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Removahility thecrems for quzsiconformal mappings

1. Introduction. In this paper we shall study the following removability
question: Let D and D’ be domains in the euclidean n-space R",n > 2,
let Ec D be closed in D, and let f:D— D’ be a homeomorphism
which is locally K-quasiconformal in D—F for some K, which means
that for every x« € D — E there is a connected neighborhood U of 2 such
that f| U is a K-quasiconformal mapping [8, p. 20]. We ask for condi-
tions on E and on the restriction f| K which imply the quasiconform-
ality of f. A special case for n = 2 of this situation is considered in [5,
Theorem 3] which implies that f is quasiconformal if E is a Jordan curve
and if f | E =g | E for some quasiconformal mapping ¢ ofadomain G'D K.

The set E is called an exceptional set if f is always a K-quasiconformal
mapping. One of the main results which give conditions for the excep-
tionality is that the set E is exceptional if E is of o-finite (n—1)-di-
mensional Hausdorff measure [9, 35.1], [3, Corollary 5]; for the case n = 2
see also [7], [1], and [4, Satz V.3.2]. We shall give answers to the given
problem in the other direction. It turns out (Theorem 1) that the condition
mentioned above, namely the existence of a quasiconformal mapping ¢
of a domain G D E suchthat f|E = ¢ | K, implies the quasiconformality
of f even if no further assumptions are made on E. We shall also in
Theorem 2 establish another form where the assumption on the restriction
f| E is weakened but E is assumed to be connected or locally connected.
In these results the maximal dilatation of f is in general greater than K.

2. Notation. Throughout this paper D and D’ are domains in R
and n>2. If A, Bc R, d(4, B) denotes the euclidean distance be-
tween A4 and B. For z € R® and » >0 we set B*a,r) = {y € R"|
ly —x| <r} and S"'x.r)={y€R" 'y—x =r}. We also use the
abbreviations B*(r) = B"(0,r) and S" '(r) =S"'0.r). If f:D—D’
is a homeomorphism, if « € D, and if 0 <r < d(x, dD), we set

Lz, f,r) = sup |f(y) — f(x) .

Y—x =r

U, f,r) = inf |f(y) — flx) .

fy—xi=r

The linear dilatation of f at x is
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‘ L

H 1. L(x’ f’ r)

L f) = limsup ———— .

(al f) r—=0 p l(x7 f, T)

The k-dimensional Lebesgue measure is denoted by mi. The (n—1)-
dimensional measure of the unit sphere S"~'(1) is o, ;.

3. We start with a simple distortion result for quasiconformal mappings.
Let v be an increasing function of the interval [1, co) into itself and let
@:A—>R", Ac R, be an injective mapping. We say that ¢ has local
v-bounded distortion if for every x € A there is an s> 0 such that
2, % €A and 0 < [ — x| < | — | < s imply

fiff%) — ‘P(xﬂ ” <[5'/1 — x| )
() — gl@)] =

Lemma 1. Let f:D-—-D" be a K-quasiconformal mapping. Then
there exists an increasing function v :[1, ) —[1, w0) depending only on
n and K such that [ has local v-bounded distortion.

Proof. Assume «€D. Choose s>0 such that fB'(x,s)C
Br(fx),t)c D' for some ¢ Let 0 < |a,—a <y —z|<s and
set o = |f(&:) — f(x)],i=1,2. Assume «x, <<x and let I be the
family of curves which join the boundary components of the ring 4’ =
{y oy < ly — f(®)] <o} in A’. Then the n-modulus M(I") of I equals
w,_1/(log (x;/xx))" " [8, p. 5, 7]. For the n-modulus of the curve family
IF=f'I"={f "oy |y €I} wegetby[9,11.7] (see also [2, Theorem 4])
the estimate

[y — x|

where x,: (0, ) — (0, o) is a decreasing function which depends only
on n. Since f is K-quasiconformal, M(I') < K M(I"). Hence

If(xy) —~f(xﬂ < oxp ((A i K o, H_IT_)l;(n-l)\ . <h4_4> |

If(zy) — fl2)] — / lry —

and the lemma is proved.

The main step is the following lemma (cf. [5, Lemma 3]).

Lemma 2. Let Ec D be closed in D and let f: D — D' be a homeo-
morphism which is locally K-quasiconformal in D — E and such that | E
has local v-bounded distortion for some v. Let E, be the set of points x € K
such that for every integer j there exists an integer k > j such that (B"(x, 1/k)
— Bz, 1/12k)) N E = @. Then
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(a) ma(Ey) = 0.

(b) There exists a ¢ << o, depending only on n, K, and v, such
that H(x,f) <c if x €D — K,

Proof. Since no point of E, is a point of outer density for E,, ma(Ey) = 0
[6, p. 129].

To prove (b) it suffices by [9, 34.2] to show that a uniform bound exists
for H(z,f) for points x € B — E, Let z,€E — K, By performing
similarity transformations we may assume that x, = f(zy) = 0. There
exists an integer k, such that (B"(1/k) — B"(1/2k)) N B = O for k > k.
Since f|E has local v-bounded distortion, there exists an s> 0 such
that if @, 2, € and if 0 < || < |%| <s, then

f()| o
Syl =" (lle> '

Now let r be such that 0 < 7 < min (d(0, D), s, 1/k,)/8 and such that
B L(0,f,r))c D'. We set

L, = L, f, ), I, =10, f, 7),

Ay ={alr <o) <2r}, 4y ={x |72 <lz| <r},
Hy={x|2r < |x| <8}, Hy={x|r[8 < lx] <7/2},
F;= 4 UH:;, i=1,2,

r, = sup |f(x)], ry = inf |f(2)].
x€ENF, x€ENF,

We shall make use of the fact that the sets A, — f'B"(r;) and

A, N f~' B"(r,) do not meet K.

Assume L, >, and let z €fS" '(r) be such that [z = L,. There
exists 7, > 1 such that the line segment J = {1z 1 <7< 7} is con-
tained in f4, and such that vz €£S" '(2r). Assume 1, <o <L, and
let I' be the family of curves which join f~'J and f~'8""'(¢) in 4, —
f'B"(0).

Next we derive a positive lower bound for the n-modulus M (I7) of
I'. Let r<t<2 and set S =8"'). Then SNf 'J#0. We
show that also SN f 18" '(c) # O holds. To prove this we first note
that [, N E = 0. There is therefore a point u € B"(r,) N fA,. The line
segment {Ju |0 < 2 < 1} meets fS. The assertion then follows from the
fact that fS has points in both components of the complement of 8" (o).
We now choose a point y € SN f~'J. Since y does not belong to the non-
empty closed set SN f~'8" '(s), there exists an open half space M
such that y €M, MNSc S —f '8 ). and NS N '8 o)
4 (. Denote by I the family of curves y € I' which lie in M N S.
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For the m-modulus M3(I) of I'. with respect to S the estimate M3(I7)
= ba/t holds where b, > 0 is a constant which depends only on =» [9,
10.2]. If o: R"—[0, oo] is a Borel function such that

/gdle

14

for every rectifiable € I, we have

/@" dm, ., > M (I)

S

by definition. Hence

2r

/Q"dngfg"dm":/(/g" dmn_1>dt

4, e ()
2r
b
> ?dtzbnlogZ.

This gives M(I") > b.log 2 > 0.

On the other hand, the ring B"(L,) — B"(¢) separates J and S" (o).
Consequently, M(fI") < w,_,/(log(L.[0))"~" [8, p. 7] where fI = {fov |
y € I'l. Let D; be the component of D — E which contains f~'J. Then
every curve of I" liesin D;. Since f | D — E islocally K-quasiconformal,
f 1D, is K-quasiconformal, and we have M(I') < K M(fI'). This gives
b,log 2 < K w, ,/(log(L,/c))"". Hence

L, <<K w,,_1>1/("‘1’)
m < exp b, log 2 =

Similarly one proves L /r, > a, .
Let ;€ ENF; be such that |[f(x)| =1, ¢ =1,2. Then |2|/|z,|
< 64. Finally we obtain the estimate

which proves (b).

Theorem 1. Let £ c D be closed in D andlet f: D — D' be a homeo-
morphism which is locally K-quasiconformal in D — E for some K. Sup-
pose that there exists a quasiconformal mapping g of a domain G, E < G c D,
such that g | E = f | E. Then f is quasiconformal.
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Proof. By Lemma 1, f|E has local v-bounded distortion where v
depends only on 7 and on the maximal dilatation K(g) of g. By Lemma
2, there exists a set E,C £ of measure zero such that H(z,f) <c¢ < oo
for x € D — E, where ¢ depends only on =, K, and K(g). By an n-
dimensional version of [8, Lemma 6.3], f is differentiable almost every-
where. If f is differentiable at « € D — Ey, |f'(x)|" < " '|J(x, f)| where
J'(x) is the derivative and J(x,f) the Jacobian of f at z. We shall show
that f is ACL [8, p. 15]. The quasiconformality of f then follows from
an n-dimensional version of [8, Theorem 6.11].

It suffices to prove that f is ACL in @. To show this, let @ be an
open n-interval such that @ C ¢. Let P:R"— R"' be the orthogonal
projection. For each Borel set 4 c PQ we set Z,=QNP 'A and
y(d) = m,(fZ,). By Lebesgue’s theorem, the set function y has a finite
derivative y'(y) for almost every y € PQ. Furthermore, g is absolutely
continuous on Z, and my(H,N Z,) = 0 for almost every y € PQ. Fix
Y € PQ such that all these three conditions are satisfied. By symmetry,
it is sufficient to prove that f is absolutely continuous on Z,.

Let F be a compact subset of Z,. Since g is absolutely continuous on
Zy, since g |Ey=f|E, and since m(E,N F) =0, we have A,(f(E,
NF)) =0 where A; is the l-dimensional Hausdorff measure. Hence
ML(fF) = A4(f(F — E,)). Let k, be an integer such that 0 < 1/k, <
d(F, 9Q). For each integer k >k, we define the set Fj of points a € F
such that 0 <r < 1/k implies L(x,f,7) <cl(z,f, r). For every k > kq
F, is compact and F,c F, . Since H(x,f) <c for « € F — E,, we
have "

F -EcUF.=F

k=k,
and one can prove the inequality (see [9, (31.3)] and [1, p. 10])
(1) D) < xc"y'(y) my(F)"

where x < oo is a constant which depends only on . Consequently, also
A,(fF)" has the right hand side of (1) as an upper bound. After this a simple
limiting process shows that f is absolutely continuous on Z,. The theorem
is proved.

Theorem 2. Let K C D be connected or locally connected and closed
wn D. Let f:D— D" be a homeomorphism which is locally K-quasiconfor-
mal in D — K for some K. Suppose further that f | E has local v-bounded
distortion for some v. Then f is quasiconformal.

Proof. The set E,c K defined in Lemma 2 consists in this case of
isolated points only, and D — E, is a domain. By (b) in Lemma 2 and by
[9, 34.1] f|D — E, is quasiconformal. But E, is removable [9, 17.3],
and the theorem is proved.
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Remark. If @ has local v-bounded distortion for some v, it does not
necessarily follow that ¢ is a restriction of a quasiconformal mapping. This
is shown by an n-dimensional version of the example presented in [5,
p- 388]. Hence the condition on f| E is in this sense weaker in Theorem
2 than in Theorem 1.
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