 4 c 8" is denoted by 09A.

The (local) degree (topological index) of a map f is an integer-valued
function of triples (f, D, y) where D c S" is a domain and y € S* — f(dD).
For such a triple the value of the degree is denoted by deg(f, D, y). We
shall need the following properties of the degree (for the definition of the
degree and the proofs of the properties see e.g. [1], [2]):

(1) deg(f, D, y) =deg(f, D,y’), if y and %’ Dbelong to the same
component of 8" — f(aD).

(2) If deg(f, D,y) # 0, then y € f(D).

(3) If f|D is injective and if y € f(D), then |deg(f, D, y)| = 1.

(4) Let Dy,...,D,c D be disjoint and let y € S" — f(éD) such

k

that DN f(y) c U Di. Then

i=1

deg(f, D, y) =

M;r

deg(f, D, y) .

1

From (1) it follows that deg(f, S*, y) has the same value for all y € S™.
This common value is the global degree of f, denoted by deg(f).

For the sake of convenience, we shall make the following additional
definition:

Let f be a map,x €S and y = f(x). We call & an essential point

of f if x has a neighbourhood U(x) such that U(x)N f1(y) = {z} and
deg(f, U(x), y) # 0.
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Remark 1. Suppose that x is an essential point of j and that Uj(z)

and U,(r) are neighbourhoods of a such that Uy(x) N [f(x) = {z}.
Choose a neighbourhood U,(z) € Uy(x) N Uy(). Then (4) 1mphes that

deg(f’ Lrl(x)’ y) = deg(f, Ua(x), y) = deg(.ﬂ [72(1')’ Y),
where y = f(x). Thus deg( f U(x), y) has the same value for all U(x)

such that that U(x) N f(y) = {z}.

Remark 2. Suppose that D c Sy €8" — f(oD) and deg(f, D, y) # 0.
Assume further that f~I(y) N D (which is non-empty by (2)) contains
only a finite number of points, say 5, ..., 2. Choose disjoint neighbour-
hoods U(x;))c D,i=1,...,k (4) implies that

k

+ deg(f, D,y) = > deg(f, U(x:), y) .

ra—

=1
Thus there must be essential points in f~'(y) N D. Moreover, we have
deg(f, D, y) S‘ deg(f, Ulxi), ) .
j= 1
where ;. ..., are the essential points of f=(y) N D.

For the proof of theorem 1 we still need a lemma:
Lemma Let f be a map, D c S y, €f(D) — f(0D), and let Uly,)

c f(D) — f(éD) be such that for every y € U(y,), [~ (y) N D is finite and
confauzs exactly one essential point. Then
deg(f, D, yo)| =

Proof. Define a map g: U(y,) =D by sending every y € U(y,) to
the essential point of f~Y(y) N . We shall show that ¢ is continuous. For
this purpose, let y € U(y,), * = ¢(y), and let U( ) € D be a neighbour-

hood of x, of which we may assume that U(z) N f-1(y) = {x}. Choose
Uy) c C(y,) — f(oU(x)). Then (1) implies that for any J € U(y),

deg(f. U(x), y') = deg(f, U(x),y) = 0.
But this means that the essential point of f~1(y’) N D lies in U(x). Thus

g(U(y)) € U(x), which proves the continuity of g.
Since ¢ is continuous and certainly also injective, ¢(U(y,)) is open.

Consequently, a, = g(y,) has a neighbourhood U(x,) such that U(x,)

c g9(U(y,)). Then f| U(x,) is injective, and by (3) and remark 2 we have
deg(f, D, yo)| = |deg(f, U(%,), %) = 1.

The proof of theorem 1. Suppose that there exists an open, non-empty
set B c S", such that the point-inverse of any point of B has less than
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k points. By remark 2, f~1(y) contains essential points when y € B.
Take a point y, € B, for which f~%(y,) contains a maximal number m(<k)
of essential points, say @, ..., m. Choose disjoint neighbourhoods U (),
t=1,...,m such that f1(y)NU(x)={x;},i=1,...,m. Then
Y, has a neighbourhood U(y,) € B such that for any y € U(y,) we have

deg(f, U(x:i), y) = deg(f, U(x:), yo) # 0,

i-=1,...,m. This means that when y € U(y,), [~ (y) N U(x;) contains
essential points for all ¢ = 1,...,m. But since the number of them can-
not exceed m there is exactly one of them in each U(x;). The preceding
lemma and remark 2 then yield

m

deg(f)] = | Zldeg(f, U@, yo)| < 2 |deg(f, Ux:), ) =m < k.
i i1

This contradiction proves the theorem.

Theorem 1 can be generalized at least to n-dimensional orientable ma-
nifolds, for which degree theory can also be defined (see e.g. [3]):

Theorem 2. Suppose that X and Y are oriented n-manifolds and
that f: D — Y s a continuous mapping, where D is a relatively compact
domain of X. Let y, € Y —f(dD), and let C be the component of Y —f(0D)
containing vy, If ‘deg(f, D, y,)| =k > 0, then the set of points y € C,
for which f7(y) contains at least k points, is dense in (.

The proof of the theorem is completely analogous to the one given above.
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