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1. Introduction

In [7] two capacity inequalities for quasiregular mappings are introduced.
The first is the outer dilatation capacity inequality
( ! E = fE
1.1 e e ¢ = cap fE

’ Kolfy N(f, ) P 5 =
where K = (4,0) is a normal condenser in the domain G of a non-
constant quasiregular mapping f with an outer dilatation Ky(f) and
N(f, ) = sup card (fYf(x) N A) over a € 4. The second inequality is
the inner dilatation K, (f) capacity inequality

(1.2) cap fE = K,(f)cap &

where £ is any condenser in @. In this paper we show that it is possible,
uader certain assumptions, to divide XK ,(f) in (1.2) by N(f,A4) corre-
spouding to the situation in (1.1). We also give applications of this theorem.

The main results of this paper were presented in the Roumanian-Finnish
seminar on Teichmiiller spaces and quasiconformal mappings at Brasov
25--30.8.1969 (see [8]).

2. Notation and terminology

We shall use the same notation and terminology as in [7, 2.1, p. 5]
with a few exceptions and additional concepts.

For Ac R* we let dim A denote the topological dimension of A4
(see [6]).

By [a,b],a,b € R", we mean the closed line segment {te + (1 — )b
0=t=1} in R If {a,b]c R, then we suppose b > «a, and (a,0b)
denotes the corresponding open segment, the meanings of [a,b) and
(@, 0] being obvious. A path «:[a,b] — R".[a,b]C R, is a continuous
mapping. A curve is an injective path. We let x| =«([a,b]). If
x,y€AC R" and «a:[a,b]— 4 is a path such that «(e¢) =2 and
x(b) =y, then « it said to join 2 and .

A continuum in R" is a compact connected non-empty set which is
1ot a point.
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3. Lemmas on discrete, open, and sense-preserving mappings

Suppose that f:G — R" is discrete, open, and sense-preserving. At
first we recall some notation and results in [7].

A domain D is called a normal domain of f if D is compact in
and 9fD = foD. A normal neighbourhood of a point x € ¢ is a normal
domain D of f such that DN f7f(x) ={x}. If r>0 and x€G,
then we denote by U(x,f,r) the a-component of f1B"(f(x),r). We
frequently use the following lemma.

3.1. Lemma. [7, Lemma 2.9, p. 9] If U(x,f.r) is compact in G,
then Ulx,f,r) is a normal domain of f. Furthermore, for every v € G
there extsts o, > 0 such that for 0 <r = oy

(1) Ux,f,r) is a normal neighbourhood of a

©) Ule J.n) = U £, 09 DB 7).
(3) U, f,r) = U, f,o)NfA1B"(fx), 7).
4) dU(x,f,r)—=0 as r—0.

3.2. Lemma. dim By =dim fB; =<n — 2.

The important inequality dim By =<n — 2 is due to Cernavskii [1, 2]
(for a simpler proof see [13]). The equality dim By = dim fB; follows
from [3, Theorem 2.2, p. 530].

3.3. Remark. If A isasubset of R, then the inequality dim 4 = »n — 2
implies: 4 does not disconnect any domain in R" [6. Corollary 1. p. 48].

If D is a normal domain of f. then the topological degree u(y.f.D)
of f is independent of y € fD. This number is denoted by u(f, D). For
the next lemma we recall that i(x, f) is the local topological degree of f at
r€G and N(f,D)=supN(y.f,D) over y € R* where N(y.f.D)=
card (f(y) N D) .

3.4. Lemma. [7, Lemma 2.12, p. 11] If D is a normal domain of f.
then u(f, D)= N(f.D). Furthermore, if D is a norimal neighbourhood of
x €G, then i(x,f)= u(f,D)=N(f,D).

From the second assertion in Lemma 3.4 we conclude that « € By if
and only if i(x,f) = 2.

If C is a non-empty and compact subset of &' and y € fC, then we set

(3.5) My.f.0)= z iz, f).

xef~(v)ncC
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The sum in (3.5) is finite since f is discrete and ' compact in G. The
number M(f,C)=inf M(y.f,C) over y€fC is called the minimal
multiplicity of f on C.

3.6. Lemma. Suppose that A is open and (C A non-empty and
compact in G. Then N(f.A) = M(f.C).

Proof. Let y€fC and denote {uy,.u,.....u;=fy)NC. By
Jemma 3.1 there cxists + > 0 such that (; = ("(a;,f,r) is a normal
neighbourhood of #; and U;c 4. 1 =7 =1k By Lemma 3.2 there
exists y, € B*(y , r)\fB;. Lemma 3.4 implies

k

L
= AV(.Z/O :fr "1) = E (Yo - JL ) = z (i *f) = J‘!(fr ),

1Y

N(f. 4)

and the lemma follows.

3.7. Lemma. Suppose that D s « normal domain of f.  Then
M(f,D)=u(f.D).

Proof. Clearly M(f, D) = u(f.D). Let y € fD be \u(h‘mat 1[ ]‘, =

M(y .f, D). Choose a neichbourhood 17 of D such that [~ \
0, and let »r <<d(y,fcl) be such that the sets U; =1’ (n ,f, r) are
normal neighbourhoods of the points w0y, ... .. n of fYy)yNn D. By

Lemma 3.2 there exists a point y, € B*(y ., r) N fD fBy. Lemma 3.4 yvields

Ik k
M(f,D)=> i, f) = i (f, U)) = card (f N yy) N D) = u(f.D).
=1
The lemma follows.
In view of Remark 3.3 the proof of the following lemma is clear.

3.8. Lemma. Suppose that D C R* is « domain, v and y are distincl
points in D, and A c R" is a closed selt such that dim A = n — 2. Then
there is a cwrve x:[a,b]—D which joins & and y. and such that

A@,b)NA=9.

4. Path joinable points

Suppose that f: G — R" is discrete, open, and sense-preserving. Let
Dc G be adomain, y and § points in fD, and p:[a,b] — fD apath
which joins y and 7. We say that w €f(y)N D and FE€fHy)ND
are (f, D, p)-joinable points if there exists a path ~:[n.bh]— ]) such
that foa =g and « joins a and I
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4.1. Lemma. [7, Lemma 2.7, p. 9] Suppose that D 1is a normal domain
of [,f:[la,b]—fD isa jpat/z a =1, =0, and xy €D such that B(t)) =
Sf(xo). Then there is a path ~ :[a,b] — D such that x(t,) = x, and fox = f.

The path « is called a lift of f. We need the above lemma only for curves
in which case it is essentially due to Whyburn [15, (2.1), p. 186]. Observe
that if f is a curve then its lift « is a curve.

4.2. Here we study the case where y and 7.y # 7, belong to the
image of some normal domain D of f and p:[w,b]— fD is a straight
line segment joining y and §. These are kept fixed in the following
discussion.

Let
FYU)ND = (o). wy ...,
ANND ={& .5, ..., 5}

where each point is counted according to its local topological degree. Then
s=u(f,D) =3 Denote §={1,2,....5s}

4.3. Lemma. There is a bijection ¢ : S — S such that if i €S then
and T i are (f, D, p)-joinable poinis.

Proof. By Lemma 3.1 it is possible to cover g, by balls B"(y., 1) € fD,
k=1,2,...,m, m>2, such that (1) wx € S, (2) ¥y =1y, 7 = Ym:
B) Y=t < —Yal <. <Y — Y, ( ) B(ww, i) N B"(@q 5 71) F
O, 1=k=m—1, and (5) if v €/ y)ND then U(x,f,n) is a
normal nelghbourhood of x. Let VV =U B (e 5 72).

Lemmas 3.2 and 3.8 show that we can construct a curve y:[a,b]— T
such that it joins y and 7. y((a, D)) N f(B;N D) = @, and 'y N B"(yi . %)
is connected for every k, 1 ==/ = m. Let z€B"(y,n)N » \{y} and
ZE€B"(7,ra) N |y \{7}. Then the local topological index at each point

of fz)ND or f3)ND isone. hence. by Lemma 3.4, we may write
JHND = {a, o, .. .. a.
[ anND=a a5, a
where all the points @ and @, 1 = i = s. are distinct.

Define the mapping ¢ : 8 — S as follows: If { € S then a; €f1(z) N D.
By Lemma 4.1 we lift the curve y to a cwrve 3" :[a,b]— D such that
a; € y'| and foyp' =+y. Then some @ €f(2)N D belongs to ly'|.
Since i(x,f) =1 for a €y'((a, b)), there is only one lift 9’ of » such
that @; € |p’|. Thus @ is uniquely determined. Set ¢(7) = j.

Finally we constiuct the required lift for the segment p. Let v, ¢ € 8

B
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and 9’ be as above. For each &, 1 =k =m, let U, = Uk ,f,m) Dbe
the only normal neighbourhcod of the normal neighbourhoods Uz, f, 7).
x €fy) N D, which meets 3. For if there exist two such normal
neighbourhoods, say Uy and U,. then, since y! N B*y, ) is con-
nected, we obtain

JOIn Uy =y 0By, r) = f(y' 0 U

which is impossible. Let 11" = U (s. The set 1V is a domain which contains
7’| and the points a; and 7, . Pick points y, € B"(y, 1) 0 By > 7y 1)
k=1,2,...,m —1, so that they lie between y and .., on 5.
Divide the segment 3 into non-overlapping segments 8 = [y, yi].
Bol = [y, me)s 1Bl = [a o] oo Bl = [y, 1. Let 2 €2 (y) N 1N
Uy, and suppose that x; : [a, b] - Uk (vesp. a : [a,b]— U}) isalift of pi
(resp. f,) such that ~i(a) =, , for 2 <k < m (resp. x.(b) = 2, for

aqlf

L=k=m—1). Since fly)N U =1{a5}, x(b)=r(a)=2a5 for
2<k=m—1 and r(a) = .. (D) = Z,;- Joining these curves, in
the order o} ,Xy, s, ..., ¥m, Into one single curve and performing an
obvious change of the parameter we obtain the required lift of p. The
lemma follows.

5. Capacity inequality

Suppose that f:G — R" is a non-constant quasiregular mapping.
From Refetnjak’s results [9, 10]. f is discrete. open, and sense-preserving.
hence we may use the results obtained in the sections 3 and 4.

Following [7, 5.2, p. 24] we call a pair K = (4,C) a condenser if
Ac R" is open and C is non-empty and compact in A. A condenser £
is said to be in ¢ if 4 c (. E is a normal condenser if A4 is a normal
domain of f. The image of a condenser £ in G is a condenser fE =
(f4d , fC). The capacity of E is defined as

cap B = cap (4 . () = inf / [ u " din

ue WyE)

1

where Wy (E) = W4 ,C) is the set of all non-negative real-valued
functions u € Cy(4) such that « is ACL and w | C = 1. It is not
difficult to show (see [7, Lemma 5.5, p. 25]) that

~

cap H = inf /lv'u{”dm
)

w€ W (E
{

where ¢ (E) = Wo(E) 0 CF(4).
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5.1. Theorem. Suppose that f:G — R" is a non-constant quasiregular
mapping. 1If E = (4,C) is a condenser in ( and N(f,A) < oo, then

K(f) N(f, )"
M(f. Oy

(5.2) cap fE = cap E .

The proof of this result is closely related to that of the formula (1.2)
[7, Theorem 7.1, p. 29]. At first we prove two lemmas.

Suppose that « € W (E). Define v:fd —R' by

(5.3) o(y) = f . l: i, f) u(e) .

H(v)

The sum in (5.3) contains only a finite number of non-zero terms since f
is discrete and sptw is compact in (.

5.4. Lemma. The function v has the propeities
(1) sptov is compact in fA, moreover f(sptu) = sptv.
)

(2) o(y) =1, y€fC.
(3) v s continuous.

Proof. Set " = {vr €4 u(r)+# 0} and 1" ={w€fd v(r) == 0} Then
fU = V. By the continuity of f, f(spt v) = fC = T = pt v. This implies
that sptv is compact in f4.

To prove (2) let y € fC and denote {ay,x,,....: v = C N fy).
P . U s
Then
1 < X 1 {
o(y) = j](f, ) xef:'m](') ) u(e) = Uj ) 2, iy, f) w(a)
1 k
= N )=

since every u(w) = 1.

For (3), let y €fA and e > 0. We may suppose that y €spt v since
otherwise (3) is trivial. Choose a neighbourhood (" of <pt w such that T
is compact in A4 and y € foU. Let {x;..xy..... 1 =fYy)N U. By
Lemma 3.1 and the continuity of w, there exists a numbe r such that
0 <r<d(y,foU) and the normal neighbourhoods U= U(xi,f,7),
1 < i = k. satisfy the conditions: (i) U;c U and (ii) ‘u(r) — u(w) <e,
r €U Denote Uy=UU;. Let z€B"y.r). Then fz)nUcU,.
Fix 4, 1 =7=k, and let f ﬂl'_{v,‘,...w,m}

Since f is discrete, there "\IS‘LS (', > 0 such that

> i f) = ¢4

e N,
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for all z; € R". Because U; is a normal neighbourhood of x;, we obtain

This vields

(i
= > i, f) u(r) — u(z)) < Cie.
j=1

Stmmirg these inequalities over 7 gives

k 1(7) 11
oly) — )| = foZ (e f) ) — 2,10 .f) ul)|
kO, (&

RO

The inequality holds for every z € B*(y,r), hence the lemma is proved.
5.5. Lemma. v is ACL.

Proof. Tt is enough to prove that v is ACL in a neighbourhood of each
point of spto. Fix y, €sptv and let fy) Nsptu = {a;, @y, ..., 2
Choose 7, such that 0 <7, <d(y,,df4) and such that the domains
Uxj,f,r) are normal neighbourhoods of ;. Next choose a positive
number r; = r, such that

q
B yo . 1) N fspt w\U Uz, f, 7o) =
j=1

Then the components of f~1B"(y,,r;) which meet sptwu are the sets
U= Ulxj,f,n). Set U =UU; We have

1

(5.6) e(y) = AU O) xe,ﬁg,n L'?(m f) u(a)
for every y € By, ., ).

Let @ be an open n-interval with closare in  B"(y,.r). Write
Q = Q,xJ where @, is an (n — l)-interval in R"! and J is an open
segment in some ax-axis, 1 =i =n. For each Borel set F c @, put
p(F) = m(U N fYFxJ)). Then vy is a completely additive set function
in the family of all Borel sets in ,. By Legesgue’s theorem y'(z) < oo
for almost all z € Q,. Fix such z and set J. = {z}XJ. It is sufficient to
show that 2 is absolutely continuous on .J..
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Let @ denote the set of all continucus mappings ¢ :J, — U such that
feog is the identity mapping of J.. Observe that every ¢J. is contained
in some U;.

Let [y, 9], %2> %a)s- -, [¥p. 5p] be a collection of disjoint closed
segments on J.. Fix r, 1 <7 < p, and j, 1 =<j < ¢q. Using the notation
of 4.2 with D=U;, y=v., =14, |f=1[y,7%] and

SN Uy ={af |i=1,2,... 5())},
f“l(gr)n[j]:{j:]]zv_:l’Q,5(3)}

where each point is counted according to its local topological degree, we
obtain
s(j)
(5.7) > i@, f) u(x) — > i, f)u(r) = Z — (@)
~ef—iG) N U; ~ef=iGyNy; =

where ¢ = ¢,; is the mapping given by Lemma 4.3. Since a7 and 7
are (f, U;,p) jou‘ wble points, there exists ¢/ € @ such that g(y,) =
and  g¥(7,) = &/ . Summing over j and r in (5.7) we have by (5.6)

'/(')

) P a slj)

(5.8) 2 o) — @) =2 3 D lulgiy) — ulgi (7)) -
r==1 rei j=11i=1
Since u € Oy (A) there is a constant C; such that u(x) — u(y) =
Cile —y| for all « and y in U. Then (5.8) implies

P 9 s(j)

(5.9) > o) — o) = C Z 2 Z g7 (y:) — g1 -

r=1 j=11i=1r=1

By [7, Lemma 7.10, p. 33] for every &> 0 there exists 6 > 0 such that
for each j, 1 =j=g¢, and 7, 1 =i = s(j),

197 — 97| < elq 5()) Oy

1

N~

If

r

if >lyr — 7| < 6. Hence the left side of (5.9) is smaller than ¢ if
>y — i) < 6. The lemma is proved.

5.10. Proof for Theorem 5.1. Lemmas 5.4 and 5.5 show that for each
w€ W7 (E) v belongs to Wy(fE). Let y, € spt v \f(sptuN By). By the
same methed as in [7, Lemma 7.15, p. 35] we can find a neighbourhood
Vo of y, such that for every connected neighbourhood ¥V ¥V, of ,
the following conditions hold:

) VN f(sptuNBy) =@
(2) The components of f~'V which meet sptu form a finite collection
D,,D,,..., D
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3) f defines a homeomorphism fi:D;—V, ie. fi=/f D: isa qua-
siconformal mapping, 1 <17 = k.
Furthermore we may suppose that
(4) d(D;) < d(sptw,04), 1 =1i=k.
Set ¢: = fi'. Since i(x,f) =1 for « € G\ B,
1 k
v(y) = U, 0) gl u(gi(y))

for all y € V. Thus

M(

a.e. in V because every g¢; is a.e. differentiable in T

There is a countable number of cpen disjoint cubes @; . @, ,... such
that fAN f(spt w N By) = U Q; and such that if @; meets sptv then
the conditions (1) — (4) are satisfied with 17 = ;. By [7. Lemma 2.27,
p. 156] m(fBy) = 0, hence

b

1 k
(5.11) T = 3oy & T MO 6w

(5.12) cap fE = Z / vtdm.
j=i

¢

Fix ;. If it does not meet spto, then

/ e tdm =0.

Y
If @ meets spte, let ¢gi:Q;—Di, 1 =7 =~%k, denote the inverse
mappings given by (3). Minkowski's inequality §1eld> by (5.11)

\1/n k r \1/n
(Q/ Ivv!"dm) = 176}7) H(@/ Tulg)) gl dm(y))

J
1/n k ” 1'n
= K f) Z (/ Jul dm)
JI( = '
i

where we have used the quasiconformality of g;’s in the last step. It follows
from (4) that &k =< N(f, 4), hence Holder’s inequality gives

/ IVo|" dm) " = ]_{M_” {i St (lm> :

Vi= 1
i¥j
1—1/n * 1'n
gK ()N A) </ un (Zm) .
M(f.C)

7o
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By (5.12)
7 n 1 =
cap fE = A fl[A fc‘:l Z T ult dm
A f, / ]: QJ
> ,Y n——l
< ]va f ,i*i_Af / 7w ™ dm .
M(f, Oy

This holds for every w € II'7(E). hence the formula (5.2) is proved.

It is easy to give an example of a quasiregular mapping f: G — R"
and a condenser B = (4 .C) in @ such that N(f, A)"'/M(f, Oy > 1.
For example. consider the analytic function f: R?— R2, z+>2% and the
condenser (4, ) = (B*.{1/2}), both given in complex notation. Then
N(f. A)M(f,CP =21 =2>1. Hence the inequality (5.2) may be
worse than (1.2). We also remark that by Lemma 3.6 the inequality
N(f,A) = M(f. C) is satisfied for any condenser (4, C) in . However.
in some important cases the condition of the following corollary holds.

5.13. Corollary. Suppose that f: G — R" is a non-constant quasiregular
mapping and E = (A, C) a condenser in G such that N(f, A) = M(f . C).
Then

K(f)

cap fE < Vf A) cap .

The next corollary gives a very precise estimate for the variation of the
capacity.

5.14. Corollary. Suppose that f: G — R" is a non-constant quasiregulur
mapping and E = (4, C) « normal condenser in G such that N(f . A) =
M(f,C). Then

B = e = )
Ko(f) N(f.4) ™ PR =

This follows immediately from (1.1) and Corollary 5.13.

5.15. Remark. We give an example of the case N(f.d) = J(f, ().
Let f:G—R" be discrete, open, and sense-preserving. Suppose that
A= U, f.n) is a normal neighbourhood of z € (. TLet 0 < r < 1,
and denote ' = U(x,f,»). Then E = (4.C) is a condenser in G,
and by Lemmas 3.4 and 3.7.

N(f, A) = i(e,f) = u(f. A) = M(f,0) .
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6. Applications

The first theorem generalizes the well-known fact: If f:G — I is
an analytic function, then f'(x) =0 for « € B;.

6.1. Theorem. Suppose that f:G — R" is quasiregular and x € (<. If
K,(f) <i(x,f), then f is differentiable at x and f'(x) = 0.

Proof. We may suppose that f is not a constant. Let U, = U(x, [, ry)
be a normal neighbourhood of x € ¢. Suppose that ;> 0 is so small
that U, D B"(x,r). By Lemma 3.1 there exists a positive number 7,
such that for 0 <r=wn, U,f,r)C B'(x,r). Let ye€U(x,f,n)
and suppose y # a. Set r = |f(x) — f(y)| > 0. Define a condenser E
in ¢ as (Uy, U(x.f,r). By Remark 5.15 we have

i f) = M(f, T f.r) = N(f, Uy -

Suppose that the condition K,(f) <<i(x,f) is satisfied. By Corollary
5.13
(O] Kl(f)

1
= ~cap B =— 7
=i cap £ : cap E

(6.2)

where « > 1. Let

L) — inf {#> 0 B'(e.p) D Ule.f. 0},
I¥(ry = sup {p >0 BYx,p)yc Ulx,f,n)}
(sce [7, 4.1, p. 17]). Since the condenser (B(x,ny) , B*(x, L*(r))) separates

E, ie. UyoB'(w,n) and Ux.f,r)c B*x, L*(r)), we have

0,

(log(ry/L*(r))"~"

cap B =< cap (B"(x, 1), B*«x, L*(r))) =

The inequality (6.2) vields

(6.3) r=C, L¥r "
where (] = 7’0/7‘3’“] i By the metric characterization of quasiregular
mappings [7. Theorem 4.6, p. 19]

L*(r

o

*(r) —

for 0 <r =, But
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which implies, by (6.3),
J@ —fo) =r =0y w oyt

Since this holds for every y € U(x, f, ) and "=V~ 1. f is differentiable
at @ and f'(x) = 0. The theorem follows.

6.4. Remark. The inequality K,(f) < i(x,f) in Theorem 6.1 is best
possible, i.e. there exists a quasiregular mapping J such that K, (f) =
i(w, f) and f is not differentiable at x. The winding mapping f: R — K3,
(r,g,2)—(,2¢,2) in cylindral coordinates, gives an example since
(0,f) = K;(f) =2 and it is not differentiable at 0. Similar examples
exist in all dimensions 7# = 2. A question arises: Does there exist any
quasiregular mapping f: G — R, n =3, such that K (f) < i(x,f) for
some » € G? However, the example of Rickman [11] shows that i(x,f)
has mo upper bound in terms of K,(f).

6.5. Corollary. Suppose that f:G — R" is a non-constant quasiregular
mapping and  :[a,b] — By a rectifiable curve. Then
K(f) = inf i(x, f).

x € a

The bound is best possible.

Proof. Integrate f'(x) along la! and use Theorem 6.1 and Remark 6.4.

6.6. Corollary. If f:G — R" is a non-constant quasiregular mapping
and «:la,b]— By is a rectifiable curve. then K,(f) = 2. The bound is
best possible.

6.7. The author conjectures that Corollaries 6.5 and 6.6 hold if & is
any continuum in By Anyway, we obtain the following weaker result.

6.8. Theorem. Suppose that f:G — R" is a non-constant quasireqular
mapping and F is a compact set in By such that  1(fF) > 0. Then
K,(f) "
—— > (2]
infi(x, f) n

Proof. Following [7, 4.1, p. 17] we set for = € and 0 < , — d{f(x),
of)
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over z €9U(x,[f,.r) and for 0 <r <d(x, 0G)
Lz, f,7) = sup |f(x) — f(y)!

over r —y! = 7. By [7, Theorem 4.6, p. 19] there exists « > 0 such that

6.9 H*x,f) = lim 2 g

(09 I = s g

for all € F. By [7. Lemma 4.8, p. 20] we may find an interval (0, 7))
such that the mappivg («,r) = L* , f,r) islower semicontinuous and the
mapping (@, 7) - ¥ . f,r) is continuous on K x(0,7). Hence for
1/¢ < r; the sets

Ci={w€F L¥a,f, 0, f,r) =a for all 0 <r<<1jij

are compact. Furthermore U C; = F, thus it is possible to fix ¢ such that
A,(fC) > 0. Since the mapping - i(x, f) is upper semicontinuous, the
sets Oy ={w€C iv,f)=j}, j=2.3,..., are Borel sets. Fix j
such that ,(fCy) > 0. Pick x,€Cy; and 7, with the properties (i)
0 <ry<<1ji, (i) Uy=Ulx,,f,r,) is a normal neighbourhood of .
and (iii) A,(f(CyN U) >0 forall U= U(x,,f,7), 0 <r =7, Choose
rp > 0 such that Br(x,,2r)c U, and then 7y > 0 such that
U(xy, f,r0) © B(xg . 7)-
By the contivuity of f, the function
o(r) =sup L(x . f,7),
x€F

r € (0,d(F,3G)). has the property o(r)—0 as r— 0. Suppose that
1, €(0,d(F ,0G)) is such that »r € (0,t] implies

o(r) << d(fS" (2q . 1), BY(f(xy) - 7)) > 0.

Assume now that the condition

1

(6.10) KA (2 |
infi(x,f)  'n
x€F

holds. Denote F; = Cy N U(xy,f, 7). We show that A, (fF;) = 0. Let
t>0 and &> 0. By [7, Theorem 8.3, p. 38] m(B;) =0, and so
A, (F,) == 0. Hence it is possible to cover F; by balls B"(w, 7).
L=1,2,..., such that (1) ax € F, (2) 2 <<t, (3) o(r) <t/2, and
(4) Dri<e Fix &k and define Ep = (U,, U(w,f, Ls)) where L=
L{xi, f,m). Then E, is a condenser in ¢ since, by (2), U, f, Lr) C
B'(xy, 7)€ U, Because i(w,,f) = i(x.f), the set Ulxy,f,Ly) is a
normal neighbourhcod of ax. Thus Lemmas 3.7 and 3.4 yield
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J[(f L—'(‘rk :f:L" =u f LY ( f Lk - (“ f) - l.(‘l'() f) - :\y(fr lvi)) .
Corollary 5.13 and (6.10) imply

K,(f) 'p>"‘1
cap = B AU < | = an K.
P fEx z(?o,j)capE = (‘z cap By .

On the other hand

Wy_q

DI (0g (2ry Ly
since the condenser fE, scparates the condenser (B"( fw) s 2r),
B(f(a) , Ly)) and

W,
Iog o/ Lk
since (B"(ax , ry) , B, LF)), LF = L¥u . f, La). separates Ky, But
U, f, Li) is a normal neighbourhood of ax, hence we conclude from
[7, Lemma 4.3, p. 18] that [ = I*(ay ., f, Ly) = 7. Thus the above three
inequalitics yield

cap By

27‘0 k ),Oanl)

» -

(().]1) Lk =< _KP L n'p < ‘/vn/? lylp — b " p .
Ty T

The set fF, is covered by U fB"ay ,7) and, by (2). d(fB"(xk , 1)) = 1.
hence we obtain from (6.11) and (4)

/1' (fFy) d (fB" (k. 1)) = 7}’2 L = 2rpp \ W << 2PhPe

Thus A, (fF,) = 0, a contrediction of (iii). The theorem follows.

6.12. Corollary. Suppose that f: G — R is a non-constant quasiregular
mapping and F C By is a continuwum. Then

Ki(f) -
infi(z, f)~ "

x€F

Proof. Since f is light, A,(fF) > 0, hence the corollary follows from
Theorem 6.8.

6.13. Definition. A non-constant quasiregular mapping is said to be of
minimal multiplicity q if By @ and i(x,f) = ¢ for all v € B

6.14. Theorem. Suppose that f:G— R is of minimal multiplicity q.
Then K,(f)> q/9.
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Proof. By [12] dim By =1, hence there is a continuum FC By
([6, IT 4, p. 20]). Thus the theorem follows from Corollary 6.12.

6.15. Remark. We have been able to prove that K, (f) > g(n/(n — 2))"™"
for every quasiregular mapping f:G — R* of minimal multiplicity ¢
in any dimension n = 3. The authors of [7] intend to return to related
questions in a later paper.

6.16. Remark. Theorem 6.14 gives a rather good asymptotic estimate
for the growth of K,(f) in terms of ¢. In fact, the winding mapping
fiR—R (r,q@,z)—>(r,qp,2) in cylindrical coordinates. is of minimal
multiplicity ¢ and K,(f) = ¢. Hence

¢ = inf K,(f) = ¢/9
rew,

where 1, is the family of all quasiregular mappings into £* of minimal
multiplicity ¢. If the conjecture in 6.7 is true. then

inf K,(f) = q.

few,
in particular, there would not exist a non-constant quasiregular mapping
f: G — R® with non-empty B such that K,(f)-< 2.

Univesity of Helsinki
Helsinki, Finland
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