Series A

I. MATHEMATICA

474

A CAPACITY INEQUALITY FOR QUASIREGULAR MAPPINGS

BY

O. MARTIO

HELSINKI 1970 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1971.474

Communicated 13 March 1970 by Olli Lehto

KESKUSKIRJAPAINO HELSINKI 1970

.

1. Introduction

In [7] two capacity inequalities for quasiregular mappings are introduced. The first is the outer dilatation capacity inequality

(1.1)
$$\frac{1}{K_o(f) N(f, A)} \operatorname{cap} E \le \operatorname{cap} f E$$

where E = (A, C) is a normal condenser in the domain G of a non-constant quasiregular mapping f with an outer dilatation $K_0(f)$ and $N(f, A) = \sup \operatorname{card} (f^{-1}f(x) \cap A)$ over $x \in A$. The second inequality is the inner dilatation $K_I(f)$ capacity inequality

$$(1.2) eap $fE \le K_I(f) exp E$$$

where E is any condenser in G. In this paper we show that it is possible, under certain assumptions, to divide $K_I(f)$ in (1.2) by N(f, A) corresponding to the situation in (1.1). We also give applications of this theorem.

The main results of this paper were presented in the Roumanian-Finnish seminar on Teichmüller spaces and quasiconformal mappings at Brasov 25-30.8.1969 (see [8]).

2. Notation and terminology

We shall use the same notation and terminology as in [7, 2.1, p. 5] with a few exceptions and additional concepts.

For $A \subset \mathbb{R}^n$ we let dim A denote the topological dimension of A (see [6]).

By [a,b], $a,b \in R^n$, we mean the closed line segment $\{ta+(1-t)b \mid 0 \le t \le 1\}$ in R^n . If $[a,b] \subset R^1$, then we suppose b > a, and (a,b) denotes the corresponding open segment, the meanings of [a,b) and (a,b] being obvious. A path $\alpha:[a,b] \to R^n$, $[a,b] \subset R^1$, is a continuous mapping. A curve is an injective path. We let $|x| = \alpha([a,b])$. If $x,y \in A \subset R^n$ and $\alpha:[a,b] \to A$ is a path such that $\alpha(a) = x$ and $\alpha(b) = y$, then α is said to join x and y.

A continuum in \mathbb{R}^n is a compact connected non-empty set which is not a point.

3. Lemmas on discrete, open, and sense-preserving mappings

Suppose that $f: G \to \mathbb{R}^n$ is discrete, open, and sense-preserving. At first we recall some notation and results in [7].

A domain D is called a normal domain of f if \overline{D} is compact in G and $\partial fD = f\partial D$. A normal neighbourhood of a point $x \in G$ is a normal domain D of f such that $D \cap f^{-1}f(x) = \{x\}$. If r > 0 and $x \in G$, then we denote by U(x, f, r) the x-component of $f^{-1}B^n(f(x), r)$. We frequently use the following lemma.

- 3.1. **Lemma.** [7, Lemma 2.9, p. 9] If $\overline{U}(x, f, r)$ is compact in G, then U(x, f, r) is a normal domain of f. Furthermore, for every $x \in G$ there exists $\sigma_x > 0$ such that for $0 < r \le \sigma_x$
 - (1) U(x, f, r) is a normal neighbourhood of x.
 - (2) $U(x, f, r) = U(x, f, \sigma_x) \cap f^{-1}B^n(f(x), r)$.
 - (3) $\bar{U}(x, f, r) = \bar{U}(x, f, \sigma_x) \cap f^{-1}\bar{B}^n(f(x), r)$.
 - (4) $d(U(x, f, r)) \rightarrow 0$ as $r \rightarrow 0$.

3.2. Lemma. dim $B_f = \dim fB_f \le n-2$.

The important inequality dim $B_f \leq n-2$ is due to Černavskii [1, 2] (for a simpler proof see [13]). The equality dim $B_f = \dim f B_f$ follows from [3, Theorem 2.2, p. 530].

- 3.3. Remark. If A is a subset of R^n , then the inequality dim $A \leq n-2$ implies: A does not disconnect any domain in R^n [6, Corollary 1, p. 48].
- If D is a normal domain of f, then the topological degree $\mu(y, f, D)$ of f is independent of $y \in fD$. This number is denoted by $\mu(f, D)$. For the next lemma we recall that i(x, f) is the local topological degree of f at $x \in G$ and $N(f, D) = \sup N(y, f, D)$ over $y \in R^n$ where $N(y, f, D) = \operatorname{card} (f^{-1}(y) \cap D)$.
- 3.4. **Lemma.** [7, Lemma 2.12, p. 11] If D is a normal domain of f, then $\mu(f, D) = N(f, D)$. Furthermore, if D is a normal neighbourhood of $x \in G$, then $i(x, f) = \mu(f, D) = N(f, D)$.

From the second assertion in Lemma 3.4 we conclude that $x \in B_f$ if and only if $i(x, f) \ge 2$.

If C is a non-empty and compact subset of G and $y \in fC$, then we set

(3.5)
$$M(y, f, C) = \sum_{x \in f^{-1}(y) \cap C} i(x, f).$$

The sum in (3.5) is finite since f is discrete and C compact in G. The number $M(f,C) = \inf M(y,f,C)$ over $y \in fC$ is called the *minimal multiplicity* of f on C.

3.6. **Lemma.** Suppose that A is open and $C \subset A$ non-empty and compact in G. Then $N(f, A) \geq M(f, C)$.

Proof. Let $y \in fC$ and denote $\{x_1, x_2, \ldots, x_k\} = f^{-1}(y) \cap C$. By Lemma 3.1 there exists r > 0 such that $U_i = U(x_i, f, r)$ is a normal neighbourhood of x_i and $U_i \subset A$, $1 \le i \le k$. By Lemma 3.2 there exists $y_0 \in B^n(y, r) \setminus fB_f$. Lemma 3.4 implies

$$N(f, A) \ge N(y_0, f, A) \ge \sum_{i=1}^k N(y_0, f, U_i) = \sum_{i=1}^k i(x_i, f) \ge M(f, C)$$

and the lemma follows.

3.7. **Lemma.** Suppose that D is a normal domain of f. Then $M(f, \bar{D}) = \mu(f, D)$.

Proof. Clearly $M(f,\bar{D}) \leq \mu(f,D)$. Let $y \in f\bar{D}$ be such that $M(f,\bar{D}) = M(y,f,\bar{D})$. Choose a neighbourhood U of \bar{D} such that $f^{-1}(y) \cap \bar{U} \setminus \bar{D} = 0$, and let $r < d(y,f\hat{c}U)$ be such that the sets $U_i = U(x_i,f,r)$ are normal neighbourhoods of the points x_1,x_2,\ldots,x_k of $f^{-1}(y) \cap \bar{D}$. By Lemma 3.2 there exists a point $y_0 \in B^n(y,r) \cap fD \setminus fB_f$. Lemma 3.4 yields

$$M(f, \bar{D}) = \sum_{i=1}^{k} i(x_i, f) = \sum_{i=1}^{k} \mu(f, U_i) \ge \operatorname{card} (f^{-1}(y_0) \cap D) = \mu(f, D).$$

The lemma follows.

In view of Remark 3.3 the proof of the following lemma is clear.

3.8. **Lemma.** Suppose that $D \subset R^n$ is a domain, x and y are distinct points in D, and $A \subset R^n$ is a closed set such that dim $A \leq n-2$. Then there is a curve $x:[a,b] \to D$ which joins x and y, and such that $\alpha((a,b)) \cap A = \emptyset$.

4. Path joinable points

Suppose that $f: G \to R^n$ is discrete, open, and sense-preserving. Let $D \subset G$ be a domain, y and \bar{y} points in fD, and $\beta: [a,b] \to fD$ a path which joins y and \bar{y} . We say that $x \in f^{-1}(y) \cap D$ and $\bar{x} \in f^{-1}(\bar{y}) \cap D$ are (f,D,β) -joinable points if there exists a path $x:[a,b] \to D$ such that $f \circ \alpha = \beta$ and α joins x and \bar{x} .

4.1. **Lemma.** [7, Lemma 2.7, p. 9] Suppose that D is a normal domain of $f, \beta : [a, b] \rightarrow fD$ is a path, $a \leq t_0 \leq b$, and $x_0 \in D$ such that $\beta(t_0) = f(x_0)$. Then there is a path $\alpha : [a, b] \rightarrow D$ such that $\alpha(t_0) = x_0$ and $f \circ \alpha = \beta$.

The path α is called a *lift* of β . We need the above lemma only for curves in which case it is essentially due to Whyburn [15, (2.1), p. 186]. Observe that if β is a curve then its lift α is a curve.

4.2. Here we study the case where y and \bar{y} , $y \neq \bar{y}$, belong to the image of some normal domain D of f and $\beta:[a,b] \rightarrow fD$ is a straight line segment joining y and \bar{y} . These are kept fixed in the following discussion.

Let

$$f^{-1}(y) \cap D = \{x_1, x_2, \dots, x_s\},$$

$$f^{-1}(\bar{y}) \cap D = \{\bar{x}_1, \bar{x}_2, \dots, \bar{x}_{\bar{s}}\}$$

where each point is counted according to its local topological degree. Then $s = \mu(f, D) = \bar{s}$. Denote $S = \{1, 2, \dots, s\}$.

4.3. Lemma. There is a bijection $q: S \to S$ such that if $i \in S$ then x_i and $\bar{x}_{\varphi(i)}$ are (f, D, β) -joinable points.

Proof. By Lemma 3.1 it is possible to cover $|\beta|$ by balls $B^{n}(y_{k}, r_{k}) \subset fD$, k = 1, 2, ..., m, m > 2, such that (1) $y_{k} \in |\beta|$, (2) $y = y_{1}, \bar{y} = y_{m}$, (3) $|y - y_{2}| < |y - y_{3}| < ... < |y - y_{m}|$, (4) $B^{n}(x_{k}, r_{k}) \cap B^{n}(x_{k+1}, r_{k+1}) \neq \emptyset$, $1 \leq k \leq m-1$, and (5) if $x \in f^{-1}(y_{k}) \cap D$ then $U(x, f, r_{k})$ is a normal neighbourhood of x. Let $V = \bigcup B^{n}(y_{k}, r_{k})$.

Lemmas 3.2 and 3.8 show that we can construct a curve $\gamma:[a,b]\to V$ such that it joins y and \bar{y} , $\gamma((a,b))\cap f(B_f\cap D)=\emptyset$, and $|\gamma|\cap B^n(y_k,r_k)$ is connected for every k, $1\leq k\leq m$. Let $z\in B^n(y,r_1)\cap |\gamma|\setminus \{y\}$ and $\bar{z}\in B^n(\bar{y},r_m)\cap |\gamma|\setminus \{\bar{y}\}$. Then the local topological index at each point of $f^{-1}(z)\cap D$ or $f^{-1}(\bar{z})\cap D$ is one, hence, by Lemma 3.4, we may write

$$f^{-1}(z) \cap D = \{a_1, a_2, \dots, a_s\},$$

 $f^{-1}(\bar{z}) \cap D = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_s\},$

where all the points a_i and \bar{a}_i , $1 \leq i \leq s$, are distinct.

Define the mapping $\varphi: S \to S$ as follows: If $i \in S$ then $a_i \in f^{-1}(z) \cap D$. By Lemma 4.1 we lift the curve γ to a curve $\gamma': [a, b] \to D$ such that $a_i \in |\gamma'|$ and $f \circ \gamma' = \gamma$. Then some $\bar{a}_j \in f^{-1}(\bar{z}) \cap D$ belongs to $|\gamma'|$. Since i(x, f) = 1 for $x \in \gamma'((a, b))$, there is only one lift γ' of γ such that $a_i \in |\gamma'|$. Thus \bar{a}_j is uniquely determined. Set $\varphi(i) = j$.

Finally we construct the required lift for the segment β . Let γ , $i \in S$,

and γ' be as above. For each k, $1 \leq k \leq m$, let $U_k = U(x_0^k, f, r_k)$ be the only normal neighbourhood of the normal neighbourhoods $U(x, f, r_k)$. $x \in f^{-1}(y_k) \cap D$, which meets $|\gamma'|$. For if there exist two such normal neighbourhoods, say U_k and U'_k , then, since $|\gamma| \cap B^n(y_k, r_k)$ is connected, we obtain

$$f(|\gamma'| \cap U_k) = |\gamma| \cap B^n(y_k, r_k) = f(|\gamma'| \cap U_k')$$

which is impossible. Let $W=\cup U_k$. The set W is a domain which contains $|\gamma'|$ and the points x_i and $\bar{x}_{q(i)}$. Pick points $y_k' \in B^n(y_k, r_k) \cap B^n(y_{k+1}, r_{k+1})$. $k=1,2,\ldots,m-1$, so that they lie between y_k and y_{k+1} on $|\beta|$. Divide the segment $|\beta|$ into non-overlapping segments $|\beta'_1| = [y, y'_1]$, $|\beta_2| = [y'_1, y_2], |\beta'_2| = [y_2, y'_2], \ldots, |\beta_m| = [y'_{m-1}, \bar{y}]$. Let $x_k' \in f^{-1}(y_k') \cap U_k \cap U_{k+1}$ and suppose that $x_k : [a, b] \to U_k$ (resp. $\alpha'_k : [a, b] \to U_k$) is a lift of β_k (resp. β'_k) such that $x_k(a) = x'_{k+1}$ for $2 \le k \le m$ (resp. $x'_k(b) = x'_k$ for $1 \le k \le m-1$). Since $f^{-1}(y_k) \cap U_k = \{x_0^k\}, \quad x_k(b) = \alpha'_k(a) = x_0^k$ for $2 \le k \le m-1$ and $\alpha'_1(a) = x_i, \alpha_m(b) = \bar{x}_{q(i)}$. Joining these curves, in the order $\alpha'_1, \alpha_2, \alpha_2, \ldots, \alpha_m$, into one single curve and performing an obvious change of the parameter we obtain the required lift of β . The lemma follows.

5. Capacity inequality

Suppose that $f: G - \mathbb{R}^n$ is a non-constant quasiregular mapping. From Rešetnjak's results [9, 10]. f is discrete, open, and sense-preserving, hence we may use the results obtained in the sections 3 and 4.

Following [7, 5.2, p. 24] we call a pair E = (A, C) a condenser if $A \subset \mathbb{R}^n$ is open and C is non-empty and compact in A. A condenser E is said to be in G if $A \subset G$. E is a normal condenser if A is a normal domain of f. The image of a condenser E in G is a condenser fE = (fA, fC). The capacity of E is defined as

$$\operatorname{cap} E = \operatorname{cap} (A \mid C) = \inf_{u \in W_0(E)} \int\limits_{A} | \overline{\bigtriangledown} u |^n \, dm$$

where $W_0(E) = W_0(A, C)$ is the set of all non-negative real-valued functions $u \in C_0(A)$ such that u is ACL and $u \mid C \ge 1$. It is not difficult to show (see [7, Lemma 5.5, p. 25]) that

$$\operatorname{cap} E = \inf_{u \in W_0^\infty(E)} \int |\bigtriangledown u|^n \, dm$$

where $W_0^{\infty}(E) = W_0(E) \cap C_0^{\infty}(A)$.

5.1. **Theorem.** Suppose that $f: G \to R^n$ is a non-constant quasiregular mapping. If E = (A, C) is a condenser in G and $N(f, A) < \infty$, then

(5.2)
$$\operatorname{cap} fE \leq \frac{K_I(f) \ N(f, A)^{n-1}}{M(f, C)^n} \operatorname{cap} E.$$

The proof of this result is closely related to that of the formula (1.2) [7, Theorem 7.1, p. 29]. At first we prove two lemmas. Suppose that $u \in W_0^{\infty}(E)$. Define $v: fA \to R^1$ by

(5.3)
$$v(y) = \frac{1}{M(f,C)} \sum_{x \in f^{-1}(x)} i(x,f) \ u(x) \ .$$

The sum in (5.3) contains only a finite number of non-zero terms since f is discrete and spt u is compact in G.

- 5.4. Lemma. The function v has the properties
- (1) spt v is compact in fA, moreover $f(\operatorname{spt} u) = \operatorname{spt} v$.
- (2) $v(y) \ge 1$, $y \in fC$.
- (3) v is continuous.

Proof. Set $U = \{x \in A \mid u(x) \neq 0\}$ and $V = \{x \in fA \mid v(x) \neq 0\}$. Then fU = V. By the continuity of f, $f(\operatorname{spt} u) = f\overline{U} = \overline{V} = \operatorname{spt} v$. This implies that $\operatorname{spt} v$ is compact in fA.

To prove (2) let $y \in fC$ and denote $\{x_1, x_2, \dots, x_k\} = C \cap f^{-1}(y)$. Then

$$v(y) = \frac{1}{M(f,C)} \sum_{x \in f^{-1}(y)} i(x,f) \ u(x) \ge \frac{1}{M(f,C)} \sum_{i=1}^{k} i(x_i,f) \ u(x_i)$$
$$\ge \frac{1}{M(f,C)} \sum_{i=1}^{k} i(x_i,f) \ge 1,$$

since every $u(x_i) \ge 1$.

For (3), let $y \in fA$ and $\varepsilon > 0$. We may suppose that $y \in \operatorname{spt} v$ since otherwise (3) is trivial. Choose a neighbourhood U of $\operatorname{spt} u$ such that \overline{U} is compact in A and $y \notin f\partial U$. Let $\{x_1, x_2, \ldots, x_k\} = f^{-1}(y) \cap U$. By Lemma 3.1 and the continuity of u, there exists a number r such that $0 < r < d(y, f\partial U)$ and the normal neighbourhoods $U_i = U(x_i, f, r)$, $1 \le i \le k$, satisfy the conditions: (i) $\overline{U}_i \subset U$ and (ii) $|u(x) - u(x_i)| < \varepsilon$, $x \in U_i$. Denote $U_0 = \bigcup U_i$. Let $z \in B^n(y, r)$. Then $f^{-1}(z) \cap U \subset U_0$. Fix $i, 1 \le i \le k$, and let $f^{-1}(z) \cap U_i = \{z_1^i, z_2^i, \ldots, z_{l(i)}^i\}$.

Since f is discrete, there exists $C_1 > 0$ such that

$$\sum_{x \in f^{-1}(z_1) \cap U_n} i(x, f) \le C_1$$

for all $z_1 \in \mathbb{R}^n$. Because U_i is a normal neighbourhood of x_i , we obtain

$$i(x_i, f) = \mu(f, U_i) = \sum_{j=1}^{l(i)} i(z_j^i, f).$$

This yields

$$|i(x_i, f) u(x_i) - \sum_{j=1}^{l(i)} i(z_j^i, f) u(z_j^i)| = |\sum_{j=1}^{l(i)} i(z_j^i, f) u(x_i) - \sum_{j=1}^{l(i)} i(z_j^i, f) u(z_j^i)|$$

$$\leq \sum_{j=1}^{l(i)} i(z_j^i, f) |u(x_i) - u(z_j^i)| < C_1 \varepsilon.$$

Summing these inequalities over i gives

$$egin{align} |v(y)-v(z)| &= rac{1}{M(f\,,\,C)} \left|\sum_{i=1}^k \left[i(x_i\,,f)\;u(x_i) - \sum_{j=1}^{l(i)}i(z_j^i\,,f)\;u(z_j^i)
ight]
ight| \ &< rac{k\;C_1}{M(f\,,\,C)}\,arepsilon \leq rac{C_1^2}{M(f\,,\,C)}\,arepsilon \;. \end{split}$$

The inequality holds for every $z \in B^n(y, r)$, hence the lemma is proved.

5.5. Lemma. v is ACL.

Proof. It is enough to prove that v is ACL in a neighbourhood of each point of spt v. Fix $y_0 \in \operatorname{spt} v$ and let $f^{-1}(y_0) \cap \operatorname{spt} u = \{x_1, x_2, \ldots, x_q\}$. Choose r_0 such that $0 < r_0 < d(y_0, \partial fA)$ and such that the domains $U(x_j, f, r_0)$ are normal neighbourhoods of x_j . Next choose a positive number $r_1 \leq r_0$ such that

$$B^{n}(y_{0}, r_{1}) \cap f(\operatorname{spt} u \bigvee_{j=1}^{q} U(x_{j}, f, r_{0})) = \emptyset.$$

Then the components of $f^{-1}B^n(y_0, r_1)$ which meet spt u are the sets $U_i = U(x_i, f, r_1)$. Set $U = \bigcup U_i$. We have

(5.6)
$$v(y) = \frac{1}{M(f, C)} \sum_{x \in f^{-1}(y) \cap U} i(x, f) \ u(x)$$

for every $y \in B^n(y_0, r_1)$.

Let Q be an open n-interval with closure in $B^n(y_0, r_1)$. Write $Q = Q_0 \times J$ where Q_0 is an (n-1)-interval in R^{n-1} and J is an open segment in some x_i -axis, $1 \leq i \leq n$. For each Borel set $F \subset Q_0$ put $\psi(F) = m(U \cap f^{-1}(F \times J))$. Then ψ is a completely additive set function in the family of all Borel sets in Q_0 . By Legesgue's theorem $\overline{\psi}'(z) < \infty$ for almost all $z \in Q_0$. Fix such z and set $J_z = \{z\} \times J$. It is sufficient to show that v is absolutely continuous on J_z .

obtain

Let Φ denote the set of all continuous mappings $g: \overline{J}_z \to U$ such that $f \circ g$ is the identity mapping of \overline{J}_z . Observe that every $g\overline{J}_z$ is contained in some U_j .

Let $[y_1, \bar{y}_1], [y_2, \bar{y}_2], \ldots, [y_p, \bar{y}_p]$ be a collection of disjoint closed segments on \bar{J}_z . Fix $r, 1 \leq r \leq p$, and $j, 1 \leq j \leq q$. Using the notation of 4.2 with $D = U_j, y = y_r, \bar{y} = \bar{y}_r, |\beta| = [y_r, \bar{y}_r]$, and

$$f^{-1}(y_r) \cap U_j = \{x_i^{rj} \mid i = 1, 2, \dots, s(j)\},$$

 $f^{-1}(\bar{y}_r) \cap U_j = \{\bar{x}_i^{rj} \mid i = 1, 2, \dots, s(j)\}$

where each point is counted according to its local topological degree, we

$$(5.7) \sum_{x \in f^{-1}(\hat{y_r}) \cap U_i} i(x, f) u(x) - \sum_{x \in f^{-1}(\hat{y_r}) \cap U_i} i(x, f) u(x) = \sum_{i=1}^{s(j)} (u(x_i^{rj}) - u(\tilde{x}_{q(i)}^{rj}))$$

where $\varphi = \varphi_{rj}$ is the mapping given by Lemma 4.3. Since x_i^{rj} and $\bar{x}_{\varphi(i)}^{rj}$ are (f, U_j, β) -joinable points, there exists $g_i^{rj} \in \Phi$ such that $g_i^{rj}(y_r) = x_i^{rj}$ and $g_i^{rj}(\bar{y}_r) = \bar{x}_{\varphi(i)}^{rj}$. Summing over j and r in (5.7) we have by (5.6)

(5.8)
$$\sum_{r=1}^{p} |v(y_r) - v(\bar{y}_r)| \leq \sum_{r=i}^{p} \sum_{j=1}^{q} \sum_{i=1}^{s(j)} |u(g_i^{rj}(y_r)) - u(g_i^{rj}(\bar{y}_r))| .$$

Since $u \in C_0^{\infty}(A)$ there is a constant C_1 such that $|u(x) - u(y)| \le C_1|x-y|$ for all x and y in U. Then (5.8) implies

(5.9)
$$\sum_{r=1}^{p} |v(y_r) - v(\bar{y}_r)| \le C_1 \sum_{j=1}^{q} \sum_{i=1}^{s(j)} \sum_{r=1}^{p} |g_i^{rj}(y_r) - g_i^{rj}(\bar{y}_r)|.$$

By [7, Lemma 7.10, p. 33] for every $\varepsilon > 0$ there exists $\delta > 0$ such that for each j, $1 \le j \le q$, and i, $1 \le i \le s(j)$,

$$\sum\limits_{r=1}^p |g_i^{rj}(y_r) - g_i^{rj}(ar{y}_r)| < arepsilon/q \; s(j) \; C_1$$

if $\sum |y_r - \bar{y}_r| < \delta$. Hence the left side of (5.9) is smaller than ε if $\sum |y_r - \bar{y}_r| < \delta$. The lemma is proved.

5.10. Proof for Theorem 5.1. Lemmas 5.4 and 5.5 show that for each $u \in W_0^{\infty}(E)$ v belongs to $W_0(fE)$. Let $y_0 \in \operatorname{spt} v \setminus f(\operatorname{spt} u \cap B_f)$. By the same method as in [7, Lemma 7.15, p. 35] we can find a neighbourhood V_0 of y_0 such that for every connected neighbourhood $V \subset V_0$ of y_0 the following conditions hold:

- (1) $V \cap f(\operatorname{spt} u \cap B_f) = \emptyset$.
- (2) The components of $f^{-1}V$ which meet spt u form a finite collection D_1, D_2, \ldots, D_k .

(3) f defines a homeomorphism $f_i: D_i \to V$, i.e. $f_i = f \mid D_i$ is a quasiconformal mapping, $1 \le i \le k$.

Furthermore we may suppose that

(4) $d(D_i) < d(\operatorname{spt} u, \partial A), \quad 1 \leq i \leq k.$

Set $g_i = f_i^{-1}$. Since i(x, f) = 1 for $x \in G \setminus B_f$,

$$v(y) = \frac{1}{M(f, C)} \sum_{i=1}^{k} u(g_i(y))$$

for all $y \in V$. Thus

$$(5.11) |\nabla v(y)| \leq \frac{1}{M(f,C)} \sum_{i=1}^{k} |\nabla u(g_i(y))| |g_i'(y)|$$

a.e. in V because every g_i is a.e. differentiable in V.

There is a countable number of open disjoint cubes Q_1 , Q_2 , ... such that $fA \setminus f(\operatorname{spt} u \cap B_f) = \bigcup \bar{Q}_j$ and such that if Q_j meets $\operatorname{spt} v$ then the conditions (1) - (4) are satisfied with $V = Q_j$. By [7, Lemma 2.27, p. 15] $m(fB_f) = 0$, hence

(5.12)
$$\operatorname{cap} fE \leqq \sum_{j=1}^{\infty} \int_{Q_j} |\nabla v|^n dm.$$

Fix Q_i . If it does not meet spt v, then

$$\int\limits_{Q_i}|\nabla v|^n\,dm=0.$$

If Q_j meets spt v, let $g_i: Q_i \to D_i$, $1 \le i \le k$, denote the inverse mappings given by (3). Minkowski's inequality yields by (5.11)

$$\left(\int_{Q_{j}} |\nabla v|^{n} dm \right)^{1/n} \leq \frac{1}{M(f,C)} \sum_{i=1}^{k} \left(\int_{Q_{j}} |\nabla u(g_{i}(y))|^{n} |g'_{i}(y)|^{n} dm(y) \right)^{1/n} \\
\leq \frac{K_{I}(f)^{1/n}}{M(f,C)} \sum_{i=1}^{k} \left(\int_{g_{i}Q_{j}} |\nabla u|^{n} dm \right)^{1/n}$$

where we have used the quasiconformality of g_i 's in the last step. It follows from (4) that $k \leq N(f, A)$, hence Hölder's inequality gives

$$\begin{split} \left(\int\limits_{Q_{j}} |\nabla v|^{n} \ dm \right)^{1/n} & \leq \frac{K_{I}(f)^{1/n} \ k^{1-1/n}}{M(f \, , \, C)} \left(\sum_{i=1}^{k} \int\limits_{g_{i}Q_{j}} |\nabla u|^{n} \ dm \right)^{1/n} \\ & \leq \frac{K_{I}(f)^{1/n} \ N(f \, , \, A)^{1-1/n}}{M(f \, , \, C)} \left(\int\limits_{f^{-1}Q_{j}} |\nabla u|^{n} \ dm \right)^{1/n}. \end{split}$$

By (5.12)

$$egin{aligned} \operatorname{cap} f E & \leq rac{K_I(f) \; N(f \, , \, A)^{n-1}}{M(f \, , \, C)^n} \sum_{j=1}^\infty \int_{f^{-1}Q_j} |igtriangledown |^n \; dm \ & \leq rac{K_I(f) \; N(f \, , \, A)^{n-1}}{M(f \, , \, C)^n} \int\limits_{A} |igtriangledown | \nabla u|^n \; dm \; . \end{aligned}$$

This holds for every $u \in W_0^{\infty}(E)$, hence the formula (5.2) is proved.

It is easy to give an example of a quasiregular mapping $f: G \to R^n$ and a condenser E = (A, C) in G such that $N(f, A)^{n-1}/M(f, C)^n > 1$. For example, consider the analytic function $f: R^2 \to R^2, \ z \mapsto z^2$, and the condenser $(A, C) = (B^2, \{1/2\})$, both given in complex notation. Then $N(f, A)/M(f, C)^2 = 2/1 = 2 > 1$. Hence the inequality (5.2) may be worse than (1.2). We also remark that by Lemma 3.6 the inequality $N(f, A) \ge M(f, C)$ is satisfied for any condenser (A, C) in G. However, in some important cases the condition of the following corollary holds.

5.13. Corollary. Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping and E = (A, C) a condenser in G such that N(f, A) = M(f, C). Then

$$\operatorname{cap} f E \leqq rac{K_I(f)}{N(f\,,\,A)} \operatorname{cap} E \;.$$

The next corollary gives a very precise estimate for the variation of the capacity.

5.14. Corollary. Suppose that $f: G \to R^n$ is a non-constant quasiregular mapping and E = (A, C) a normal condenser in G such that N(f, A) = M(f, C). Then

$$\frac{1}{K_o(f)\ N(f,A)}\operatorname{cap} E \leqq \operatorname{cap} f E \leqq \frac{K_I(f)}{N(f,A)}\operatorname{cap} E \;.$$

This follows immediately from (1.1) and Corollary 5.13.

5.15. Remark. We give an example of the case N(f,A) = M(f,C). Let $f: G \to R^n$ be discrete, open, and sense-preserving. Suppose that $A = U(x,f,r_1)$ is a normal neighbourhood of $x \in G$. Let $0 < r < r_1$ and denote $C = \bar{U}(x,f,r)$. Then E = (A,C) is a condenser in G, and by Lemmas 3.4 and 3.7.

$$N(f, A) = i(x, f) = \mu(f, A) = M(f, C)$$
.

6. Applications

The first theorem generalizes the well-known fact: If $f: G \to \mathbb{R}^2$ is an analytic function, then f'(x) = 0 for $x \in B_f$.

6.1. **Theorem.** Suppose that $f: G \to R^n$ is quasiregular and $x \in G$. If $K_I(f) < i(x, f)$, then f is differentiable at x and f'(x) = 0.

Proof. We may suppose that f is not a constant. Let $U_0 = U(x, f, r_0)$ be a normal neighbourhood of $x \in G$. Suppose that $r_1 > 0$ is so small that $U_0 \supset \bar{B}^n(x, r_1)$. By Lemma 3.1 there exists a positive number r_2 such that for $0 < r \le r_2$ $U(x, f, r) \subset B^n(x, r_1)$. Let $y \in U(x, f, r_2)$ and suppose $y \ne x$. Set r = |f(x) - f(y)| > 0. Define a condenser E in G as $(U_0, \bar{U}(x, f, r))$. By Remark 5.15 we have

$$i(x, f) = M(f, \bar{U}(x, f, r)) = N(f, U_0).$$

Suppose that the condition $K_I(f) < i(x, f)$ is satisfied. By Corollary 5.13

$$(6.2) \qquad \frac{\omega_{n-1}}{(\log (r_0/r))^{n-1}} = \operatorname{cap} fE \leq \frac{K_I(f)}{i(x,f)} \operatorname{cap} E = \frac{1}{\alpha} \operatorname{cap} E$$

where $\alpha > 1$. Let

$$L^*(r) = \inf \{ \beta > 0 \mid B^n(x, \beta) \supset U(x, f, r) \},$$
$$I^*(r) = \sup \{ \beta > 0 \mid B^n(x, \beta) \subset U(x, f, r) \}$$

(see [7, 4.1, p. 17]). Since the condenser $(B^n(x, r_1), \bar{B}^n(x, L^*(r)))$ separates E, i.e. $U_0 \supset B^n(x, r_1)$ and $\bar{U}(x, f, r) \subset \bar{B}^n(x, L^*(r))$, we have

cap
$$E \le \text{cap } (B^n(x, r_1), \bar{B}^n(x, L^*(r))) = \frac{\omega_{n-1}}{(\log(r_1/L^*(r)))^{n-1}}.$$

The inequality (6.2) yields

(6.3)
$$r \le C_1 L^*(r)^{\alpha^{1/(n-1)}}$$

where $C_1 = r_0/r_1^{\alpha^{1/(n-1)}}$. By the metric characterization of quasiregular mappings [7, Theorem 4.6, p. 19]

$$\frac{L^*(r)}{l^*(r)} \le C_2$$

for $0 < r \le r_2$. But

$$\frac{L^*(r)}{|x-y|} \le \frac{L^*(r)}{l^*(r)} \le C_2$$

which implies, by (6.3),

$$|f(x) - f(y)| = r \le C_1 C_2^{\alpha^{1/(n-1)}} |x - y|^{\alpha^{1/(n-1)}}.$$

Since this holds for every $y \in U(x, f, r_2)$ and $\alpha^{1/(n-1)} > 1$, f is differentiable at x and f'(x) = 0. The theorem follows.

- 6.4. Remark. The inequality $K_I(f) < i(x, f)$ in Theorem 6.1 is best possible, i.e. there exists a quasiregular mapping f such that $K_I(f) = i(x, f)$ and f is not differentiable at x. The winding mapping $f: R^3 \to R^3$, $(r, \varphi, z) \mapsto (r, 2\varphi, z)$ in cylindral coordinates, gives an example since $i(0, f) = K_I(f) = 2$ and it is not differentiable at 0. Similar examples exist in all dimensions $n \ge 2$. A question arises: Does there exist any quasiregular mapping $f: G \to R^n$, $n \ge 3$, such that $K_I(f) < i(x, f)$ for some $x \in G$? However, the example of Rickman [11] shows that i(x, f) has no upper bound in terms of $K_I(f)$.
- 6.5. Corollary. Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping and $\alpha: [a, b] \to B_f$ a rectifiable curve. Then

$$K_I(f) \ge \inf_{x \in |\alpha|} i(x, f)$$
.

The bound is best possible.

Proof. Integrate f'(x) along $|\alpha|$ and use Theorem 6.1 and Remark 6.4.

- 6.6. **Corollary.** If $f: G \to R^n$ is a non-constant quasiregular mapping and $\alpha: [a,b] \to B_f$ is a rectifiable curve, then $K_I(f) \ge 2$. The bound is best possible.
- 6.7. The author conjectures that Corollaries 6.5 and 6.6 hold if α is any continuum in B_f . Anyway, we obtain the following weaker result.
- 6.8. **Theorem.** Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping and F is a compact set in B_f such that $A_p(fF) > 0$. Then

$$\frac{K_I(f)}{\inf\limits_{x\in F}i(x,f)} > \left(\frac{p}{n}\right)^{n-1}.$$

Proof. Following [7, 4.1, p. 17] we set for $x \in G$ and $0 < r < d(f(x), \partial fG)$

$$L^*(x, f, r) = \sup_{x \in \mathbb{R}} |x - z|,$$

 $l^*(x, f, r) = \inf_{x \in \mathbb{R}} |x - z|.$

over $z \in \partial U(x, f, r)$ and for $0 < r < d(x, \partial G)$

$$L(x, f, r) = \sup |f(x) - f(y)|$$

over |x-y|=r. By [7, Theorem 4.6, p. 19] there exists a>0 such that

(6.9)
$$H^*(x,f) = \overline{\lim_{r \to 0}} \frac{L^*(x,f,r)}{l^*(x,f,r)} < a$$

for all $x \in F$. By [7, Lemma 4.8, p. 20] we may find an interval $(0, r_1)$ such that the mapping $(x, r) \mapsto L^*(x, f, r)$ is lower semicontinuous and the mapping $(x, r) \mapsto l^*(x, f, r)$ is continuous on $F \times (0, r_1)$. Hence for $1/i < r_1$ the sets

$$C_i = \{x \in F \mid L^*(x, f, r)/l^*(x, f, r) \le a \text{ for all } 0 < r < 1/i\}$$

are compact. Furthermore $\bigcup C_i = F$, thus it is possible to fix i such that $A_p(fC_i) > 0$. Since the mapping $x \mapsto i(x, f)$ is upper semicontinuous, the sets $C_{ij} = \{x \in C_i \mid i(x, f) = j\}, j = 2, 3, \ldots$, are Borel sets. Fix j such that $A_p(fC_{ij}) > 0$. Pick $x_0 \in C_{ij}$ and r_0 with the properties (i) $0 < r_0 < 1/i$, (ii) $U_0 = U(x_0, f, r_0)$ is a normal neighbourhood of x_0 , and (iii) $A_p(f(C_{ij} \cap U)) > 0$ for all $U = U(x_0, f, r)$, $0 < r \le r_0$. Choose $r'_0 > 0$ such that $\overline{B}^n(x_0, 2r'_0) \subset U_0$ and then $r''_0 > 0$ such that $\overline{U}(x_0, f, r''_0) \subset B^n(x_0, r'_0)$.

By the continuity of f, the function

$$\sigma(r) = \sup_{x \in F} L(x, f, r) ,$$

 $r \in (0, d(F, \partial G))$, has the property $\sigma(r) \to 0$ as $r \to 0$. Suppose that $t_1 \in (0, d(F, \partial G))$ is such that $r \in (0, t_1]$ implies

$$\sigma(r) < d(fS^{n-1}(x_0, r'_0), B^n(f(x_0), r''_0)) > 0$$
.

Assume now that the condition

(6.10)
$$\frac{K_{I}(f)}{\inf_{x \in F} i(x, f)} \leq \left(\frac{p}{n}\right)^{n-1}$$

holds. Denote $F_1 = C_{ij} \cap U(x_0, f, r''_0)$. We show that $A_p(fF_1) = 0$. Let t > 0 and $\varepsilon > 0$. By [7, Theorem 8.3, p. 38] $m(B_f) = 0$, and so $A_n(F_1) = 0$. Hence it is possible to cover F_1 by balls $B^n(x_k, r_k)$, $k = 1, 2, \ldots$, such that (1) $x_k \in F_1$, (2) $r_k < t_1$, (3) $\sigma(r_k) < t/2$, and (4) $\sum r_k^n < \varepsilon$. Fix k and define $E_k = (U_0, \overline{U}(x_k, f, L_k))$ where $L_k = L(x_k, f, r_k)$. Then E_k is a condenser in G since, by (2), $\overline{U}(x_k, f, L_k) \subset B^n(x_0, r'_0) \subset U_0$. Because $i(x_0, f) = i(x_k, f)$, the set $U(x_k, f, L_k)$ is a normal neighbourhood of x_k . Thus Lemmas 3.7 and 3.4 yield

 $M(f\,,\,\bar{U}(x_k\,,f\,,\,L_k)) = \mu(f\,,\,U(x_k\,,f\,,\,L_k)) = i(x_k\,,f) = i(x_0\,,f) = N(f\,,\,U_0)\;.$ Corollary 5.13 and (6.10) imply

$$\operatorname{cap} f E_k \leq rac{K_I(f)}{i(x_0\,,f)}\operatorname{cap}\, E_k \leq \left(rac{p}{n}
ight)^{n-1}\operatorname{cap}\, E_k\;.$$

On the other hand

$$\operatorname{cap} f E_k \ge \frac{\omega_{n-1}}{(\log (2r_0/L_k))^{n-1}}$$

since the condenser fE_k separates the condenser $(B^n(f(x_k), 2r_0), \bar{B}^n(f(x_k), L_k))$ and

$$\operatorname{cap} E_k \le \frac{\omega_{n-1}}{(\log (r_0'/L_k^*))^{n-1}}$$

since $(B^n(x_k, r'_0), \bar{B}^n(x_k, L_k^*))$, $L_k^* = L^*(x_k, f, L_k)$, separates E_k . But $U(x_k, f, L_k)$ is a normal neighbourhood of x_k , hence we conclude from [7, Lemma 4.3, p. 18] that $l_k^* = l^*(x_k, f, L_k) = r_k$. Thus the above three inequalities yield

(6.11)
$$L_k \leq \frac{2r_0}{r_0'^{n/p}} L_k^{*n/p} \leq \frac{2r_0 a^{n/p}}{r_0'^{n/p}} l_k^{*n/p} = b r_k^{n/p}.$$

The set fF_1 is covered by $\bigcup fB^n(x_k, r_k)$ and, by (3), $d(fB^n(x_k, r_k)) < t$, hence we obtain from (6.11) and (4)

$$A_p^t(fF_1) \leq \sum d(fB^n(x_k, r_k))^p \leq 2^p \sum L_k^p \leq 2^p b^p \sum r_k^n < 2^p b^p \varepsilon$$
.

Thus $A_{p}(fF_{1}) = 0$, a contradiction of (iii). The theorem follows.

6.12. Corollary. Suppose that $f: G \to \mathbb{R}^n$ is a non-constant quasiregular mapping and $F \subset B_f$ is a continuum. Then

$$\frac{K_I(f)}{\inf_{x \in F} i(x, f)} > n^{1-n}.$$

Proof. Since f is light, $\Lambda_1(fF) > 0$, hence the corollary follows from Theorem 6.8.

- 6.13. Definition. A non-constant quasiregular mapping is said to be of minimal multiplicity q if $B_f \neq \emptyset$ and $i(x,f) \geq q$ for all $x \in B_f$.
- 6.14. **Theorem.** Suppose that $f: G \to R^3$ is of minimal multiplicity q. Then $K_I(f) > q/9$.

Proof. By [12] dim $B_f = 1$, hence there is a continuum $F \subset B_f$ ([6, II 4, p. 20]). Thus the theorem follows from Corollary 6.12.

- 6.15. Remark. We have been able to prove that $K_I(f) > q(n/(n-2))^{1-n}$ for every quasiregular mapping $f: G \to R^n$ of minimal multiplicity q in any dimension $n \ge 3$. The authors of [7] intend to return to related questions in a later paper.
- 6.16. Remark. Theorem 6.14 gives a rather good asymptotic estimate for the growth of $K_I(f)$ in terms of q. In fact, the winding mapping $f: R^3 \to R^3$, $(r, \varphi, z) \mapsto (r, q\varphi, z)$ in cylindrical coordinates, is of minimal multiplicity q and $K_I(f) = q$. Hence

$$q \geq \inf_{f \in W_q} K_I(f) \geq q/9$$

where W_q is the family of all quasiregular mappings into \mathbb{R}^3 of minimal multiplicity q. If the conjecture in 6.7 is true, then

$$\inf_{f \in W_q} K_I(f) = q ,$$

in particular, there would not exist a non-constant quasiregular mapping $f: G \to R^3$ with non-empty B_f such that $K_I(f) < 2$.

Univesity of Helsinki Helsinki, Finland

References

- 1. ČERNAVSKII, A. V. (Чернавский, А. В.): Конечнократные открытые отображения многообразий. Mat. Sbornik 65 (1964), 357—369.
- 2. —»— Дополнение к статье «О конечнократных открытых отображениях миргообразий». - Mat. Sbornik 66 (1965), 471—472.
- 3. Church, P. T. and Hemmingsen, E.: Light open maps on n-manifolds. Duke Math. J. 27 (1960), 527-536.
- 4. Gehring, F. W.: Symmetrization of rings in space. Trans. Amer. Math. Soc. 101 (1961), 499-519.
- 5. ->- Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc. 103 (1962), 353-393.
- 6. Hurewicz, W. and Wallman, H.: Dimension theory. Princeton University Press, 1941.
- Martio, O., Rickman, S. and Väisälä, J.: Definitions for quasiregular mappings. -Ann. Acad. Sci. Fenn. A I 448 (1969). 1-40.
- 8. Martio, O.: Behaviour of capacities under quasiregular mappings. Proceedings of the Roumanian-Finnish seminar on Teichmüller spaces and quasiconformal mappings (to appear).
- 9. Rešetnjak, J. G. (Решетняк. Ю. Г.): Пространственные отображения с ограниченным искажением. Sibirsk. Mat. Ž. 8 (1967), 629—658.
- 10. —»— Об условии ограниченности индекса для отображений с ограниченным искажением. Sibirsk. Mat. Ž. 9 (1968), 368—374.
- 11. Rickman, S.: Quasiregular mappings. Proceedings of the Roumanian-Finnish seminar on Teichmüller spaces and quasiconformal mappings (to appear).
- 12. Твонімёцк, J. J. (Трохимчув, Ю. Ю.): О непрерывных отображениях областей эвклидова пространства. Ukrain. Mat. Ž. 16 (1964). 196—211.
- 13. Väisälä, J.: Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. A I 392 (1966), 1-10.
- 14. —»— Lectures on n-dimensional quasiconformal mappings. Van Nostrand (to appear).
- Whyburn, G. T.: Analytic topology. Amer. Math. Soc. Colloquium Publications, 1942.