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Introduction

The customary hierarchy of formal language families <£(i) consisting
of languages of type 4, + =0, 1,2, 3, is obtained by imposing restrictions
on the form of productions. A natural generalization is to impose restrictions
also on the use of productions as done in defining matrix grammars, [1],
programmed grammars, [6], ordered grammars, [4], probabilistic grammars,
[10], or periodically time-variant grammars, [9]. A common idea is that
not every derivation leading from the initial symbol to a terminal word is
acceptable, but rather there is a control device which lets through acceptable
derivations only.

A convenient uniform way of describing restrictions on the use of pro-
ductions is to introduce a control language C for a grammar ¢, [3], [7],
[12], [14]. The notion of a control set in [5] is essentially different. The
control language C is a set of finite strings of productions of @, referred
to as control words. The language generated by G with control language
C is the subset of the language generated by ¢, consisting of words which
possess at least one derivation whose string of productions belongs to C.
Thereby, two interpretations of control words are possible. In the narrow
or non-checking interpretation, each letter of a control word has to be
applied. In the broad or checking interpretation, one may specify some
productions such that, whenever they occur in a control word and are not
applicable at the corresponding step of the derivation, then we may move
to the next production in the control word.

In this paper, we study language families <£(i ,5,0) and <£(i,j,1)
generated by type ¢ grammars with type j control language, where
0=1,7 =3. The numbers 0 and 1 in the last argument place refer to
non-checking and checking interpretation, respectively. Since the case
¢t = 2 is separated into two subcases, we obtain altogether 40 language
families. However, most of them coincide with some of the families <£(3).

Definitions and a survey of results are given in Section 1. Sections 2
and 3 deal with families where the core productions are context-sensitive,
ie., ¢ = 1. It is shown that every language in the family <£(1,3,1) is
context-sensitive. This is a generalization of the results in [3] and [12]
concerning the family <£(1, 3 ,0), as well as the result concerning context-
sensitive programmed grammars in [6]. It is then shown that
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(1) L(1,2,1)=<%L(1,2,0)

and that every language in this family is recursive. It remains an open
problem whether or not the family occurring in (1) contains properly the
family of context-sensitive languages.

In Section 4, we investigate the family

(2) <L(2,3,0)

obtained using context-free core productions (including productions with
the empty word on the right side) with a regular control language under
non-checking interpretation. An operation characteristic for this family
is introduced and its properties studied. A result concerning a subfamily
of (2) is obtained. It is known, [6], [7], that if in (2) 0 is replaced by 1, the
resulting family equals <£(0). However, the size of the family (2) remains
an open problem.

1. The families <£(¢,j,k). Let G = (Iy,I;,X,,F) be a phrase
structure grammar, where I, is the set of nonterminals, I, the set of
terminals, X; the initial symbol and F' the set of productions. Derivations
according to G, the language L((/) generated by @, as well as type 1
(¢=10,1,2,3) grammars in the hierarchy obtained by imposing restric-
tions on F, are defined in the usual fashion, cf. [11, pp. 164—169]. The
family of type ¢ languages (i =0,1,2,3) is denoted by <L(q).

Let

(3) T

be a set of distinct labels for the productions in F and assume that F,
is a subset of (3). Let

(4) Xo=PFPy=P,=>...=P,r=1,
fio Sy fie-1

be a derivation according to @, where for each 7, 0 <i <7, the pro-
duction labeled by f is R;—8; and either

(i) there exist @; and @, such that P, = @Q,R,Q, and P, , = Q5,Q,,
or else

(i) R; is not a subword of P;, f, € F; and P,=P,_,.
Then the word

j}(O) j;'(l) t 'fJ'('—l)

over the alphabet (3) is termed a control word of the derivation (4).
Thus, a control word of a derivation indicates which productions have
been applied in the derivation. Thereby, »applying» a production f either



ARTO SaLoMaa, On some families of formal languages 5

means actual rewriting according to f (cf. point (i) above), or checking
that such a rewriting is not possible and that f € F; (cf. point (ii)). For
productions in the set F — F;, only the alternative (i) is possible.

Let C be a language over the alphabet (3). Then

() LG, 1)

is defined to be the subset of L(G) consisting of words which possess at
least one derivation whose control word is in C. (5) is referred to as the
language generated by the pair (@, F;) with the control language C.
If G is atype ¢ grammar and C a type j language, we say that (5) is
a type (i,j,1) language. If, furthermore, the set F; is the empty set O
(i.e., the application of a production f always means actual rewriting
according to f), then we say that (5) is of type (¢,j,0). Thereby, j
ranges through the numbers 0,1,2,3, and 4 ranges through the numbers
0,1,2,2 — 1,3. The difference between the types 2 and 2 — 1 is
that productions of the form X — 2, where 7 is the empty word, are
allowed in type 2 — 1 only if X is the initial symbol and does not occur
on the right side of any production, whereas all context-free productions
are allowed in type 2. (It is well known that the generative capacity of
grammars of types 2 and 2 — A is the same. However, it is not the same
for grammars with a control language.)

If F, = O, we are dealing with the narrow or non-checking interpretation
of control words. Otherwise, we speak of the broad or checking interpretation.
The family of languages of the type (¢,j, k) is denoted by

(6) Li,j, k).

Thus, by definition, there are 40 language families of the form (6). How-
ever, many of them coincide. By definition (cf. also Remark 1 in [7]), the
following inclusions are obvious, for all 4,j,%k, 4,/

(1) L) c L(i,j, k),

8)  <£(j) c <L,j, k),

9  £@,j,0c<L3E,5,1),

(10)  LG,j, k) C LG, 4,k if 5=,

(11) LG ,j,k)C Lliy,5,k) if i =i, andnotboth ¢ =2 and 4 =1.

In (11) it is understood that 3 =2 —-1=2=1 = 0. The additional
assumption concerning ¢ and 4; is necessary because, as will be seen below,

L(©2,3,1) =%0) and £L(1,3,1)=L(1).
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For the definition of programmed grammars, matriz grammars and
periodically time-variant grammars the reader is referved to [6], [1] and
[9], respectively, or to [7]. The family of languages generated by programmed
grammars with type ¢ core productions (¢ =0,1,2,2 — 1, 3) is denoted
by (i, 1). If, in addition, all failure fields are empty, the corresponding
family is denoted by (i, 0). The notations (i, k) and T(i,k) are
used for the families generated by matrix grammars and periodically time-
variant grammars. Thereby, as in the definition of the family (6), k = 1
indicates the broad sense of the application of productions, whereas & = 0
indicates the narrow sense.

We now give a summary of the known inclusions between the families
introduced. It is fairly easy to prove (cf. [7]) that, for all ¢ and ¥,

(12) O, k) M, k) PG, k)C LiG,3,k).
It is established in [9] that
(13) T, k) =M k) =P, k) =L>G,3, k),

for +=2,2—121 and k=0,1. (In fact, we are going to see that the
equations (13) hold true for all values of ¢ and k.) The following relations
are established in [6]:

(14) P(2,1) = <£(0),
(15) L2)c P2 — 2, k)c L), k=0,1,
(16) P,1) = <L),

where C denotes proper inclusion.

Remark 1. The programmed grammars defined in [6] operate under
so-called »leftmost interpretationn, i.e., always the leftmost occurrence of
a string is rewritten. However, (14) — (16) hold true also if an arbitrary
occurrence of a string may be rewritten. This is the »free interpretationy
of [6]. In this paper, as well as in [7], the programmed grammars are assumed
to operate under free interpretation.

It is obvious by Church’s Thesis that the family (6) equals the family
<£(0) whenever 7 =0 or j = 0. Tt is shown in [14] and, independently,
in [3] that

(17) ZL(3,1,0) = <£(0).

Remark 2. In the proof of (17), it is essential that the type 3 core
productions include productions of the form X — ¥, where X and Y
are nonterminals. If such productions are excluded and the resulting type
is denoted by 3,, we obtain
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o~

L(3y,1,0) = L(1).

Such a distinction between types 3 and 3, does not lead into different
language families if the control language is of type 0, 2 or 3.

By (9) — (11), (13), (14) and (17), the family (6) equals the family
£(0) for each of the following 26 triples (i, ], k):
(0,0,0), (0,0,1), (0,1,0), (0,1
(0,3,0, (0,3,1); (1,0,0), (1,0,1), (2,0,0), (2,0,1),
2—4,0,0,2—4,0,1), (3,0,0), (3,0,1); 3,1,0), (3,1,1),
2—24,1,00, 2—4,1,1), (2,1
2,3,1), (2,2,1).

In the next section, it will be shown that
(18) L(1,3,0) =L(1,3,1)=<£L(1).
(This result concerning <£(1,3,0) was established also in [3] and [14].)
According to [7],
(19) L(3,3,0)=L(3,3,1) =%L(3),
(20) L(3,2,0)=L3,2,1)=4£(2).

By (18) — (20) and the list of 26 families, only the following 8 families
may be different from the families <£(2):
(21) L2 —1,3,0),%L2—1,3,1),%4(2,3,0),%(2,2,0),

L2 —2,2,0),L2—2,2,1),%L01,2,0),L(1,2,1).

It follows by (15) and (13) that both of the families
(22) L2 —1,3,0) and 42— 4,3,1)

properly contain the family of context-free languages and are properly
contained in the family of context-sensitive languages. It will be shown
that

L(1,2,0)=<L(1,2,1)

(this equation is denoted by (1) in the introduction).

The notion of an abstract family of languages, abbreviated AFL, is
defined as in [5]. Using the results of [7], the following theorem can be
obtained. (In fact, the proof of the assertion concerning the closure of
£(2 — 2,3,1) under restricted homomorphism requires a slight modi-
fication of the methods of [7]. We will present it in detail in a forthcoming
paper about scattered context languages.)



8 Ann. Acad. Sci. Fennica A.I. 479

Theorem 1. Each of the families (21) is closed under each of the following
operations: union, catenation, restricted homomorphism, intersection with
regular languages and A-free regular substitution. Furthermore, the families

(23) L2 —2,3,1), L2—1,2,1), <L(1,2,0)

are closed under catenation closure. Consequently, each of the families (23)
is an AFL.

It is an open problem whether or not the families (21) other than those
in (23) are closed under catenation closure and, consequently, whether
or not they are AFL’s. Some of the families (21) are closed under some
additional operations like intersection, substitution and arbitrary homo-
morphism.

2. The family <£(1,3,1). By (7) and (9),
(24) L1)ycL1,3,0)CL(1,3,1).

We will now establish the equations (18). Thus, regular control languages
do not increase the generative capacity of context-sensitive grammars,
not even under the broad interpretation of control words.

A grammar with the end marker 74 and derivations of the form

#Xo#*#zﬂ#j:#ljr#

is defined in the usual fashion, [11, p. 202]. The notion of a control language
is extended to concern grammars with an end marker.

Lemma. dny language of the form L (G ,Q), where C 1is regular
(context-free) and G a context-sensilive grammar with an end marker,
belongs to the family <L(1,3 ,0) (<L(1,2,0)).

The proof of the Lemma, being similar to the corresponding proof
concerning context-sensitive grammars, [11, pp. 202—203], is omitted.
In fact, the only additional information needed is the result that the
family of regular (context-free) languages is closed under regular sub-
stitution.

We will now prove that

(25) L(1,3,0)=L(1,3,1).

By (24) and the Lemma, it suffices to prove that any language L of the
form

(26) L=1LJ(G,F), F,=0,

(27) G=(Iy,Ir,X,,F)



ArTO SaroMAa, On some families of formal languages 9

is a context-sensitive grammar and C is regular, satisfies the equation
(28) L= LG, 9),

for some context-sensitive grammar @, with the end marker 7# and
regular language C,.

A grammar @; and control language C; satisfying (28) will now be
defined. The set of nonterminals of @, is the union

INU{#A U {[x,fl|l0c €Iy UI;,fEF}.

The terminal alphabet of @; is I;, and the initial symbol X,.

Consider a production P — @, labeled by f€F;. Assume that
P=ua...7, r =1, where each z; is a letter of IyU I;. We denote
by Ay the set consisting of all productions

[‘x’f]ﬁ'e"x[ﬁ’f]a 0‘7‘3611\"UIT: “#x17
(2, f1IB—2[B, f1, BEINU I — {2},
[y, fleef — ay[xy , f1B, B E€INU Ir — {23},

[, fleg o, g By, fl. o2, BEINU I —{z},
and by E; the set consisting of all productions

[, f17 —« #, if not both r =1 and « =z,

[ Sl #E = H, s €IyUIp, r>2,

oy s flg - oo O, ooy oty P, o, €Iy UIp, r>2,

Furthermore, let B; consist of the productions

Hx—-#x,f]l, « €IyUIL.

The production set of @ is the union of F and the sets Ay, By and Ej,
where f ranges over F|.

Having completed the definition of ¢}, we now introduce a regular
substitution ¢ on the elements of F by

(fif feF —F,,
" = | fUBWA)E, i feF,.

Thereby, W(4s) stands for the set of all words (including 1) over Ay
We now define

(29) Oy = ¢(0).
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Then C is regular and (28) holds true. In fact, the definition of ¢
makes it possible, for productions f € Fy, either to rewrite according to
J or check that f is not applicable. For the latter purpose, one begins
with a production in B; and introduces a nonterminal [« , f]. Productions
in Ay are then applied to move nonterminals of this form towards the
right end, where they can be eliminated by E;. If P appears as a sub-
word, no production in HE; can become applicable, and the derivation
terminates. This completes the proof of the equation (25).

According to [3] and [14],

L(1) = 4(1,3,0).

Consequently, the equations (18) hold true. Taking into account the in-
clusions (12) and the results concerning ordered grammars in [7], we may
state the following theorem. The second and third sentences of the theorem
have been established also in [6] and [4], respectively.

Theorem 2. Regular control languages do mot increase the generative
capacity of context-sensitive grammars, not even under the broad interpretation
of control words. A language generated by a programmed context-sensitive
grammar s context-sensitive. A langugage generated by an ordered context-
sensitive grammar is context-sensitive. A language generated by a context-
sensitive matrix grammar is context-sensitive. A language generated by o
periodically time-variant context-sensitive grammar is context-sensitive.

3. The family <£(1,2,1). We will first establish the following

Theorem 3. For a context-sensitive grammar with a context-free control
language, the broad interpretation of control words does not increase the
generative power, i.e., the equation (1) holds true.

Proof. The inclusion

L(1,2,0)c £(1.2,1)

follows by (9). The reverse inclusion is established exactly as the corre-
sponding inclusion in the proof of equation (25) in Section 2. In fact, by
the Lemma, it suffices to prove that any language of the form (26), where
(27) in context-sensitive and C' context-free, satisfies the equation (28),
for some context-sensitive grammar G; with an end marker and context-
free language C;. The grammar ¢, and the substitution ¢ are defined
exactly as in Section 2, and ) is defined by (29). Then O, will be context-
free, whence Theorem 3 follows.

Theorem 4. Every language in the family <£(1,2,1) is recursive. Con-
sequently, the family <L(1,2,1) is properly included in the family <£(0).

Proof. By Theorem 3, it suffices to prove that every language in the
family <£(1,2,0) is recursive. Assume that



ArTOo SarLomaa, On some families of formal languages 11

L= LG, 9),
where
G:(Ii\'}IT>X0’F)7 IZINUITy

is context-sensitive and C is context-free.

We note first that, for any word @ over I, the collection of all control
words (under narrow interpretation) corresponding to derivations according
to G of the form

(30) Q=...=0Q

constitutes a regular language, denoted by R(¢/, @), which can be
effectively constructed from @ and . This can be shown by the following
argument. Each intermediate word in a derivation (30) is of the same
length as . We now construct a finite directed graph possessing a node
for each word of lg (Q) over I. For each @; and @, (not necessarily
distinct), there is an edge, labeled by f, from the node labeled by @,
to the node labeled by @, exactly in case ; directly yields ¢, by an
application of the production f. (Note that multiple edges are possible.)
The node labeled by @ is the only initial and the only final node. Then
R(G, Q) is the language represented by this graph and, hence, regular.

It now follows that, for any word P over I, the collection of control
words fif, . ..f. of derivations of P (according to ()

(31) Xo=PFPy=P=P,>...=P, =P, u=1,
f] f’l fu

is a regular language R (G, P). For there is only a finite set A of
derivations (31), where the words P; are distinct, [11, pp. 171—172].
Let (31) be an element of E. We define

R(G, P, ){f} if RG,P,)=+0,
e {fi} , otherwise
and form the catenation @@, ... q¢.. Then R(G, P)is the (finite) union
of these catenations, corresponding to different elements of E.
To decide, whether or not a given word P over I; belongs to L,

we first form the language R,(G', P). By [11, pp. 183—184], the inter-
section

(32) CN Ry(G, P)

is context-free and, consequently, its emptiness is decidable. P € L if
and only if the intersection (32) is not empty. This completes the proof.



12 Ann. Acad. Sci. Fennicae A 1. 479

Remark 3. It is an immediate consequence of Theorem 4 and the in-
clusion (11) that the families <£(2 — 1,2,0) and <4(2 — 4,2,1) are
recursive. By complexity theory, one can strengthen Theorem 4 to the
form: The family <£(1, 2, 1) is properly included in the family of recursive
languages. It remains an open problem whether or not this family properly
includes the family of context-sensitive languages.

4. The family <£(2,3,0). According to (13) and (14),
L@2,3,1) = L(0).

However, no nontrivial results are known about the size of the family
<£(2,3,0). Intuitively, the presence of 1 in the last argument place corre-
sponds to jump instructions of Turing machines. Consequently, the replace-
ment of 1 by 0 should considerably decrease the size of the family.

In derivations of languages in the family <£(2,3,0), the essential
thing is the number of nonterminals rather than their mutual order. This
leads us to the following definitions.

Two words P and @ over an alphabet I are termed letter-equivalent
if, for each x € I, both P and @ contain the same number of occurrences
of z (i.e., P is obtained from @ by a permutation of letters). Two
languages L; and L, over I are termed letter-equivalent if, for each
P, € L;, there is a letter-equivalent P, € L,, and vice versa.

For the notion of the index of a context-free grammar, the reader is
referred to [8] or [13]. The notion is readily extended to pairs (G, C),
where G is a context-free grammar and C a regular control language.
It should be noted that although the index of @ is finite, the index of
(G, C) may still be infinite, for some regular C. A simple example of this
is provided by G consisting of the productions

Ji: Xy — XX, fo: Xg—2

(where 2 is the only terminal) and C' defined by the regular expression
JETE

It is well-known that, for each context-free language, there is a letter-
equivalent regular language. This result is now extended to concern a sub-
family of <£(2,3,0).

Theorem 5. For each language of finite index in the family <£(2, 3, 0)
there is a letter-equivalent regular language.

Proof. Assume that L = L¢(G, 0), where G = (Iy,I;,X,,F) is
context-free and C regular and, furthermore, the index of (G, C) equals
a natural number k. For a word @ over I, UI;, we denote by §(Q)
the word obtained by erasing all terminals in @, and by »(Q) the word
obtained by erasing all nonterminals in Q. Consequently, for any word

bl
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P €L, there is a derivation (31) with fifo-. - fo€C and () =k,
i=0,...,u By theassumption, C is accepted by a finite deterministic
automaton (F,S,s,,8;, ), where F is the alphabet, S the state
set, s, the initial state, S; the final state set and ¢ the transition
function.

Consider the (finite) collection of words over [y with length = k.
We choose one representative from each class of letter-equivalent words,
and denote the resulting set by E. We now construct a finite directed
graph possessing a node for each element of the product set B XxS. There
is an edge e from the node labeled by (@, , s;) to the node labeled by
(@, , 8;) (where the @’s and s’s are not necessarily distinct) if and only
if there is a production X — P, labeled by f, in F such that each of the
following conditions is satisfied: (i) X occurs in Q; (i) @, is letter-
equivalent to a word obtained from @, by replacing some occurrence of
X by &P); (i) g¢(s;,f) = s, Furthermore, e is labeled by 7y(P).
(Note that multiple edges are possible.) The node labeled by (X, , 8) is
initial in the graph, and each node labeled by (%,s), where s €8,
is final. Let

(33) {Py,...,Pu}

be the collection of all words over I appearing as labels of the edges e,
and I, the language represented by our graph. Tt is easy to verify that
L, isletter-equivalent to L. Furthermore, L, isregular over the alphabet
(33) and, consequently, regular over I,. Hence, Theorem 5 follows.

As an immediate corollary we obtain the following

Theorem 6. Every language over a one-letter alphabet which belongs to
the family <£(2,3,0) and possesses a finite index is regular.

Theorem 6 is a special case of the following

Conjecture. The family <£(2,3,0) contains no nonregular languages
over one letter.

Remark 4. To prove this conjecture it suffices, by (13), to consider
matrix grammars. To point out some of the difficulties involved in a proof,
let us consider a context-free matrix grammar

Gy = (X}, {a}, X, My,..., M),
where each M; is a finite sequence of j(i) productions
(34) X>P,X—P,,...,X—=>Py.

(For simplicity, we have assumed that there is only one nonterminal.)
Denote

a, =g (0(PyPy . . . Py)) — j@) s b =1g (Y(PrPy . .. Piy)) -

J
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If M; is applied y; times, ¢ =1,..., %, in a derivation leading to a
terminal word P, we obtain

k
(35) Z a; y,‘ = — 1
i=1

and P = x*, where
k

(36) v = Z biyi .
=1

It follows by the theory of systems of linear Diophantine equations that
the language L, consisting of all words 2*, with » defined by (36), for
some nonnegative solution

(37) Yy Yn)

of (35), is regular. The language L((,;) generated by ,, isasubsetof L,.
But it may be a proper subset of L;. This is due to the fact that although
a; is positive, in applying M; the number of X’s may still decrease if
there are some productions X — 1 beginning the sequence (34). Con-
sequently, every solution (37) of (35) does not lead toa word 2° in L(G,,),
and the difference L, — L((/;;) may be nonregular. The problem is quite
the same in the general case where there are more than one nonterminals.
Remark 5. Stotskij, [14], has shown that the language

{a*b" |1 =<m, 1 =<n < 2m}

belongs to the family <£(2 — 2,3, 0) and, hence, to the family <£(2,3,0)
but it is not letter-equivalent to any regular language. Consequently, by
Theorem 5, there are languages of infinite index in the family <£(2, 3, 0).
If the above conjecture is true, there are no such languages over one letter.

We have seen (Theorem 1) that the family <£(2,3,0) is closed under
a number of operations. Following Stotskij, [14], we shall now introduce
another operation which is typical for this family.

The quasi-intersection of a language L, with a language L,, in symbols,
L, N L, is the subset of L, consisting of all words P, such that there is
a letter-equivalent word P, in L,.

It follows that quasi-intersection is associative but not commutative.
It is commutative in the sense that the languages L, N L, and L, N L,
are letter-equivalent. The intersection of two languages is contained in
their quasi-intersection. Quasi-intersection is idempotent and distributive
over union, both from the left and from the right.

Theorem 7° The family <£(2,3,0) is closed under quasi-intersection.

Proof. Consider two languages
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L=L,(G,0) and L = Lo(¢",9),
where C and (' are regular, and
G: (IN:IT’XOaF) a’nd G, - (IJ\,I;’X(I)F')
are context-free grammars such that Iy N Iy = O. Denote
I, = {xjx €I, U Iy}
and let, for each P € W([yU I;), P; be the word obtained from P by
replacing each letter x € I, by the corresponding indexed letter z;. Let
F, be the set obtained from F by replacing the right side P of every
production by P,;. The labels of the productions are left unaltered in the
transicion from F to F,.
Consider a labeled production
i X—pny oy, y €IyUI;
in F'. Let yi ,...,y; be the letters of I on the right side (k = 0).
Then f is replaced by the sequence of labeled productions
Jo: X = 0(hya- ..y,

fi: @i =¥

Se (Wi — Vi -

The replacement is made for every f € F’, and the resulting set of pro-
ductions is denoted by F,. (If the original production is f: X — 4, it
is replaced by f,: X — 1.) Let C; be the language obtained from C’
by replacing each letter f by the corresponding catenation f; ... fif;.
We introduce a new initial symbol Y, and the labeled production

Jo: Yo— Xo Xy .
It is easy to see that
(38) LANL = L¢ (G, 9),
where
Gy, = (INUI:VUIIU{YO}’ITUI’,T> Yy, {9y UF, UF,
and
Oy = {g,} CC; .

In fact, we obtain first the collection of words of the form P,X,, where
P € L. The indices 1 and the nonterminal X; are eliminated if and only
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if a word letter-equivalent to P belongs to L’. This proves (38) and
Theorem 7.

Remark 6. Some full AFL’s, for instance, <£(3) and <£(2) are not
closed under quasi-intersection. This follows because

(a*b*c*) N ((abc)*abe) = {a"b"c" |n = 1} .

Remark 7. Theorems 5 and 7 have been established for the family
L2 — 2,3,0) by Stotskij, [13], [14]. The above proof of Theorem 7
remains unaltered for any of the first six families (21).

Remark 8. We have pointed out that the family <£(2,3,0) equals
the family of languages generated by programmed grammars with context-
free core productions and empty failure fields. A more general type, called
an appearance answering context-free programmed grammar, has been
introduced in [2]. However, it is easy to see that this generalization pos-
sesses the same generative capacity as context-free programmed grammars
with arbitrary success and failure fields.

Remark 9. Friant, [3], has considered grammars which, in addition
to a control language, have restrictions on the use of productions obtained
by generalizing the ordering of productions, [4]. Thereby, the application
of productions is understood in the narrow sense. It is an open problem
to generalize the results to the case where the application is understood
in the broad sense.

5. Conclusion. The following two tables summarize the results con-
cerning the mutual relations between the families <£(:,j, k) and <£(z).
(In addition, cf. (7) — (11).) Thereby, “X denotes the family of recursive
languages.

L =<Li,j,0)

L = £(0) %L = L) L = L(0) L = £(0)
L =L0) L=HL0) LUcLcR L=<L1)
L=L0) L=L0) L2cL <Li2)c £
— 2| L =LO0) L=L0) L2 cLcN L2)cLcLQ)
L=<L0) L=L0) L=<HL2) L = £(3)

W N N -~ O
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L =L, 1)

w

o e~ O

|85

J 0
£ = <L(0)
L = <L(0)
L = <£(0)
— A | L = <L(0)
L = <L(0)

L = <L(0)
L1 LaN

L2 LN

Na ~ n
N
N

> N
PN
— O
— =

~N

= <L(3)

In our estimation, the most interesting open problems are (i) to charac-

University of Turku

Finland

terize the family <£(2, 3, 0) and (ii) to determine whether or not <£(1) =
<L(1,2,0).
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