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1. Introduction and results

The function f(z) is called normal in D ={z€C : |z] < 1} if it is
meromorphic and

(1.1) &=« =sup(1—]z[2)M
' 4 o] <1 1+ [f(z)?
We call « the order of normality of f(z). The order is invariant under
spherical rotations of f(z). If f(z) = g(¢(z)) with |p(z)] <1 then oy = «,.
Normal functions were introduced by Lehto and Virtanen [7]. Further
important results were obtained by Hayman [4], Bagemihl and Seidel
[2], and MacLane [8].
Let the meromorphic function f(z) map D onto the Riemann surface
F over the sphere. Around the point f(z) € F, we consider the largest
schlicht disk on F. Let 0(z) = 04(2) denote the angular radius of this
disk measured from the center of the sphere. The plane projection of this
disk is

< .

< d*(z)} , d*(z) = tan l;—)

Our main tool will be the generalization of Schwarz’ lemma due to
Ahlfors [1]. We shall prove:
7 7
1. Let sup d(z) < 5 or let f(z) belocally univalent and sup 6(z) < 3
Then f(2) is normal. The number /2 is best possible.
2. For any normal function of order «,

— 1212} | F(2)] -
d*(z) = a . _{I_ZIf(LJ;\g(z) < 2 coth i . \/d*(z) .

3. If f(z) is normal and analytic in D then
(1 — [z [f"(2)] = 2 (log™ [f(2)] + &) - max (|f(z)],1).

This is a somewhat more precise form of some results of Hayman [4]
[5, Section 6.5].

4. As a consequence we shall obtain a simple proof of Schottky’s and
Landau’s theorem with good quantitative bounds.
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2. Ahlfors’ Lemma

We shall prove a result of Ahlfors [1] in a somewhat different form;
compare also [9].

Ahlfors Lemma. Let w(z) = 0 be continuous in D . For each z, €D ,
let either wu(zy) =<1, or let there exist a function ¢(z) analytic at z,
such that |p(z))| < 1 and, for small |z — 2|,

1 — |22) |¢'(=
- '[ ;(';’)”I( 1< o) oten) = )
Then u(z) =<1 for z€D.

Proof. Suppose first that w(z) is continuous in D and wu(z) =0 as
|z] = 1. It follows that the supremum is attained in D, say at z,. As
(2.1) remains unchanged under a bilinear mapping of D onto itself we
may assume that z, = 0. Also we may assume that ¢(0) = 0. It follows
from (2.1) that, for small |z|,

A

(2.1) () =

(2.2) v(z) = u(z) = u(0) = v(0) = [¢’(0)] .
We can write <p(z) =a(z + 022 4+ ¢2® +...), a = |¢'(0)]. Since
1+ w =1+ Rew + (Im w)?/2 + o(jwP) as w-—>0 we obtain from

(2.1) and (2.2) that
v(z) = |a|(1 + 2Rebz + 3Recz? + 2(Imbz)> + (ja? — 1) |z]2+ 0(z3) =< |a]
as z—>0. It follows first that b= 0, hence second that |a?— 1 =<0

and therefore that w(0) = ( )| = ]a] =< 1. In the general case, we
consider u*(z) = wu(rz) (1 — 23 /(1 —7%|z]?) and let »r -1 — 0.
3. Conditions for normality
Theorem 1. Let f(z) be meromorphic in D and
T
0z = < 3 (€D) .

Then

(L— BB If'Q)] _ 2 Va*e) (2 — d¥)
L+ If@F =2 1+dr

(3.1) (z€D)

where A = tang “(2cos B+ 1)/ (2cosf—1). Hence f(z) s nmormal

of order
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2 sin f
- \/ 4 cos?f — 1
Proof. We may assume that 6(z) < p (otherwise we consider f + ¢ <

n/3 and let e¢—0). For each 2, €D there exists ¢ such that, for
small |z — 24,

(3.2)

. , ey ¢ —f)
(33) 4 = )] e = o) wle) = 5
If z, is a multiple point (f'(z) = 0 or multiple pole) we take ¢ = f(zo)s
and we have d*(z) = |w(z)| for small |z — 2] .

We have 1= 17(3 — 1) /(1 — 3% where 7 =tan B/2 < l/\/?T,
hence d*(z) < v < A. Therefore we can define
(L— 23 If' () VA4 d*@P)

L+ [fR)P 2Vd*z) (2 — d*@)

(3.4) u(z) =

This function remains continuous at the multiple points. For z, € D we
define

- Vu(z) \/JZ
=i l—\/wzo

for small |z — 2z,| . Computation shows that

I

(1 — [20) [¢'()] (1 — 2B 1f'@) VA + [we)P)

(3.5) w(z) =

L= @R — 1+ If@OF 2V w@)| (h— @)
‘We have

d 1+ — B+ 32+ 3t — A

Ay —ty 2P (A — P

The numerator increases for 0 < t < A and vanishes for t = 7 = tan /2.
Therefore (1 + #?)/ V(2 — t) decreases for 0 <t < 7. By assumption
8(z)) < B, hence |w(z,)| = d*(z) < 7. Thus it follows from (3.3), (3.4),
and (3.5) that, for small [z — %],

v(z) = w(z) , v(z) = u(z) -

Thus we can apply Ahlfors’ lemma to obtain wu(z) =1 for z € D. This
proves (3.1), and (3.2) is an immediate consequence.
Example 1. We consider the Weierstrass p-function that satisfies

P2 = 4(10(2)3 — Ewl—/é>



6 Ann. Acad. Sci. Fennicae A. 1. 476

and define

1
=3

By choosing a sequence (z,) with z,—1, f(z) =0 we immediately
obtain from the differential equation that f(z) is not normal. Here

1
szu<]gi d(z) = 2 arctan Vs 71°.
We call the meromorphic function f(z) locally univalent if there are
no multiple poles and if f'(z) # 0 for |z| < 1.
Theorem 2. Let f(z) be meromorphic and locally univalent in D,
and let

6(z)§/3<% ( €D).

Then
(I — [zP) |f'(2)] _ 2d*(z) (2 — log d*(z))

<
L+ |feP — 1+ d*()?
where 2. =1 [cos  + log tan /2. Hence f(z) is normal of order

(= € D)

ax =tan f << .
Proof. Because d*(z) # 0 we can define

ORI e
YO =TT 2050 (1 — log d%()

(3.6)  (z) = [log w(z) — log w(z)] | [2 2 — log w(z) — log w(z)] .
Then

S U s NGB S VLG L
L+ [fRF 2lwi)] (4 —log jw(z) )
Since (1 4 ) /¢ (2 —logt) decreases for 0 <t<t=tan /2 the
assertion follows as in the proof of Theorem 1.
Example 2. The function

f() = exp (i 1 i 2)

7
is not normal. Yet sup 6(z) = 5 Hence the number 7 /2 in Theorem 2
lz]<1
cannot be replaced by a smaller number.
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4, The size of schlicht disks

Theorem 3. Let f(z) be normal of order o« . Then

=R IfE el
d (z) = 1+ If(z) |2 = 7 g2 _ \/d

/\

) (: € D).

The left-hand inequality holds for any meromorphic function. This
inequality is essentially due to Seidel and Walsh [10]. It is best possible
as f(z) = «z shows.

Proof. Let

fo) —fe) 2t
L+ fle) f(0(2) L4z
Then g¢(z) is normal in D with &y =&, and satisfies ¢(0) =0,
(1 — [20%) [/ (20!
1+ [ f(z0)

Then d}(0) = tan 0,(0) /2 becomes the radius d(0) of the largest schlicht
disk around 0 on the Riemann image surface g(D), in the plane metric.
Thus we have to prove that

g(z) =

= [9'(0)[ , ,(0) = ds(2) -

/,~2
(4.1) 7 l7O)F = do)

IA

9'(0)]
where
r = (e — 1) [ (¢"* + 1) = tanh =z,
4x
The right-hand inequality follows easily from Schwarz’ lemma, even for

an arbitrary meromorphic function [10, p. 133].
Let |2 <1 and S8 =1[0,z]. Then

1f(z)]
dt ldw|
arc tan |f(z)] = 1 = 1o we
§ 1) -
9'(0)] o " do 142
/1+1g(é)l2[ Z"*é’“‘/l—oz 3 log
S 0

It follows that

(4.2) lg(z)] < 1 for |z| <.
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Therefore the function A(¢) = g(rl) = rg’(0)¢ + ... is analytic in
ICl <1 and satisfies |k({)] < 1. Hence g¢({) maps a certain neighbor-
hood of 0 one-to-one onto a disk around 0 of radius at least 72|g’(0)[2/4 .
Hence d(0) = 72|g’(0)[>/4, and (4.1) is proved.

Remark. The proof shows that any normal function is univalent in
the disk

1 7 1f'(0)]
lz] < zta,nh2£ . TIW .

5. Normal analytic funetions
We shall now study normal functions without poles.
Lemma. Let f(z) be analytic in |z] <1 and let
(5.1) (1 — 2P [f'(e) = M whenever [f(z)] =1.
Then
(52)  (1— kD) /@] = If&)| log |f)] + M) whenever |f(z)] = 1.
Proof. We shall apply Ahlfors’ lemma to the function

(L= B Ifel
7@ @log |f) + on) L @I=1
u(z) = ]
21 (L — P) /()] if 1fe)] = 1.

This function is continuous in |2] < 1.
Let |z <<1. Suppose that w(z)) > 1. Then (5.1) implies that
[f(zg)] > 1. We put (compare (3.6))

log f(z) — b
‘P(z) = ML b T logf(z) b= logf(zo)

where Re b > 0. Then ¢(z2) is analytic near z,. Computation shows
that v(z) = u(z) for small |z — 2z,|. Hence Ahlfors’ lemma implies that
u(z) =1 for z€ D, and (5.2) follows.

Theorem 4. Let f(z) be analytic and normal in D of order . Then

(5.3) (1 — RPIf'(R)] = 2 (log*|f(2)] + &) max (|f(z)|,1) (2 €D).
Hence

1+ I2] 22|
1=y g O+ 7

(5.4) log™ | f(z)] = (= €D).
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These results were proved by Hayman [4, Theorem 2] [5, Section 6.5]
without the explicit dependence on « . The factor 2 is best possible.

Proof. If follows from (1.1) that (1 — [z[?)|f'(2)| = 2« whenever
|f(z)] = 1. Hence we can apply the lemma with M = 2« . We immediately
obtain (5.3). It follows that, for each ¢,

Fl _ 2
55 logllogt |f(re”)| + o] = T3

for all except a countable number of values . This inequality implies (5.4).

6. Landau’s and Schottky’s theorem

Theorem 5. Let f(z) be analytic in D and f(z) £0,1. Then f(z)
is normal of order o = 4\/2. Hence, for |2] <1,

(6.1) (1 — BRI =2 1) (loglf@) + 4V2),
1+ 8V/2]
(6.2 log" )] = 11 Tog 10)] +

Explicit bounds in Schottky’s theorem were obtained by Landau,
Valiron, Ostrowski, Pfluger, Ahlfors [1], Hayman, and Jenkins. Hayman
[3] showed that

1+\z[
1 — [z

log™ | f(2)] = og" |f(0)] + =)
where 7 cannot be replaced by a smaller constant. Our inequality (6.2)
is not quite as good except for small |z|.

Inequality (6.1) is equivalent to the estimate

@] = 2|ay| (loglag| 4+ 4V/2) (4V/2 < 5.66) .

Jenkins [6] proved a slightly weaker estimate with 5.94 instead of 5.66.
The best known upper bound 4.76 is due to Lai [11]. It is not possible
to replace 5.66 by 4.37.

Proof. Let g(z) map D onto the universal covering surface of the
plane punctured in 0, 1, co such that ¢(0) = f(0) . Then f(z) is subordinate
to g(z), thatis, there exists a function ¢(z) analyticin D with |p(z)| =< |2|
such that f(z) = g(p(z)) . Hence

(1 — [2P) ¢’ (2)] o1
I — PRI = T r (1 — lg(2)?) lg'(¢())]

= (1= le@)P) lg'(¢@)] -
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Therefore the orders satisfy of =, and it is sufficient to prove (6.1)
and (6.2) for g(z).

The function g¢(z) is locally univalent. The function A(z) = g(z)"*
is also analytic and locally univalent in D, and h(z) #0, o, 4+ 1, 4- 1.
It follows from elementary geometric considerations that d&u(z) =

arc sin % V6. Hence Theorem 2 shows that os =< V2. Therefore

(1 — 2P lg'@] 40— ) FE)] k)P . (I — |z2) |B'(2)]
1+ g)E 1+ |hz) 1+ [h(z)?

Consequently «, < 4o, = 41/2 . We obtain (6.1) and (6.2) from Theorem 4.
For |f(z)] =1, we apply Theorem 4 to 1/f(z). If we change the proof
slightly we do not have to assume that the twice-punctured plane has a
covering surface of hyperbolic type.

IA

Technische Universitat Berlin
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