ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A '

I. MATHEMATICA

473

AN ESTIMATE FOR THE CLASS NUMBER
OF THE ABELIAN FIELD

BY

TIMO LEPISTO

HELSINKI 1970
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1971.473


koskenoj
Typewritten text
doi:10.5186/aasfm.1971.473


Communicated 8 May 1970 by K. INKERI

KESKUSKIRJAPAINO
HELSINKI 1970



An estimate for the class number of the Abelian field

Introduction. Let K be an Abelian field of degree n over the field
P of rational numbers. It is a class field with the rational group H of
residue classes, which has the index »n and the conductor f. H is thus a
subgroup of the group G;, which consists of all prime residue classes
modulo f. K is a subfield of the cyclotomic field P;= P({), where (
is a primitive fth root of unity. Let @ denote the residue class which
contains . K is then left invariant under the automorphisms — %
where @ € H, and the Galois group of K is isomorphic to the Abelian
group Gj/H. In this paper we consider the class number of this Abelian
field.

Let Y be the group of the characters of (. Consider the group X
consisting of all the characters y € Y such that x(@) =1 forall a € H.
The characters belonging to the group X are the characters of the Abelian
group Gy/H. (y(@H) is then understood to be equal to x(a)). The characters
in Y are also numerical characters (mod f) (y(«) =0 if (a,f)> 1). We
denote by f(y) the conductor of y (the fundamental modulus of the
character z). It then follows that f is the least common multiple of the
conductors f(y). For the absolute value d of the discriminant of the
field K we have an important equation

(1) d =TT/ -

71€X
(cf. e.g. [2], p. 4—8).

In the following we must distinguish two cases, where K is real or
imaginary respectively. If K is imaginary, then n = 2n, is even and
K is of degree 2 over the field K, which is its real maximal subfield.
The group X of the n characters y is then divided into two parts.
Those m, characters of X, for which yx(— 1) =1, form a subgroup
X, of X, and the other characters, for which y(—1)= —1, form a
coset X, of X, in X (cf. [2], p. 5). If K is real then K = K, and
X = X,

Some preliminary results. Our main object is to study the product
hR, where h denotes the class number of the field K and R the regulator
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of this field. We first want to mention the following result of BRAUER
(cf. [1], p. 745).

Theorem 1. If K ranges over a sequence of fields normal over P, for
which nflog d — 0, then

log (RR) ~ log Vid.

In the case of the cyclotomic field P; we have got in [6] a sharper
result:

Theorem 2. If ¢ and c(e) denote respectively an absolute positive
constant and a positive constant depending on parameter ¢ alone and o(f)
denotes the number of different prime factors of f, then

c(e) f7° < Rh/G < exp (c(log log f + o(f))) ,

where
G = Q@a) Dy d
and
sz if 2tf
w =3 X
| fif 2/

is the mumber of roots of 1 contained in P;.

The special case of this result (f is an odd prime) is proved by TATUZAWA
[8] (see p. 111).

If we in the set of all Abelian fields pick up a sequence of fields in
such a way that n — oo, then the conditions of theorem 1 are satisfied.
Let us consider this question closely. We first write, by (1),

(2) logd = > log f(y),
7€X

where the sum in the right-hand side contains » members, because the
order of X equals the degree of the field A. Let ax be the least positive
integer such that

1
(3) n <> qh) (n=4).
k=1

We now get

(4) 2. log f(z) z

7EX

¢(k) log k,

I [\/«

1

because there exist a most ¢(k) primitive characters (mod k). (In fact
the number of the primitive characters (mod %) is smaller than ¢(k) if
k= 2.) We use the relation
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(5) ¢(k) > c kflog log k1) (k= 2)
(cf. [7], p. 24). From (4) we get

2 log f(z) > ¢ Z klog k/log log k
k=2

7€X
= c(loglog x)™t > klogk > ¢ x?log x/log log « .
k=1
Because
g(k) = 0@?) ,

<
L
a1

k

we then get, by (3),
0 < njlog d << clog log x/log w .

We can thus decide that n/logd -~ 0, when 7 — .

If we for instance have a sequence of cyclotomic fields, then it is also
easy to see directly that the conditions of theorem 1 are satisfied. Namely
logd = } ¢(n)logn (cf. [5], p. 27), and we have

0 < n/log d = O(log log nflog n) .

Results. In this paper we prove
Theorem 3. Let w be the number of roots of 1 in K and

' [’\ A2 if K is real
"= lu: v d(2a) if K s imaginary.
Then

cle) [ < hR|G < exp (¢(n 1 -+ log log f + o(f))),
where

]0 if K s PJ,- or its real maximal subfield,

1log log (1 -+ ¢(f)/n) - log log (w(f) - 2) elsewhere.

We see immediately that theorem 2 is a special case of theorem 3.
Further we can prove for the so-called relative class number 2* of K/K,
the following (K is imaginary).

Theorem 4. Let @ be 1 or 2 if a fundamental system of units of Ky s
also a fundamental system of wunits of K or not respectively. Then

cle) fexp (—en d) < k¥ < exp (e(n d + log log f + o(f))),
1 We want to note that in this paper the constants ¢ and c(e) are not necessarily
the same in their various occurrences.
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(6) 6" = Qua)™ ( TT f(0)* .

1€X,

In [5] we have considered the so-called first factor A, of the class
number of the cyclotomic field P;. Taking into consideration that then
h*]Q = hy (cf. [2], p. 13, 71) we found that the result we got (cf. [5], p. 11)
is a special case of theorem 4.

At the end of this paper we compare the estimations of theorem 3 with
the estimations of theorem 1, if K ranges over a sequence of fields in such
a way that n — oo. We can show that theorem 3 gives such information
of the behaviour of AR, which cannot be seen from theorem 1.

Characters. We must first consider characters closely (cf. e.g. [3], pp.
216—224). We need the following

Lemma 1.
) J n if a€H.,
7 ya) —= s
“ lele( ) lO elsewhere.
In the case of the imaginary field the residue class of — 1 does not

belong to H. Then the group Hy,= HU (— 1) H corresponds to the
field K, (the real maximal subfield of K). For that case we have the
following

Lemma 2.

J ny if a€H,
=q9—n, if a€(—1)H,
l 0 elsewhere.

Proof. The number of the characters of X, and X, equals 1n = n,.
We can thus decide that the first and the second condition of our lemma
holds. Let us further suppose that @& H, ((« ,f) = 1). This is equivalent
to the conditions -+ @ € H and therefore, by (7),

SouEa) + 3 g a) =0
1€ X, ~1E€X,
Subtracting these two equations (corresponding to the values -« and — a
respectively) we get the third condition of our lemma in the case (a ,f) = 1.
If (a,f)> 1 then the result of the lemma is trivial.
In the following we denote by #* the primitive character equivalent
to y.
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Lemma 3. Let f; be the greatest divisor of f primeto j. If x*(j) # 0,
then there exists a character 7 (mod f;) equivalent to x* and thus %(j)
= 1*(J)-

Proof. Suppose that x*(j) # 0. We find that x*(j) = 0 if and only if
f(x)|f;- Therefore we can find a character z (modf;) equivalent to x*.
Because (f(x),j) = (fi,j) = 1 the result of lemma 3 follows.

Let us use ~ as a notation of equivalence of characters. Directly from
the definition of the equivalence follows then

Lemma 4. If x~ 7z and T2 N Too then yize ~ J1fe

We define the sets X' and X as follows:

Xt={ye€X:y¥j)# 0}, X={y:x~y,x€X}.

We can now formulate

Lemma 5. The set X is a group. If y runs through the set X', then
the equivalent character 7 runs through the group X.

Proof. X is a subset of the group of all the characters (mod f;). Let
4o denote the principal character. Because xF(j) =10, it follows
that z, € X! and therefore 7, € X. We thus see that X is not empty.
If 7.7 €X, then (7,7)%() # 0. Further, by lemma 4, y, 7 ~ 71 %
~ (uz2)* = (1 x2)*. Therefore 7,7, € X. Thus we can conclude that X
is a group. Let y be a character of X'. Then y*(j) # 0 and from lemma
3 it follows that there exists a unique character y such that y ~ y* ~ %
and the last sentence of our lemma holds.

Preliminary lemmas. We now focus our attention on the preliminaries
we need during the proof of theorems 3 and 4 (cf. also [5]).
Lemma 6. Let y(+# y%,) be a character (modf). Then

L1, z*) = L(1, 2) T_j[ (L — z*p)/p)™*.
P
where L(s , y) = >, 7(j)j= is the Dirichlet’s L-function belonging to
(cf. [7], p. 127).
Lemma 7. If x =3 then
> p~t = O(log log @)
ps=x
(cf. [7], p. 20).
Lemma 8. Let (f,a)=1 and 0 <a <f. If a(x,f,a) is the number
of primes = a (mod f) not exceeding =z, then
a(x, f,a) = O(g(f) ™ xflog (x[f)) (x> f)
(cf. [7], p. 44).
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There exists a constant ¢ such that in the region
oc=1—cllog (f(t| + 2)) = 3/4, ¢ arbitrary

always L(s, ) # 0 (s = o + i) for all the characters y (modf), dis-
regarding one possible exception (cf. [7], p. 130). If such an exceptional
character exists it is a real one and in the following we denote it by

Lemma 9. Let f=exp (log% x) and y £ xo,x'. Then

2, 20j) Alj) = Ow exp (— ¢ log? 2))
where -

) [Iogp if j=p" (p ts a prime and k =1),
A(j) = .

10 otherwise
(ef. [7], pp. 133—136).

In the following we denote by Z either the set X or X,. Further
2= 7 (g} and Z' = Z {5, 1}
Lemma 10. Let

Ulr) = eZz Z %) A() -
If « = exp (log’ f) then

U(x) = O(z/log z) .
Proof. Since log f <log"*x, we get, by lemma 9,

Ux) = O(nxexp (— ¢ log% x)) = O(xexp (log f — ¢lo 2

g2 x)) = O(x/log x) .
Lemma 11.

o(f) = O(log f/log log f)
(cf. [8], p. 108).

Lemma 12. If j is a natural number and « is an integer such that
(a,f) =1, then the number of solutions of
x’= a (mod f)
is at most jOUHL (cf. e.g. [5], p. 22).
Lemma 13. If (a,f)=1,0 <a <f and

P =a (modf), pz1if,
then

A

2

2. (jp)) = O (f)f) -
P

Proof. First write the series in the form
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S = 330+ 0.

pl= a\modf) p]fo

Let us denote
(8) p=vf+a,

where k takes, by lemma 12, at most N(j) = j*! values. Further for
a fixed j

(9) > =2 f+ o
. p<f (k)
pi=a(modf).piz% f

where in > k takes the values determined by (8). Hence

(k)
g (vpf + )t =2f 1y,
)

”—Z(A—,—l

By using these notations in (9) we get

where

(10) S = 0 S wl) - 0.
jz2
We further get
x x—1
(1) Syl =3 (0= DY+ Ve,
where

t

v, (Vy, = 0).

e

It is clear, that all the numbers v are distinct and therefore
T(j) ‘
V, < > 7 = 0(og T(j)),
=1

where 7T'(j) = >4, N(f). On the other hand,

mwﬁ=0@%/$WW%=omm+ﬂmu+m.

Using these results in (10) and (11) we get

0

> = 0(f () +2) 2 ))~tlog (j + 1)) = O((Nf)

Jj=

—

and the lemma is proved.
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Lemma 14. If y # y, then
L(1, y) = exp (j; 2(5) A(j) (j log j)™)
(cf. [4], p. 449).
Lemma 15. If in | [x. y runs through the characters € X°, then
l?.l’" Vd TTx L1, z%) if K s red,
= ] 20)"™ V' d TTx L1, %) if K is imaginary

(cf. 2], p. 7).
Lemma 16. For the exceptional character y' we have

e(e) f~5 < |L(L, )| < e loeloes
(cf. [8], p. 105).

Proof of theorems 3 and 4. In order to estimate the product

(12) TT =TTz L1, 2%

where 7 runs through the characters € Z° we write, by lemma 6,

(13) Trzo L, x*) = Tl—l rrz .I_rs s

where

Th =TT»L AL =TTTT 0= z*p)/p)?

1€Z Pf

]_I-3 = rr (I —p™).

rf

(In the case Z = X, the product ][, is empty.)
Consider first the product [[,. By lemma 14, we get

(14) TTz L, 2) = exp (> ZZ 2(9) A(j) (jlog j)=?) .

1€Z j=
From the exponent of the equation (14) we distinguish a finite sum being
extended over all integers j such that 2 <j < [exp (log3f)] + 1 = II".
We denote V = 2f and divide this sum into parts as follows:

21 = Z 10*1(22 (X(p)): Zz = z P (Zz/ )

dfsp<¥ V<p
Z z (@) + 2(p), 24: z (Jp')~ (Z /P])
p= 1fspizw J;
25 == 2 U)o (p7) + 2/ (@7) s
plsw j=2
26 = 2 ) Sz 1(p9)
pl<i}fizl
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where in >, y runs through all the characters of Z. It should be noted
that if Z = X,, then in >3 and >; there can exist only y'. Ifin this
case there is no exceptional character, then the sums in question are empty.
Let further
27 = ZZ' Z x(9) A(9) (jlogy)™,
i>w
where in >, x runs through all the characters of Z'.
We first get, by lemma 1 and 2,

Si=0(r 3 p)=0@ 3.3 (fita?)=
ifsp<v J
PEH, TF<fi+a<V

oln 3. f1) = 0(1),

where in >, a takes all the values 1 =a = f— 1, for which @ € H,,.
(If K isreal then Hy= H U (— 1) H = H.) Further we get, by lemma 8,

D= O(ny > Wp-l) = O(n ZQI Soal.fea) (G + 1Y)

<p <j< W1
PE

TIA

0

w

= 0(/(5 log (¢/f))~" df) = O(log log f) .

v

From lemma 7, it follows that

>3 = O(log log f) .

By using lemma 13, we can write

Si=0(n 3, 32 ()7 = O(n Za oI = 0lh).

pi=a (modf),P]'; if

It is easy to see that

Further denote

For > we have

(15) St=n 3 S (Gp)



12 Ann. Acad. Sci. Fennicae A 1. 473

Let us define

IO if K is P; or its real maximal subfield,
[log log (1 4 @(f)/n) elsewhere.

From (15) we see that

0=>:=cnd.
For >% we get
Zg = O(no z Z (jl’j)_l) .
pl<ifizt
FieH,
In the same way as above we get

S2— 0(nd).

If we consider the series >, we geb
27 = O(EW U(j) (jlog j — (j + 1)log (j + 1)) —
1>
UN) (W A4 D) flog (W 4 1)) = O( > (jlog®j)™) + 0(1) = O(1)..
i>w

Here we have made use of lemma 10. From lemma 11, it follows that

(16) exp (— c(log log f + oo(f)) > fe"el > e(e) f=.

Combining the above estimations and taking into consideration lemma 16
and the relation (16) we get

[c(a)f‘ﬂ if Z=X,

exp (c(nd + loglog f + o(f) > 1, >

! glog/ / T | ce)f “exp (—end) if Z = X,.
In order to estimate the product T, we write

Th=exp(S,> > 7)) (jp)?).
pfj=1
Let fp denote the greatest divisor of f prime to p. Further denote
Z' = {x €Z: y*(p) = 0;.
Hence, by lemma 3 and lemma 5,
2z M) = 20 ) = D 7).
€7
where Z is the set of the characters (mod f,): which are equivalent to

the characters y of Z. If Z = X, then it follows from lemma 5 that
Z is subgroup X of the group of all the characters (mod f,). If Z = X,.
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then Z is the set X, of the odd characters of X. We can thus apply
lemmas 1 and 2. Let n, be the order of X, and denote by B the residue
class (mod f,), which contains p. Then

‘ n, if pA€H and Z=X,
(7)) Sia*w) = E£in if f€H, and Z=X, (f,>1),
l 0 elsewhere,

where H and H, denote the corresponding subgroups of Gfp (see in-

troduction). Let us denote by > the series in the exponent of TTs- Applying
(17) we get

> M Z (jpH?t if Z=X.

1

o> mp > (jp)Y) if Z=Xy,
py
pleH

Let & be the least positive exponent such that € H. If
(18) prem,

then £|v and, on the other hand, if &|» then (18) holds. Since we can write

S =17,
i
we have, if Z = X,
0=3= S np — 7.
P
3ieH

Let us define

[w(f) if K is P, or its real maximal subfield,
ln log log (w(f) + 2) elsewhere.

If K is Pf or its real maximal subfield, then ¥ contains all the characters
(mod f,) or all the even characters (mod f,) respectively. Therefore
p*— 1 =cf,, and we get

0=>g=c¢d if Z=X.
In the case Z = X, the series can be estimated analogously and we get

Se = 0(8) if Z=X,.
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The above results yield

08 = | Il if Z=2X,
exp (c
P T _lexp(—~cé)1f Z =X, .

For T, we finally have

9—wlf < '|_|'3 < 1.
Combining the estimations of T[;, T [, and [, we can write, by (12)
and (13),
[c efc if Z=X,

(19) exp (e(nA +loglogf-+w(f)> [T > IC () < exp (—en 1) if Z— X, .

Comparing (19) with lemma 15 we see immediately that theorem 3 holds.
Consider the case of imaginariy K. From lemma 15 we get

(20) hoRy = 217"V dy TTxe L(1

where h,, R, and d, denote the class number, the regulator and the
absolute value of the discriminant of the real maximal subfield K, of K
respectively. In —I_I-X:; x runs through the characters X, — {4,}. Taking
into consideration that

QR = 2 'R,
(cf. [2]. p. 11) we get, by (1), (20) and lemma 15,

W = 6 TTy, L(1

Applying the result (19) in this expression we get theorem 4.

Comparisons of theorems 1 and 3. Let us write

_ [ = nlog (e(1 + ) + (log Vd)y
(21) log (AR |V d) _
= — ne(e) — elog vV d

(cf. [1], p. 740, 744), where p(= 1) is a parameter. These inequalities are
the inequalities which yield theorem 1. If we write the result of theorem

3 in the corresponding forms we get, if K is real,

— < —m—1)log2 + ¢(n 1 + log log f + ¢ ,
2) Tog (/@) | <~ Dlog2 + el £+ olf)
1> — (n — 1)log 2 — elog f + log c(e) .

On the other hand, if K is imaginary, then

] < log w — mylog (27) + ¢(n A 4 log log f + o(f))

log (kR /Vd
(23) og (h /\/d) l> log w — n,log (277) — ¢ log f + log c(e) .
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Because f=d and

2 <w =< cnloglog (n + 2)

(cf. [1], p. 740) we see immediately that the lower bounds of (22) and (23)
are sharper than the one of (21). As regards the upper bounds, we can choose
sequences of fields, where also the upper bounds of (22) and (23) are sharper
than the one of (21). For instance, we can take a sequence of fields, where
the order of H and o(f) (consequently ) are restricted.

(1]

[2]
(3]

[4]
[5]
£6]
[7]
(8]

University of Turku
Turku, Finland
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