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§ 1. TNTRODUCTTON

1.1. Summary. In this paper we study analytic mappings /: -B + §
on a parabolic Riemann surface A into a parabolic or a, compa,ct Riemann
surface S.

After some preliminary considerations we discuss the characterization
of the most simple anall"tic mappings in the second paragraph. These
quasirational mappings have been treated in some form previously ([a]-
[7], [11]-1151, [2I]). Our concepts are to some exterrt based on the paper
by L. Myrberg [II]. We give the natural generalizations of many results
presented in that paper.

In the third paragraph we concentrate on the relations between quasi-
rationality and different compactifications of the Riemann surfaces R
and §. A consequence of our results is a theorem concerning the structure
of the ideal boundaries of parabolic surfaces.

fn the last paragraph we consider the question about the existence
of analytic and specially quasirational mappings.

1.2. Compactitications of Riemann surfaces. The topological concepts
and notations we use are mainly those of Kelley [S]. For the set-theoretic
difference of the sets ,4 and B we use the notation A - B and for a
subset and a proper subset the notations c and C . By C v-e denote
the family of continuous bounded real-r,alued functions and by Co the sub-
family of C consisting of functions .with compact, support.

Let us consider a Riemann surfa,ce -B and a class Q of real-valued con-
tinuous functions q:R-->X with X:{- cc}URU{t oo}. It is
well known ([3], p. 971 that there exists a compact space -Rfi such that any
function q e Q has a continuous extension A$ : A[ -+ X and that the
extended functions 4ff separate the points of ,B[ - -8, i.e. for z{ 4 zf
there exists a function q € Q such that q$(z{) + t$@{). The space A[
is unique up to a homeomorphism. -E$ is called the Q-compactification
of -E or, if no confusion can arise, the compactification of .8. The compact
space /[ : Aä - -B is the ideal boundary of R. To signify that the
closure operation is performed in the compactified space -Bfi we use the
notation Äa for the closure of a set A c R$. The notation -4- means
the closure of A c -E performed in -8.
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Lemma 1. Rö i,s a Hausd,offi sPace.

Proof . We know that there exists a continuous mapping g imbedding

.B in the compact space f,Quco ([3], p.97). Because X is Hausdorff,
the topological product Xau co and its subspace J?fi are also Hausdorff
spaces ([8], p. 92 and 133).

In this pa,per we frequently use two specific exarnples of .B[, namely
the compactification of Kdrekjårt6 - Stoilow (A*) and that of Royden
(-Bf;). The defining classes Q of continuous functions a,re respectively the
class K of continuous functions with constant values in the components

of the complement, of a compact set and the class D of continuous Dirichlet
functions. By a Dirichlet function f e D we mean & continuous function

f : R ---> R with the following properties: 1l there exists a locally summable

differential c, which we denote lry df, such that

rf
J 

of nco- - .l f 0,,

for every smooth aiff"r"rlti*t co with ""*r* support in -B and 2l

ildfn' -

We refer to l3l, p. 66, 74 and 78.
Note that the above definition of the ff-compactification is equivalent

to the purely topological definition in [l], p. 82, because we can easily
construct a homeomorphism between these two compactifications. Thus
the K-compactification is characterized by the following properties: (i) A*
is a locally connected Hausdorff space and (ii) Af< is totally disconnected

and non-separating on ,Ef.

1.3. Polar sets on Riemann surfaces. We state at first
Detinition 7. A set E on a Riemann surface'i,s pol'ar, if on eaery hyper-

bolic subreg'i,on G c R there eui,sts a posit'iue superharmoni,c function a

suchthat alGfiE:a.
In the following lemma we have collected some familiar properties of

polar sets (cf. [3], p. 30-3I).
Lemma 2. (1) Euery subset of a polar set 'is again polar.

(2) The uni,on of a countable number of polar sets 'is ltolur.
(3) fhe complement of a closecl, polar set is connected.

(4) A polar set d,oes not contain any continuum.
(5) If B and, R are two Riemann surfa.ces and, E c S c R, then E
i,s polar on S if and, only if E i,s polar on R.

!d'r^
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A region O on a Riemann surface -B is said to be regular, if O is
compact, if the relative boundary ä() consists of a finite number of analSrtic
Jordan curves and if R - I contains only non-compact components. We
frequentlv use the following important lemma ([17], p. 25).

Lemma 3. On an open Riemann surfa,ce R there eri,sts an erhaustion

of R by regular regions Qr, ,i,.e. §,c Q,*, and, |jO,:n.
Lemma 4. A closed set E on a parabolic ,ur\o"":'n is ytolar if and, only

if R - E is a parabolic Riemann surface.
Proof. Let us first take a closed polar set E c R and assume that

R - E is hyperbolic contrary to our assertion. Select then a parametric
disc .oo c l? - E and form an exhaustion {O,} of R - E by regular
regions O,= Oo. By hyperbolicity of R - E the harmonic measures
(oo, defined in §,- Qo converge to a harmonic limit function a):
lim alo- g 0 defined in (,8 - E) - go ([1], p. 204-205). Since E is

!2;+ R-E

polar there exists in -B - Oo a positive superharmonic function n, such
that urlU: oo. Let arbeafinitepotentialon R - Oo with lim az(e): a

i*oI
([3], p. 90). Selecting 6o € (ä - E) - Oo such that or(Co) { oo and a
constant o € R conveniently the positive superharmonic function t) :
a(at * or) defined in (-B - E) - Oo satisfies (i) lim inf (u(() - co(()) > 0

;+:'nu /Iuooo
and (ii) aGi < a(Ci. This however violates the maximum principle
([3], p. l2).

Assume, on the other hand, that -E - E is a parabolic Riemann surface.
Let G c -E be a hyperbolic subregionsuchthat EcG and Oo:R-G
is a regular region. Both restrictions are immaterial by lemma 2. Let
{O,} be an exhaustion of R - E bv regular regions e,) §0. Define
0n G a function for every n by

a 
"(c)

_ I@o,,(C), when e e O* 0o

Ir, r^rhen CeR Q,.

By parabolicity of R - E we can choose {p,} sueh that , : 
^Zru^converges at a given point Co e R - ,8. Then o is superharmonic on G

and, alU : a, hence .E is polar.

1.4. Basic concepts of the value distribution theory. The classical theory
of Nevanlinna concernir:g the value distribution of meromorphic functions
has been generalized mainly by Sario (see e.g. [18]) to analytic mappings
/ : -E + § between arbitrary Riemann surfaces. In the theory of Sario



\ l- 1a")
^-L. -L. "r(i-

(1181, p. 5I-60)there is at, first formed on B a proximitv functioir s(i , o).

This fuirction is uniformly bounded from belo$'. $,'e denote do : -ls d§.

where the density z1s is that one introduced in [I8], p. 57 arrl r:l§ means

the Euclide&n &rea element in a parametric disc. Then

fixecl parameiric disc end -B* = -8, a, reglliår
in fro -- fto a l:ariitoYric ftinction % sucli that
If the reai constant k is selected to st"tisf)-

xt, is uniquely defined. \4re irnmediatel3' r.erifr-

g frn. Itretrce the directecl limit

I

I do: 4n
J

§

([18], F. 5s). Let J?o be a
regiorr on R. E'e can defille
qARa: 0 ä?ic} xLiARl, : li.

I dzr,* -:- L, the function
IU

örto

tl:at ff,,, s ]?,,," irmplies lr,

iirnft-fr,,,"*g
Jl;, -- I?

\4'-e «lt':,*te b,v 1,{f ,7t. , å) tlie nuiril--er of tlie

f ,R --1 § irl the I'egio]l

+oc

i-f e,:rc1 onl-r' if If is irr"pti"l:ciit:.

f -pcil;ts of tire aiitr.l:,-tit' :riililliilig

{ro.-= A* u {f e ,sio t zr!) < tL}

cou.ntecl rr ith their nrr;1ti:;licities. 'Ille hasie frinctions

hution tliec:'\r ere

The following t.lvo relations between these coucepts tr're rvell knorvn ([18],

p. 60 and 65):

Lemma 5.

A(f ,l; , å)

E(f ,k , å)

c{f , k) --

k)-

k)__

1,(f , lL , i) dlt

s(/(5) , =') 
,lua

0

e) + B(f ,k,e)

(f ,k , il cla(e) .

k
i-
I:4t t

I
J
()

t'i
I

on *'- öt.

f I d'c';(r(€)) clit

o fr.e

A(f ,k ,

1rIAlnJ

{c(f ,

J

l'tF '
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' Let n(f , C ,z) be the multiplicity of the root of the equation f(z\: C.

The number n(f , [ , A) of. the f-points of an analytic mapping /: l? + §
irr a set A g R counted with respect to their multiplicities hrr,s the
lt,1 rleseritatiorr

?L(f,e,A):: u
zQ'tr

'n(f , c,z)

1\'e usethecorrespondingnotations n(f*,e ,z) ard n(f*,;;,A) also
for contimrous extensions /* : ,Bfi,o, -- §fr1s, of analltic mappings /: "B + §.
No'n' { e§äi--l and A E Aäq. Tiris u.ill be justifiecl after ri-e have later
defirred the rnultiplicit.v of a (-point for the extci:cled mappii:gs.

1.5. Regions of type §On* and mappings of type Bl. trl'e -qav rhat a
hyperbolic regiolr G g R is of t}-pe Sorro, if H?: l. Here the uotation
il,Y, rmearrs the uriique solution of the Dirichlct prol;lem for the bundary
ftinction @ : äG -+ R ([3], p. 2I).

Definition 2. A-n analytic mo,ysglittg f : R --> B i,s of ty,pe Bl, if for euery
poi,nt { e S iltere erists an open neighbourhood G c § suclr, that tlte compo-
nents af l-'(0) are of type SOrs.

Lemma 6. ilaery non-constari,t anal,ytia malt,pi,ng f : R -> S on « para-
bolic Riemann surfuce is of type Bl.

Proof. Let i € §. Take a, Irara,rnctric disc [/ such that 6 € I/. Tire
cornponents of f -r(U) are h1-perbolic subregions of -l?. Since everv hyper-
bolic subregion on a paraboiic llie'mann sui:face is of type SOrrB ([B]. p. B1),

/ is of typc tsI.
Remark. If ,f : R -> ,,S is arr a.nal5,tic mapping on a parabolic F,iemann

slrrface, U c B is a region and Z a component of f''(U), therr also

flTr : V --+ [/ is a mapping of type 81.
lVe frequentiy' use the follo.vr,-ing result of Heins ([6], ti. .{70 and [B],

p. I l6).
Lemma 7. If G, 'tLo1l,-co??.stänt

tlten oztts'icie of u pola,r set ?L(f ,

Hemar}«. If max n(f , e , R)
rrl osecl. '( 

€ §

1.6. LintlelöIian mappings. The follov-ing definition makes sense only
on hyperbolic surfaces or orr hyperbolic subregions of parabolic surfaces.

Definition 3. A nort-constant analytic mapping f : R -> S i,s Li,ndelöfi,an,
if for euery poi,nt 6 € B

anulytic mctgtping f , R -+ § ,is of type Bl,

ees

:
"f(o):- 

j
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where z e f-'(C) anil, g(2, a, R) i,s the Green's function of R wi'th the pole

at a.

1.7. Analytie tunctions on Riemann surfaces. In general we speak about'

analytic mappings f : R --> s between two Riemann surfaces. If in particular
§ : §o : the Riemann sphere, we will emphasize this situation by speaking

about analytic functions.

§ 2. CHARACTERIZATION OF qUASIRATIONAL MAPPING§

2.1. Definition of quasirational mapping§. From now on we §uppo§e

that .E is a parabolic and § either a parabolic or a compact Riemann

surface. 'we are looking for some subclass of analytic mappings /: -B -+ B

which would consist of as simple mappings as possible. such a subclass is

that of quasirational mappings which we define b;z

Detinition 4. An analytic mappi,ng ,i,s quasirational,, i,J it has a conti,nuous

ertension f* , RI-'S*.
Remark. ff -B:S:§o-{co}, then -rB[-§ä:§o and the class

of quasirational functions on -iB consists of ordinary rational funct'ions.

2.2. Characteristic properties. The following theorem gives some equi-

valent properties for quasirationality. These statements contain onll'

partially new results. For the known parts of the theorem we refer to [3].

[4], [5] and [6].
Theorem 7. Ior a non-constant analytic mappi,ng f : R -> s the followi,n,g

properties are equi,aalent :

1. f :R'->S is quasirational;
2. n(f , C , R) i,s fi,nite 'i,n some non-polar set E c S;

3. there erists qn integer N such that n(f , C , R) I N at eaery po'int

(€s;
4. C(f , k) : o(k);
5. f :R-+§ is a Di,ri,chlet mapping, i'e. a mappting with a cont'i'nuous

ertens'i,on f5 RB -'§8,'
6. the restrict'i,on flG : G ---> S into any hyperboli'c subregion G c R

is a Lindelöfi,an mapPing;
7. C(flG ,lt) : O(L).

Proof. The proof of the theorem is arranged according to the adjacent

scheme:
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a) 2. + 3. This is a result of Heins ([6], p. 470). \4Ie refer here to lemma 7.

b) 3. + l. Let z* e Åft be an arbitrary point of the ideal boundary
and, § (z*) the family of all open connected neighbourhoods G c ,BP of
z* with the boundary 0G compact in .8. By lemma I Sfl is a Hausdorff
sp&ce, hence f@\: n fQnnK is either a continuumorapoint,

([1], p. s). In th" firrt"H$'*" "r. find out a subcontinuum -n'c /(z*) fl §.
By property 3, lemma 2 and lemma 7 there exists a point fo € -F' such that
n(f , Co, A) : -l[. By the remark to lemma 7 we can even find an open
neighbourhood U of 6o such that n(f , o(, fi) : .0[ for every point
xe U. Let us denote "f-t((r) :{4,...,2*}. By continuity of / we are
able to construct disjoint open pa,ra,metric discs D, around every z, such
that their closures are compact and that f@,) c U. Select now a connected

open neighbourhood T' g ärf'i.,) of fo. At once we see that f-l(.y) n Ö.D,

consists of exactly f .oiior."nts and that n(f ,e,f-r(f)n Ö,r,)']ff
for all ueV. Hence n(f ,o,*-,9rD,) :0. Since fo€/(Gfl.E)"
for every 

oGe 
§@*), there exists an aeVnfGnh. Selecting

G c Rfi - l) D, v'e have a cont'radiction. Thus f(z*) must be a single
point. i:1

Define now a mapping f* , R* -+ §p by

tfk\. u'hetr ze R
f*td\ 

-l *t - l,i(r), rrhen z e/f, .

We have only to prove that this mapping is continuous. Let Z c §P be
an open set. The points ze Rfif*-'(E) are trivially interior points of
f*-'(E). n'or an ideal boundary point z we denote f*(") : ö. There exists
at least one G e § @) such that J1e n A1" c n. To prove this assume

conversely tt"t J1e nA1* - E I b for every Ge§@). If G,e§@)
fori: 1,.,.,tu, then

6

t
7
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,, tl

i== 1 i.: I

TL

nnG,)

a\\

ll : /'\:) -

H*g:

because 
,Örr, "otrains 

a component Goe §@). The finite intersection

propertv implies

fi* ft i/(Gn
6 E ,l{;)

trf noll' ^>l( € G n Å';:r, {,hen G €,{i(r*)

f*(r*) _ nylc--.naf
G* e f{z*i

So

f*(G) : f*(G n R) u f*(G n l'il c t;

arid. also i,he points z e Åf- n1*-r1f; are irrterior pcirrts.
c) I. =' 2. Let zf e Afr. If z* eÅft and z* 7 z,f. there exi-cts il, ccmlract

set 0 c -E atrd a real function k e I{ such that I has c'i:irstattt val'.res

in tlre cr;rponelrts of R - Q and Å'r'(z'F) ;,r Ä.ir(:;i') isr.r, 1.,. 5). Ii-iti:.out
any restrictic'rr v-r: ca,rl assurno that Q € {.ä^}, x-hcr:e [.P,,] is a;r exhatrrtiott
of -B 1:3' lcgr-llar rcgio::s. Because tlierc ie at niost a fiiiite llutr;J;ci' t;f coni-

poner:ts i:r 1l - R-, it is pcissible to use only one function ri,, € J{ lbr' .8,.

with diff<.r'ent vaiues iir the ccmponents of -Il - -8,. Thus for evcrr- 8,,

at, n:ost a finite t.rirrrbt'r' of points z* e Å§ c,at: be scparatetl fitirn a;0.

Becalrst {-R,.} is counti,,ble. zlfl is il, conttable set. Nil'turallS'' /*(,Jr,f) i'.

cour:tahle tco ancl so /*(li;) * ,Si;.

Sir,cr, /,'(1f;) is ccmpt;ct. theire t'rists il 1'611i;.::11r'1 ir,;ir-i:tlr'.:'1,rf f-lg §
rvitli fl n f*(Ål) : {4, heuce

f,t--t(i1) n Jä q 1*t-1{E) n fr,-l(f,;(lX)) :J*-'ir n/',:'(_if t) =-. [r .

Beca"urr-. -Ef is a HausdcllTtlacc, ttic riisjcint cicscrl sct.* .if tr,:..rl /t'-ri-B)
are (cr-Iact, ard separattrl. This mcatls that {'cr cvcrl- ,'€ Z' l'e lrar-t

{:tf , Å,i -= y(,f , k, , {)r/r';(i}rJla {, (/,/t, =- {iilr)
{i

rl:. I§), 11'r' ]ii1ro'fi

r o(1)

a,]ICL go

s /i#t' el'' § B

e) -i. => 3. BE-'r.,a1:"scr Bif ,ln' ,;)

0 {= A(f , i, , i) :'-- C (f , /r}

i lrr-l'r ili::tr t'(f , /i . i': ::_. J' iui

l ir. j,-' u" ([ 1 S-i ,

i) 
= 

L!{j .lc}

!:
itII!t

i)5

Å-l
Iv

U

?-,crr

a(/

Iq

:,,\

i: cle li

,lr.:
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It, å) + 4iz lrff,'lL, f),lh>Å(,f ,k. å) -l- 1nv(f ,k,e)k

I
aJ

k
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for eYerv f €,5'.

itlicl" sd,

,(f , k, r) < 4{t'r ' €), ,oL'tt ' €) o(k)

This is eqnivalent to the property 3, because n(f ,i,A) : snpt(f ,h, {).

f) 3. + 5. Every Dirichlet, mapping which is of tvpe Bl ha,s a finite
ve"krnce ([3], p. 118). The converse follorvs from [3], p. 111).

g) 3.= 6. Considerthemappins f :R -+§. If' Gc R is an arbitrary
In'pr:rbolic subregion and if n(l ,:,8) {, J < cc. then

if z € G - l*'G). I{ence j',G : C -' § ir a Lindelöfirr,n mapping.
h) 6. > 2. fn the remainder of the proof we essentiaily show the

equivalci:c1.- of the properties 6 ard. 7. This has ber-'n mentioned by Heins
(i51, ir. 379) and tr'uller (lal, p. 91a).

Let us select tu,o parametrier cli-scs D, and D, such that Drc D,
artl tlrtt å, i. courlrac't ir 1?. Q : R -- -D, is ir hvpelbolic sublegion,
I i;:i: r'r'

ZrlfQ,:,ti)glz.«.Q)

conl-erges, if ze Q - f-'(il. Aclditiolt-:lh- rre cr.rl rlssume that f ef@Dr).
Hence inf g{2,a,8): cl } 0. Bi- parafuoiicitl. ct R g(z,ct,,Q) Zd, for

ze0D,
z€Il-Dr. Thisimpliesthat, n(J,i,R-L"1 <'L- forcvcrS, ( and
i(i t,(,i', i, J?) < n(f ,!,O - Dr); t;\j, j. ft.).-. r.

i) :i. > 7. In an arbitrary hyperbclic -culrl'eoion G c R rve have
u$el,ft,i) {n(fiQ,C,G)<n(f ,l,-E) <J <t. Henee

fr
C(f q,t;): I lrUp.h,i)dco(()dh=r | 1,t,,;1ah:ankN:o(l) ,I J ,i'-.'
i;crcarse lim k'l ,-.* = * b5r the hl.pelitoiicity of G.

Gp+G

j) Z. * 6. Let Gc R be an arbitrarv h5perbolic subregion. Consider
an arbitrary point i € § and a point z eG -/-'(E'). Select a fixed para-
metric disc Go around z such that n(f , e , Gi: 0 and let {G,} be an
exhaustion of G by regular regions ) dr. Constmct on G, - Go a,

.i(r,) '-' -'
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harmonic function ,.tn with constant values on A(d* - Gd such that
u*l1Gr: I and uol1G*: fu^. The constant lto is selected to satisf-v

I auy : t. Define a constant p, such that
oc0

Fn':Xä,9(a,z,G*)- k*

For every sufficiently large value of ??,

- (k" - u*(a))10G,

we have

krr^*

{*t"*ruJ,G) - ltl>
ae0Gs

It,
F" 0,

max g(a,z,G,)
aelGn

g(a, z, G,) < i^rr, - u^(a)) = 
! (t, - u,(a)) .

Because C(flG ,k") : O(l) and B(flG ,k^, C) is bounded belol', rve

have with the standard meaning for ä presented in the value distribution
theory:

0 < > n(fll, C,a)g(a,",G) Sl 2 rffte, C,a)(lc* - u^(a))
tt. :c l'tti=e

oht
tf tf r: 
n I hd,a(f G ,h, c): n I vfflG,h, c)dh: iAffle,k,, c)

," l I: -C(.flG,k^) - -B(flG,k^, C) <-C(flG,k^) + O(1) : O(1) .ttpp

where k^u*: lim k*. By the maximum principle we have in G^ - Go
Gn+G

Hence

2 "ffl},e ,a)g(z,a,G): lim Z "ffW, C,a)g(a,z,Gn) < lll < q
Jb):i n+o/(o):i

§ 3. qUASTRATIONAIITY AND DTFFERENT COMPACTTFTCATIONS

3.1. A preliminary lemma. In theorem I we saw that quasirationality
is equivalent to the concept of »to be a Dirichlet mapping». A rather general
question is the following one: If 4ff1n1 and §$,1 are some compactifications
of -B and B, what conditions would imply that a quasirational mapping

f : R ---> § is extendable to a continuous mapping /* : fifi1n1-- §fr1s,, and
conversely, if an extension of this kind is possible, what are the conditions

t4



ft,po LerNn, Quasirational mappings on parabolic Riemann surfaces

to ensure the quasirationality of /. We present two theorems in this
direction. However, the contents of our theorems are rather narrow, since

they further imply a theorem which strongly restricts the structure of the

ideal boundaries of parabolic Riemann surfaces.

The following lemma is a direct con§equence of [3], p. 99.

Lemma 8. Let 49 Qz be tuo classes of real-aal,ued, conti,nuous functi'ons
on R. Then i,t is Ttossi,ble to ertend, the i,d,entity mapping i: R --> R con'

t'inuously to i,* : R$,--* Aä.
We immediately obtain two corollaries.

Corollary 7. i*(Åä,) . Aö, .

Coroltary 2. If f , R -> S 'is conti,nuously

Q,c Qn d,nd ,f Q,c Qr, then tltere also

, fiä --* sä,.

ertendable to ffr' Aä, -+ Sä,,

eri,sts a cont'inuous extensiott',f
f,*
J+t

to

t,S

3.2. Quasirationality and continuous extendability.
Theorem 2. If an analyti,c mapping f : R --> S i's continuously ertendable

a mapgti,ng /x : -E[1ny --* §ff1s1, if K c Q6) and' i'f Q@) c D, then f
quasirational.
Proof . Note first that if / is constant the theorem is trivial, so we

exclude this case. By the preceding corollary 2 there exists a continuous

extension f B": Rb* §ä. We follow the method of the proof of theorem

10.8 in f3l, p. I18. Let us select three open parametric discs Vrc Yrc
Gc§ such that VrcVr, TrcG and @Q(s)g§' Let y be a con-

tinuous funcbion on S such that glV2:1, ,/l(S - %) :0 and rp is
harmonic in V1- 7r. Then g is continuously extendable to lp* : S[ -+ X
and so h* : V* " f Br is a continuous real-valued function on R5. A
theorem of Stone (13], p. 5) implies that the class of the extensions to .E$

of all continuous Dirichlet functions on .rB is dense in C(RB), hence there

exists a function E e D with \q - h* 1Ai < 1/3. \\:e immediately see

that go:3 sup (inf (V,213), f/3) - I defines a continuous bounded

Dirichletfunctionwhichis: I i, "f-'(7r; and:0 in ,f-t(S - I/r). Denote

by G, the components of f-'(G) which are all of type SOru, and by Gl

the sets l-'(V, - Vr'1 n G,. Basic properties of Dirichlet functions ([3])
imply that

lldh*]|", : lidh*1161 1 lld E oll 
",

for all i. Because h*lq:rp"fflG,) and fiG,:G,"-> G is of t1''pe B1,

we have

lldrpll[ max n(f , C , R) -t": 
znan*riä, -
i

lldrplllmaxn(f,C,G,)
aeG;

;
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Thus

maxn(f ,r,R)= ]gq[ ( 6,
;€c ' - lldvllc

r'vhich iruplies quasiratiorrality by theorem I.
As a pieparation for the following theorem rye need
Definition 5. A poi,nt r ,in a topological space X ho,s a fundamental

systern, 'l'(r) of neighbau,rhoods, i,f for eaery neigh,bourhood, LI of r there
erists tt i- e 'l'1r) suclt, lh«t V c Lr.

\1'e immediately see thtr,t it is possible to construct a firndamental system
of neighbourhoods consisting of cpen sets onlv.

Theorem 3. Let R o,nd, ,9 be tuo ltctrctbol"ic Riemctnn, surfa,ces and,

Aäfni , S$r,,, tlteir com,pactifications. Eaery quctsirationctl ntctpryting / : ,E + §
has q cantiruttous ertension f*: Afr1oy * §ä(q, if ei,t'lter

(i,) Qi,s) 9 I{ ;
(ii) K c 0(B)

or
(1.t ti G Q(a) ;
(2) rll 1:oints ( € §$1s7 ks,ue u countcrble fundamentcr,l systern of neiglt-

baru'li.oocls;

(3) tltere erists no eomtinuu.m in Åfli:4 )
(,r) ri q r/(B).
Pror:f . The firsb r:&srr is tri",rial bY corollarv 2. To prol-e the second one

let /: -E -',9 be. a tlon-c'onritant quasirational mappilg. By corollarr, 2

the ge::er;riitv is nct, restrictcci if r',,e assur:;le that 0(E) : 1{ aird 1( c 0(B).
Si:rce -Ilf is loealiv contrectecl. crcrv poii.rt z € -Bnt he-s a eouliil,bk fiirrda-
mental s]'stem cf cor::rt:cted cpi:u ntip.hhcrrrhocds.

Let ,(;'(e*) be this infinitr familr- of o-,;etr cor:rectecl r:reighbo'.u:hoods
of a pcint z* e /p. Becaust,' / is ecrrti.iirr;ris aticl G n n conne cte cI for
everv Cl €,i)(zx), the sct

?@*): n ftcnayt'''
G € 9G*)

is a t:cu-r-cicl, compacrt aild connectcd sc,t ar:cl so cithel a coi]1 iirl'ull ol il
point.

To prove that /(z*) is a pcint, let us select an aLbitlrrr.r- poir:t I €/(.*).
Note fir-*t that /(G n .E) n UG) + A for everv open ncighbourhood tr(()
of 4 anciforevery Ge§{z*). fndeecl, e ei1\nL-(i)c1Cn6;ottr 1
U@ + O 'r-hich inrne diately implies the desircd propertv. This fact and
the cxistcnce of a countable furrda,ruental svstem of neighbourhoods in
,B[ and §ärrl errable us to construct t\ro sequences of distinct points
{",} in R and {6,} in B with ?,--->?*, fi* C and f(2,) : (,. By
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quasirationality there exists a unique 6r. € Så with /(2,) * C*. X'rom a
certaiu va'lue of d we have for the same re&son

uf (å,) --.: - f (2,) € Lr(e o) ,

where, z§ : Sfi,., * §å is the continuousll. extended identity rnapping

a : § + § atrd ti ((i6) is a given neighbourhcod of fr. in Bf . By contiuuity

of rl§ this is possible only if ,,$(f) : fr.. lllius u-e have i§(År*)) : {6r.}.
If år€S, then frz*) : {(r.} and if -(,r€Alr, then flz*) c Afl6y By
propelt.\- (3) i@\ mtrst be a point,. If we d.efine a mapping f* , RI-, §fi1s1

u-itlr

v

Lf tz) , $iheli 't, €, R
!*,/-,\ l"f 't,-i :-. i,r

LI \tl

t lQ) , u-ltc:r t € tlf ,

u'e have the required extc'ttsion.
To pror.e the contirmitr. cf' /*(-) \I'e cair reprocluce the cotrtinuit5r proof

in b) of ihe proof of the theorem I 
",r"itlL "l[11 in piace of ,Sff.

Rernark 1. The assumptions (2) and (3) i;r thecrem 3 are esserrtial.

Iilor.irista:rce in ,Bf there exists idea,l borr;rcli,i'v poiitts n'iihou't, any courttal:le
fundarierrt*l systenr of neighi:ourhoods (131, p. 103). Seiirert ([20], p. 7)

on the othcr hai:cI hi.s constrlrett'rl exaurples of pu,rabolic Ricrnanu surfaces

rrith an iiiral Jrr;rrnch.n- 1t(:iucc:tcrirhic to the rririt circle.
Rtm*rk 2. Tli,:::e Lt'trrti:,,s .r11 i'iltc1'.rli:.g qt.e:sti<.r:r a,llr,'ut the rr'lations

ltetrrrcrr c.-:lrtilr1ct1s ertc'liiicrns of 1roir.-cir-[rr,il'i-u-rirlual tna.',tpings /: fi + B

ar:d dilftrult, cornpactiliici:.tior:ii cf -R r'::i1 §'. \1-c ir-trotv thi-,t for -Ef , Bfi

these r;ra.1:irings r,re nci t'ctitil-.riotuir- cx'icucirrltle (theori'rr-. 1). On tire other
har.rl r;hlrc' exist-q colrtirrnus cxtetts.ioi's oi' trll a:u.ivtic mappings to

f"iyi l]\,',;,i; a,nd f 't : Rä -'Sil fot tl:',' T,-irter a::cl Ci:ch conipactifications
([3], t,. 111i and [8], p. 153). SirecirLlii- tire q.ue-ri-ictr abcut the bound.ary

behar-ii:rrr cf ron-quasiratir»ral anal-,-1ic lll.il.,tli'rlgs \r-ith re-(pect to compacti-
fic:uii';r:s ^§6 rvith l) c I c trZ is opcn.

3.3. Cn the strueturc of the ideal bounderies.
Theorem 4. Let /:-E+§ be, cr, narL-constcmt c1t-tosirational, mappi,ng,

Urtder tlte conditiorzs (L ) - t a) of th.earetn 3 t'lie et'tendetl m«Tsping /* : Afrlay -->

§fr1r, is .ctffiectiae.

Proc;f . LeL (, € §[1;1 he arbitrar]'. B]' lemrna 7 / covers B except
possibi;' a pclar set .8. S - E is dense irr §[1.s., and (2) holds, so'we c&n

construrrt, t'iro sequelrces cf disl,inct poirrts {2,} in -B and {1,} in S - E
v-itl-r f, -- i6 and f (",) : q',. The point set {2,} has at least one cluster
point co in .E[,n1. By continuity of /* rve must have l*@o) : to.
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Theorem 5. If K g Q, i,f euery point z e R$ has a countable fund,amental
system of nei,ghbourhood,s and, i,f lfi does not conta,i,m any continuum, then
Rö : RP for euery parabolic Riemann surface.

Proof. Note that the identity of two compactifications is to be under-
stood in the sense that they are homeomorphic.

Take the identity mapping i : R --> fi which is quasirational. By lemma
8 and theorem 3 there are continuous extensions i,f : Rfi --- Rft and
i,{:Rfi-räö. By theorem 4 these extensions are surjective and so
if .i,tr:Rfr-->.Ep is a continuous surjection on "Bf, whose restriction to
Ä is the identity mapping. By continuity if (i,{(z)) : z for all z e Rff.
Elementary algebraic considerations show that if and i,{ are homeo-
morphisms, thus r?fr :.R*.

3.4. N-valency of quasirational mappings. At first we define the multi-
plicity of the extended mappings at the ideal boundary points. Our definition
coincides with the usual definition of multiplicity for z € R. We denote
lry §(z) the family of all open connected neighbourhoods of a €Bfr1ny.

Definition 6. Xor an analytic non-constant mappi,ng f : R --> S wi,th a
conti,nuous ertension /* : J?fi1n1--- Bfr1q we d,enote for euery G e § @)

N(f,G):?Inff,e,GnR).

The multiplicity of f* ot z € äf,1ny is d,efi,ned, by

n(f*,f*(z), 4 : #,kyff , G) .

A trivial consequence of this definition is
Lemma 9. There aluays exists a neighbou'hood Go e § @) wi,th the

property n(f*,f*(z),2):N(f ,G) for all GcGo with Ge§@).
Let us note that § 121 is alrral's a non-void famill'and hence the above

definition is applicable without anv restrictiorrs to the compactifications
B[,", and §fr1q alone, if rve just ]rave the continuous extension /*.

Lemma 70. Let f : R --> S be a non-constant quasirational, magtpi,ng and,

f* : RI + §[ ifs continuous ertens,ion. If eo e SE, if G e § g) anil i,f V
,is a component of l*-'(G), then the restri,cted, mappi,ng .f*lV : G --> G is
surjecti,ue.

Proof. Elementarily we can verify that R n f*-r(q: /-1(G n S),
hence /*lVnR:VfiR_->Gfi § is a mapping of tyle Bl of a compo-
nent of /-l(Gn§) into Gn§. By lemma 7 f*lVfl-B covers GnS
except possibly a polar set, E. We can construct two sequences of distinct
points {2}cV O,Ec V and {f,}cGnS -Ec G with Ct+eo and
f*(",) : f,. The point set {2,} has at least one cluster point eo in the

I8
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compact set 7r. By continuity of "f* *" have /*(zo) : 60. Immediately
we see that zo is an interior point: zoe V.

Lemma ll. Let /: "E + § be a non-constant quasi,rat'ional magtpi,ng.

Then f*:-B[->§f is Mt, open mappi,ng.

Proof.Let Gc"B[ be a,nopensetand ze G. Denote l*@): ( and
let a be a,n open connected neighbourhood of (. The number of the
components in /x-I(U) is bounded by I[: 

ä] 
n(f ,u,E), since /å

and /f, are non-separating and the number of the components in /-r(I/ fi §)
is finite ([3], p. IIS). Let us select [/ such lhat f*-t(U) has a maximal
number of components and, denote by V lhat' component containing z.

If U'c U is another open connected neighbourhood of (, then V' :
V n f-r«l') is connected by the above-mentioned, maximality. Let

{U,} be a sequence of open connected neighbourhoods of 4 such that

Uo: LT , tluf a (Ji for all values of i
tinuity of f* t!'e have

and 
,ö, 

Ui:{f}. By con-

l*-,(() n v* : ffi"
Since every Vr: V nlx-tglr1 is connected, .f*-'(6)n 7r is either a
continuum or a point. Because l*-'G) c t"r , . . . ,2*\ l) /P, where

{"r,...,2*\:f-'(C) is a finite set, the first case is impossible. Thus z

is the only (-point of /* in V*.
If there exists a U, such that V,c G, then Utcf*(G) and ( is

an interior point of f*(G). Otherv'ise V, - G * A for every i,. This
enables us to construct a sequence {2,)c V such that zre V,- G,
f*(rr): Cre U, and *+ C. The set {",) has a cluster point zo *z
in 7K and by continuity f*@o) : f, a contradiction. The lemma follows.

Theorem 6. Let f : R ---> S be a non-constant quasirati,onal mappi,ng arud,

fi,nö -'§ä ,i,ts cont'i,nuous ertens'i,on. Il lö 'i,s an olten mapping, then

"Uö , C, fiff) < oo

for all å€§ä.
Proof. Let us assume that there exists a point 6 € Bä with

"(fö , C , Rö): oo. The multiplicity of all (-points is ( -l[, thus the set
E:{z e Afilff(z) :6} i. infinite. The compactness of -rB$ implies the
existence of a cluster point zo of the set E. By continuity of /$ we have

lö@o): e,. Take a neighbourhood Goe §(zo) and let z!,...,2**, be

disjoint points in t n (Go - {ro}), where -l[ : måx n(f ,a , R), and

Grc G, disjoint open neighbourhoods of these points.§ince /$ is open,

there exists a,n open connected neighbourhood U c n löGr) of ( and

CC

n
i:0
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a component, G: of f-l(u n §) in €r\rer)" Gi. The restrictecL r:ri]-jlJrings
-\+ t

at least one point å e ft f {i;',}. 1i'}msf iG: ere

\r.e harre
of t)'pe BI, sG tliere exists
a coiitracliction

n(f,å,-ä)

Remark. Let § be a cornpact li,iemann surface. In the next paragraph
we shou, that there exists a parabolic Riemarrn surface -B and a quasi-
rational mappir:g f : R -->S - {fo} such that ntf , C, B) : l[ for all
6€S-i60). Now (,S-{fo})*:§ and so b5, lc.mrna 8 there exists
a continuous extension /S : ,Bf; -, §. Clearly fEU§): {(o}. Silce the
po\r,-er of /$ is at least that of a continuu:n ([3], p. 103), rre have
n(f B ,60 , Aä) : co. Thus a continuous exterisiou of a non-constant quasi-
rational mappir:g is not necessarily open.

Theorern 7. Let f , R -, B be a non-cotostant qu,asi,rati,onal ntapping anrtr

fä, nö*§å its canti,nuous ertetzs'ion',.*i,th I{ _c I on R. If tlrc efiettsiotz.
i$x : R$ -- Aå of the identity mapping is opett , then

,r(fä, C, Rö) ä ir[ : 
:,..rt 

rl(, , :r, -ä)

for all 4 € §I. ?he equa,lity holds for all C € Sf. ,f tr,nd, oruly i,f Rö - 1i*.
Proof. Consider first the case of the K-compactification. Let f e S*.

By lemrca 11 and theorern 6 /ä-'(f) is a finil,e set: /* 1(f) : {zr, ...,zr"\.
Let, us select' disjoint open connected neighbourhoods G, for every zi

such that n(ffr,ne ,zi): T?:"(/,&,GiO 
/i) for every G,. Bvlernmall

the set O' : nrffr(G,) is an open .c('t strch tliat ;' € tI'. Let Li be that

component of U' containing å. Everr. fJ, colrta"ins an ollerl comporrent,
V, of f!;-t (t/). Since the restricted mappir:g-* f i T'', fl -P are r,f tr-pe BI,
there exists a point §€Un,S such tliat n(f ,€,"R) :,T ar:d
n(f ,€,Vtn R): 

f*tn(f ,c(,Vin R) for i : 1,...,1;. Thus

k

n(ffr, e, Y,) : ) max n(f , &, T/ i n R)
j:1,:€S

In the general case we know that the extension ,iif,r. : R$ -> -B[ of the
identity mapping i, : R -> R is continuous arrd surjective, hence

.\+1
=-- /

H

i- I

t^ru

§.L
i--= I

k

§
L1

f :1

ntftGi ,€,G;) >Å-+-1
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for ever;r z e Rl. Further all values of ifrr are of multiplicit5r one. Cousider
anypcints 6 € S*, ze R!; and z' €Ä6 suchthat z[';<(a') : z a.nd. f|i.z): €.

Becruse fö : ffro iär, then fö("') : C. Let (l' e .li(z') be selected to
satisfy "(fö , e ,z'): rnaxn(f ,a,G' (1R). B1' corollary I to lernma 8

\rre have iöKG)n a -1tf5.16'n r), thus maxn{f ,d,G' n E) : max

n(f ,*,ioK(G')fl.8). Si,ce iöKG) i* n, op"f 
tiorrr,""t"d 

neighbo,rrlåä
of z, definition 6 yields

n(fö, C,z') 2 n(få, C, z),

thus

"e/ä'(-')

I'rorn tlie above forrnuloe rre clcdu.ce the inr:quaiitv

n(,fö ,; , Aä) > rl(f 1;, f , Aä) .

ff nou' for some continuous ext'ension f ö , Aö + Sf the e'quaiit-'- hcltits for
all f eS*, then

,e1i.-,i:)

.e.i[,(-)

Thus rr(f[6 ,2, Rfi): L for a]i : €l[-'(;). 'l'iris eqrra.tioir is valid for all
zeR'[. Hencc i$x:R$-tXä is a cotrti:i,ur;us l-rijcction. Since -P[ and
1?f; are compact Hausdcrff sllaces, f[',t is a hcnreomcrpiiism.

§ 4. EXISTENCE THEOREMS

4.1. Exeeptional sets of analytic mappings. Lct R be a parabc,lic and.

§ a parabolic or a compact Riemairtr stuface artci / : R'--> S an analS4ic

nrapping. It is a knov'rr result of Heins tha'c il(f , :, A) < Å' : max
s€S

n(f ,x,A) S * at most in a polar setJi (lenrrta 7). This set I{
can be represented. as a union t:,Yora, of closed polar sets

K,: {e e Bln(f , e , R): ,t < X}. By a theorem of }'fatsumoto ([10], p.

f43) it seems to be probable that the above result is maximal' Indeed,
modifying 1,he construction method of 1\fatsumoto v'e have the fol]or,r'ing

theorem.
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Theorem 8. Let U : 
,YoU, 

be formed, out of d,isjoint closed, polar sets

K, on a parabolic (or a compact) Riemann surface B. Then, i,t is Ttossi,bl,e

to construct a parabolic Riemann surface R and, an analytic mapping /: -B -+ §
such that

Proof. Every region §, : § -,Yoa, can be considered as a parabolic

surface by lemma 4. We define an exhaustion of S, by regular regions
§,,r on every surface §" d.urirg the following proof. The boundaries 0§,, o

consist of a finite number of closed analytic curves and every component
of §, - §,, o is non-compact. Let us denote by 

^",n 
the harmonic measure

of ä§,,n with respect to the open set §,,r" - ^9"-t. By parabolicity we
can form the exhaustion {§0,6} to satisfy

, when k>2

l"(f ,

ln(f ,

lnP'.,11 = +)'l 
r

ID(r,;o.r) =i
([18], p. 181), where

§r,j - S,.".- . fn the

§r 
" 

and that

D(r,,) me&ns the

set so, ,, - §, 
" 

we
fn forming {§r, n}

Dirichlet integral of @i,j over

select a compact arc Lo with
we suppose that Lo c §r, ,

I
_-g

1

:k2

ff necessary, we further modify Lo

it and denoting that part again by

where @;,1 (resp.

(-*n. ä§,,1U Lo)

§r, o) - Li. In the

by takirg a sufficiently small part of
Lo, just making it, satisfy

1,,*,,,

l'(',,*)

I o@;,,)

f a @",,,)

ot'r,r) denotes the harmonic rneasure of ä§0,, U Lo

with respect, to (§o, r - Sr"l - Lo (resp. (S,,,

set §, , , - §r, we select a compact arc Ll such that
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Lr.fr

a,nd"

2

j:0

that

b. Generally, we form {§,,*} such that Ln-rc §,,,, - ,,S, ,n-L

rI
I 

D(t't,,,,r f r) < 
z1n a 11,,+t

I

l',',,, *)

Additionally we assu Ln-t to be so small that

= 
2 D(a,,,,ar)

§,,,*r - §"- rn e select again a compactwith a clear rneaning of a'r,i. fn

arc Ln rnith L*n"ö u,: b.
i:l

I{ow we connect the surfaces §, together in the following way: §o and

§, will be connected crosswise along the arc Lo with the resulting surface

år, fr, and §2 along LL resulting år, . . . ' å^ and §,*, along Ln

resulting 6,*, *r.d so on. It, is clear that, the limit surface R: lim'ä,

satisfies the conditions of the theorem, if we prove it to be purutotåiän"
analytic mapping f : R --- § is nothing else than the covering mapping'

To prove the parabolicity rre define an exhaustion {Ao} of E as

follows: -Eo corresponds to the set §o,o on the sheet Bo, A, the sets

,Sr,, and §r,, o^n the surface fr, . . . , -tBo t'he sets §0,n, §r,n r..'r §n,n

on the surface fr^ , . .. and so on. The set ä, - Eo then corresponds to

§r,, and §0,, - §lr-' 
"ot 

tt""ted along the arc Lo. Let, ö, be the harmonic

measure of OR, with respect to -8, - Eo and define

me the arc

I n«,:-r,,)

i ,t,;,,,1,)

ur(z) : ['L''t"l' when z € (so'o - s-) - ro

I r elsewhere.

The functions n, and ci', have the same boundarS' t'alues and u, is piece-

wise continuously differentiable. Hence the Dirichlet principle is applicable

and" we have

The set R, - R, on Rz corresponds to §0,, - ^9* , Sr,,
the latter two connected along the arc LL. Definirg

fr and Sr,r,
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l rr, r(z), when z e (§r, z - S-l - LL

uz(z) - I,ro,r, 
when z e§0,, - S*

I I elseu,here ,

we have again by Dirichlet principle

D(ar) { D o,_.R,(uz) - D(rro, r) { D(co'r, r) { D(tto, r) + 2 D(otr, r)

where @z is the harmonic measure of 0R, u'ith respect to
Generally, R* - R*, on rt, corresponds to the sets ,S

Rz - RL.

- §o, r_r,
§r,, - §r,,-r, , ., §.-l ,, - §,-t,,-,: S,,, r the latter two connected
alorrg the arc Ln-r. Defining

lt

l*"_r,"("), when a € (S,_r,, - §,_r,,_r) - Ln_t

u^(z): lr,,^("), when z €§,,, - S,--, (i:0 ,...,% - 2)
I

I t elsewhere.

We have with a clear meaning of ci,

D(ö.) < D n.-n.-r(u^) :§ O1*,,,,) { D(to'^-,.,) S

n-2 
),,,) * ,o1rr.*r'r,-.)=§ -L' *L.?<ZD(r,,*)+2D(r.*r,.)Ar:ao,rbi+L T nn = n.

Thus we have for the exhaustion {.Br}

olr.]a,[

å "«*r 
> I + 

,1, o@,) > I -å , : *
By a criterion of Noshiro ([16], p. 76) -E is parabolic.

4.2. Existence of quasirational mappings. The general question about
the existence of a quasirational mapping betr.r-eerr ts'o given Riemann
surfaces -E and § seems to be difficult. Hov'ever, there exist non-trivial
quasirational mappirrgs. Truncating the construction in the preceding proof
we have for quasirational rnappings the correspondirrg

Theorem 9. Let K : U K, (N < oo) be formecl ou.t of disjoint closed,

polar sets K, on a parabolic (or a compact) Rientcntn surface S. Then i,t

is gtossi,ble to construct a paraboli,c R,iemann surface R and, a guasirational
mappi,ng f :R--->S such that

{"(f ,e ,R):N, when e eS-K
)
|"ff,e ,R):?, u;hen Ce K, for p:0,1,...,N-7.
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Proof . We begin by reproducing the first steps of the procedure in the
preceding theorem. Let us truncate the procedure after a finite number of
steps: -B : 6.0-r. The arc Zr-, is the last one we define. The covering
mapping f : R ---> S is the desired one. The parabolicity of J? is now

r,ery easy to see. Consider § - K which is parabolic.Let g : T -> B - K be

the restriction of / into 
" 

: 
"f-'(S - K). I{ow (T , g) is a complete

covering surface of § - 1l ([17], p. 49). Since g is finite-sheeted, then 7
is parabolic ([17], p. 96). As an immediate consequence -B is parabolic.

Theorem 70. Let R be a parabolic Ri,emann surface of a fi,nite gerLus r.
Thenthere erists a quasi,rationalfuncti,on f :R"->So wi,th n(f*,C,R*):
r+1.

Proof . The surface R can be embedded into a compact, surface of genus

r (121, p. a20). This compact surface is conformally equivalent to a (r * 1)-

sheeted covering surface of S, ([19], p. 275). The theorem follows.
The existence of a quasirational function f : R '--> §o gives us information

about hyperbolic subsurfaces G of R. Using conventional notations we

say that G?OL, if there exists no non-constant Lindelöfian function on it
and that G eU',D, if the Kuramochi ideal boundary of G contains at
least one point with a positive harmonic measure ([3], p. 169).

Theorem 17. Let R be a parabolic Ri,em,ann surface on which there erists
a non-constant quasi,rati,onal functi,on f : -E + §0. Then eaery hyperboli,c

subregion Gc R is not 'in UHDU OL.

Proof. a) By theorem 1u'e see that there exists an analytic Lindelöfian
funct'ion on G, thus G eOL.

b) Again by theorem I G is a finite-sheeted covering surface over §0.

This implies GQ.Uu, by [9], p. 88.

University of Helsinki and
University of Joensuu
tr'inland
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CORRECTIO,N TO "QUASIRATIONAL MAPPINGS ON PARABOLIC

R,IEMANN SUR,N'ACES"

by Ir,po LerNl:

In 4.1. before theorem 8 we incorrectly-sa,id that the sets Kt are

closed. Of course, K is a union K : l) X, of polar set's Ki:

{;'eSlru(/,C,R):d<N}, where Ö", ,ri.sed for 0<z<-l[.
i:0

Theorems 8 and I have henceforth the following more general form:

Theorem 8. Let X : ö X, be formeil, utt of itisjoi,nt Ttolar sets Ki
i:0 0

on a parabolic (or a compact) Riemann surfane S' If the sets 
9o*, 

on

closed, for 0 4n I a, then it is Ttossi,ble to construct a parabolic Riemann

surface R anil, an analytic matpping f : R'--> S such that

l"$,e ,R): @, when f €§-1(
l"(f ,e ,R):p, when e e Kp fo, P:0,1,2,...

Theorem g. Let X :*l)'Xr(il < m) be formed, uut of d,isjoi,nt pol,ar
i:0 n

sets Ki on a paraboli,c (or a corrytant) Riem,ann surface S. If the sets LloKi

are closeil, for 0 { n 4X - 1, then i,t i,s possible to construct a parabol,i,a

Riemann surface R and, a qunsi,rfui,onal mapping f : R ---> S such that

["ff,C,R):N, when 6e§-.I{
l"(l,C,R):p, when CeKp lor p:0,I,...,fl-1.
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