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On The maximal dilatation of quasiconformal extensions

The following theorem appears on page 100 of the book Quasikonforme
Abbildungen by O. Lehto and K. 1. Virtanen, Springer-Verlag (see also [4]).
Theorem. Let f be a K-quasiconformal mapping of a plane domain D,
and let F be a compact set in. D . Then there exists a quasiconformal mapping

f of the entire plane which is equal to f in F. Furthermore the maximal

dilatation of f depends only on K, D, and F .

The proof given is indirect and no information on the maximal dilata-
tion of f is available. In this note we provide a constructive proof along
with some crude estimates which show directly the independence of the
maximal dilatation.

The proof of the above theorem (see [4]) reduces to the following

Theorem 1. Set A;={l1< |z| <R}, 1=1,2, and A, ={l+e¢
< |2| < R,—e}. Suppose f is a sense preserving homeomorphism of the
inner and outer contours of A, onto the inner and outer contours of A, re-
spectively which for some &> 0 can be extended to a K-quasiconformal
mapping of A, — A, into Ay,. Then f can be extended to a quasiconformal
mapping fof A, onto A4, .

This theorem has also found recent application in [5]. The proof given
there is also indirect, however a construction of f is outlined, and together
with certain estimates for quasisymmetric functions developed by the
author [3], we will obtain an upper estimate of the maximal dilatation of

f which depends only on K, R, R, and e. Since we are only interested
in showing that such an estimate exists, we will make no attempt to collect
our various estimates into one grand formula.

We begin by representing the universal covering surface of 4;,1 =1, 2,
by the upper half plane {y > 0}, z = x+iy . Then a;z for some a; > 1
is the generator of the cyclic group of cover transformations. Now f can
be lifted to a sense preserving homeomorphism f* of each interval {x < 0},
{x > 0} on the real axis onto itself (each interval lies over one pair of
corresponding contours of A4; and A4,) so that f*(+1) = 4-1 and
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(1) fHai) = af f*(x)

for each integer % . If we define f*(0) = 0,f* is then a homeomorphism
of the entire real line onto itself. Our procedure is as follows. First we show
f* is locally quasisymmetric on the right and left half x-axis, then quasi-
symmetric there, finally k-quasisymmetric on the entire axis, ¥ depending
only on K, R; and &. Then we use the Beurling-Ahlfors mapping [1]
to obtain a k%-quasiconformal extension f of f* which maps {y > 0}
onto itself. Noting from its exphclt formula that f also satisfies (1) with

x replaced by z, we can project f to the desired mapping f of A4; onto
A4, .

From the symmetry of the problem, we need, for the moment, only
consider f* for x> 0. The hypotheses of the theorem imply that f*
can be extended to a K-quasiconformal mapping g of a sector 0 < arg z
<« onto a domain in the upper half plane bordering the positive real
axis. Here « <& depends only on R; and &. By reflection in the real
axes, we can assume g maps the sector ¢: —x < arg z <« onto a domain
G’ symmetric in the real axis and containing the positive real axis in its
interior.

Fix 2 > 0. In the image plane let r, <<r = d(f*(x), 9G’), where d
denotes euclidean distance and @ means boundary. Let €’ and O}
denote the circles |z — f*(z)| = r and 7, respectively, and let C and
C; be the corresponding inverse images under g. Choose ¢ on C) such
that |x — q| =d(z,C;). Then |z — q| <d(x, 9G) and by Theorem 11
of [2]

lx —q]

> —1

d(x, aG) = @K (7’1/’/') >
where O(t),0 << t<<l, is a certain strictly increasing continuous func-
tion with @x(0+) =0, 0(1—) = + oo . If we let r, >, then |z — ¢|
—d(x, C) and we get

d(z, C) > Og'(1)d(x, 0G) = va ,
where y <1 is given by
@) { Og'(1) (sinwx) if 0 < < 7/2
" ez if 72<o0<n.

It now follows from Mori’s Lemma [6, page 60] that

e P @
@ R L L

for 0 <t < yx, which proves f* is locally quasisymmetric.
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Next we must show there exists £ > 1 such that

*axtt) — f*(x
1/ka*(Jr)*f()
fH@) — f* —1)
for all 0 <t¢ < x. By multiplying numerator and denominator by an
appropriate power of a, and using (1) we can assume 1 <z <<a,.If
t <yx, take k= e . Otherwise yx <t <a and
w TEH) S pen - fres) =1
@) — fXa—t) = f4@) — f*@—yx) — fH@) —fHe—y)
- ay — 1
= ) = fHe—y)
where m > 1 is the unique integer such that a7 ' < 2a; < a' . Similarly

fra+t) — @) _ fHatye) — fH@) - [H@+y) — f*@)

@) — fX@—t) = fHa) —f*0) T s
In order to obtain a lower bound for f*(x+y) — f*(x) independent of
f*, as x varies from 1 to @, , we let ; < y/2 be the largest number such
that (@,—1)/y; =n, n > 2 an integer, and then partition the interval
1<x<a into n equal parts, 1 =0,<x<...<2Z =a;, each
segment having length y,. Then if x,_, <z <wz,, f*x+y) —f*@)
> fH(a4-2y,) — f*(@) = f*(2,0) —f*(xs). By multiplying and dividing
by [f*@;) — f*(x-1), =0, , 8, and using (3) we get

(6)  [fHty) — f*(@) = e [f* (@) — fHe)] = e [f*(2) — 1]

To obtain a lower estimate on f*(z;) — 1, we use an obvious iteration
on (3). The result is

<k,

(5)

a, — 1
(7) f*(xl) —1 Z 1 _+_ e,'tK + . + e(n—l).‘rK b

which together with (6), (5) and (4) prove that f* is k-quasisymmetric
on {x > 0}, and therefore by symmetry on {x < 0}, where k depends
only on R, R,, K and ¢.

Finally suppose x = 0 and > 0 is arbitrary. As before, by multi-
plying numerator and denominator by an appropriate power of a,, we
can assume 1 <t < a; and hence we obtain the simple estimate

(8) 1a, = 1[f*(a,) < AU < f*ay) = a,.
2 e 1 2

By Theorem 3 of [3] it follows that f* is ay(14-k+-k?)-quasisymmetric
on the entire line, which concludes the proof,



6 Ann. Acad. Sci. Fennicze A 1. 478

As an application of this theorem, suppose w(z) is a K-quasiconformal
mapping of the unit disc D onto itself. Fix 0 < o<1 arbitrarily.
We wish to find a K,-quasiconformal mapping w of the entire plane

which agrees with w on D, : |z] < o, andis, say, the identity for |z| > 1,
where K, depends only on K and o. Except for the contingency re-
garding K, , the existence of such a mapping is guaranteed by the theorem
quoted in the introduction. Denote by A’ the image under w of the
annulus 4;:9 < |2/ <1. Map A’ conformally by ¢ onto an annulus
4y: 0" < |z2] < 1. Define the homeomorphism f of the inner and outer
contours of 4, onto the corresponding contours of A, by f= Zow for
|z| = 0 and f = (o identity for |z| = 1. Then clearly f can be extended
to a K-quasiconformal mapping of 4,—A4, into A4, where A, is a
certain annulus g+e < |z] < 1—¢, ¢ depending only on K and .
It follows from Theorem 1 that f can be extended to a K,-quasiconformal
mapping & of 4; onto A, . Hence the desired K,-quasiconformal mapping
w is given by w for [z] <o,lto& for 9 < |z] <1 and the identity
for |z] >1.

As a second application of the method of proof of Theorem 1, we prove
the following

Theorem 2. Suppose f is a sense preserving self homeomorphism of
2| = 1 which for some &> 0 can be extended to a K-quasiconformal map-
ping of 1—e < |z| <1 dnto the unit disc. Then f can be extended to a
quasiconformal self mapping } of the unit disc with the origin mapping to
itself. Furthermore the maximal dilatation of j~’ depends only on K and ¢ .

This time we represent the universal covering surface of the punctured
unit dise, 0 < |z| <1, by the upper half plane {y > 0}, z = a+iy,
in such a way that z-1 is the generator of the cyclic group of cover trans-
formations. Then f can be lifted to a sense preserving self homeomorphism
f* of the entire real axis such that f*(0) =0 and

(9) fH¥a+n) = f*@) + n,
for each integer n. We need only show f* is k-quasisymmetric, k& de-

pending on K and e, for then if f'(x, y) is the Beurling-Ahlfors k2-
quasiconformal extension of f* to the upper half plane, we see from the

explicit formula for f that

Fetny) = fe,y) +n.
Hence f can be projected to give a k2-quasiconformal self mapping of the
punctured unit disc. Since the origin is a removable singularity, this map-

ping is the desired }
The hypotheses of the theorem imply that f* can be extended to a
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K-quasiconformal mapping of a horizontal strip 0 < y << x onto a domain

in the upper half plane bordering the entire real axis. Here » depends only

on ¢. Using Gehring’s distortion theorem and Mori’s lemma exactly as

before, we conclude that (3) holds for all x and 0 <t <y = Og'(1)x,
e., f* is locally quasisymmetric.

To show f* is globally quasisymmetric, suppose « and ¢> 0 are
given. Because of (9) we can assume 0 <z << 1. First consider the case
t > 2. Then for some integer n >2, n <t <<n+1. Hence n <+t
<n+2 and —n—1 <z—f < 1—n. Consequently

Pt = f*@) _ ) o) g2
FH@) — fra—t) = f50) —ff1—m)  n—1="
Similarly this ratio is > 1/4 . Suppose next that y <t <2 (if y > 2,
we are done). Choose y; <y such that 2/y;, =p,p >1 an integer.

Then for some integer m , 1 <m < p,my; <t < (m-£1)y;. An iteration
of the identity

Frla-tmt) — (@) - mt) — f*<x+t)] [f*(erf) — f*(x)}

FE@) — e Frat) — f*@) | L) = e
together with (3), which is valied for ¢t <y, <7y, vields
S Hrl =) ('L("Hrl y) — [
C= '< B2 - ... 4 gttt
PH@) — fra—) A

where f = ¢™®. Hence

Frety) —fH@)  frHe) — ) ’
e = [Ex) — f*ae—yy) = FE) — fHr—) <p+...+p.

The same inequalities are valid for [f*(x)—f*(a—1t)])/[f*(@-+y.)—f*(x)]
Taking ratios we finally get

! fHat) —
P e ey S

and the proof is complete.
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