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§ 1. INTRODUCTION

1.1. Summary. In this paper we study analytic mappings f: R — S
on a parabolic Riemann surface R into a parabolic or a compact Riemann
surface S.

After some preliminary considerations we discuss the characterization
of the most simple analytic mappings in the second paragraph. These
quasirational mappings have been treated in some form previously ([4]—
[7], [11]—[15], [21]). Our concepts are to some extent based on the paper
by L. Myrberg [11]. We give the natural generalizations of many results
presented in that paper.

In the third paragraph we concentrate on the relations between quasi-
rationality and different compactifications of the Riemann surfaces R
and S. A consequence of our results is a theorem concerning the structure
of the ideal boundaries of parabolic surfaces.

In the last paragraph we consider the question about the existence
of analytic and specially quasirational mappings.

1.2. Compactifications of Riemann surfaces. The topological concepts
and notations we use are mainly those of Kelley [8]. For the set-theoretic
difference of the sets 4 and B we use the notation 4 — B and for a
subset and a proper subset the notations € and c. By C we denote
the family of continuous bounded real-valued functions and by C, the sub-
family of C' consisting of functions with compact support.

Let us consider a Riemann surface R and a class @ of real-valued con-
tinuous functions ¢:R-—-X with X ={— xc}URU{+ o} It is
well known ([3], p. 97] that there exists a compact space R§ such that any
function ¢ € @ has a continuous extension ¢g:R§— X and that the
extended functions ¢j separate the points of R — R, i.e. for zf £ z¥
there exists a function q € Q such that ¢g(zf) # ¢§(2F). The space R}
Is unique up to a homeomorphism. Rj is called the @-compactification
of R or, if no confusion can arise, the compactification of R. The compact
space Ay = R — R is the ideal boundary of R. To signify that the
closure operation is performed in the compactified space Rf we use the
notation A? for the closure of a set 4 c R}. The notation A means
the closure of 4 c R performed in R.
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Lemma 1. Rj is a Hausdorff space.

Proof. We know that there exists a continuous mapping » imbedding
R in the compact space X?Y% ([3], p. 97). Because X is Hausdorff,
the topological product X?Y% and its subspace R§ are also Hausdorff
spaces ([8], p- 92 and 133).

In this paper we frequently use two specific examples of Rf, namely
the compactification of Kérekjarté — Stoilow (R¥) and that of Royden
(R%). The defining classes @ of continuous functions are respectively the
class K of continuous functions with constant values in the components
of the complement of a compact set and the class D of continuous Dirichlet
functions. By a Dirichlet function f € D we mean a continuous function
f:R— R with the following properties: 17 there exists a locally summable
differential ¢, which we denote by df, such that

for every smooth differential ¢, with compact support in R and 27

JafiE = / N < o

R

We refer to [3], p. 66, 74 and 78.

Note that the above definition of the K-compactification is equivalent
to the purely topological definition in [1], p. 82, because we can easily
construct a homeomorphism between these two compactifications. Thus
the K-compactification is characterized by the following properties: (i) R
is a locally connected Hausdorff space and (ii) Ag is totally disconnected
and non-separating on R}

1.3. Polar sets on Riemann surfaces. We state at first

Definition 1. 4 set E on a Riemann surface is polar, if on every hyper-
bolic subregion G C R there exists a positive superharmonic Sfunction v
such that v|@ N E = .

In the following lemma we have collected some familiar properties of
polar sets (cf. [3], p. 30—31).

Lemma 2. (1) Every subset of a polar set is again polar.
(2) The union of a countable number of polar sets is polar.
(3) The complement of a closed polar set is connected.
(4) A polar set does not contain any continwum.
(5) If S and R are two Riemann surfaces and EcC ScC R, then E
is polar on S if and only if E is polar on R.
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A region £ on a Riemann surface R is said to be regular, if Q is
compact, if the relative boundary 92 consists of a finite number of analytic
Jordan curves and if R — 2 contains only non-compact components. We
frequently use the following important lemma ([17], p. 25).

Lemma 3. On an open Riemann surface R there exists an exhaustion
of R by regular regions Q;, ie. Q,c Q,, and U Q, = R.

i=1

Lemma 4. A closed set E on a parabolic surface R is polar if and only
if R — E is a parabolic Riemann surface.

Proof. Let us first take a closed polar set K c R and assume that
R — E is hyperbolic contrary to our assertion. Select then a parametric
disc Q,c B — E and form an exhaustion {Q,} of R — E by regular
regions 2, D O, By hyperbolicity of R — E the harmonic measures
wq, defined in 0,— 9, converge to a harmonic limit function o —

lim w, =0 defined in (R — E) — 2, ([1], p. 204—205). Since E is

;> R—E
polar there exists in R — O, a positive superharmonic function », such
that v;|F = co. Let v, be afinite potentialon R — Q) with lim v,(¢) = oo
coag
([3], p. 90). Selecting {, € (R — E) — 2, such that »,({) < o and a
constant @ € R conveniently the positive superharmonic function v =
a(v; 4 v,) defined in (R — E) — Q, satisfies (i) lim inf (v(¢) — w()) =0
s~eEUaRuog,

and (i) () < (). This however violates the maximum principle
([31 p. 12).

Assume, on the other hand, that R — E is a parabolic Riemann surface.
Let G c B be a hyperbolic subregion such that £c ¢ and 2, = R — G
is a regular region. Both restrictions are immaterial by lemma 2. Let
{2} be an exhaustion of R — E by regular regions Q, D 3, Define
on G a function for every n by

o() = Jogo (£), when (€0, — 0

1, when (€R — Q.

n

By parabolicity of R — E we can choose {0Q,} such that » = > v,
n=1

converges at a given point (, € R — E. Then v is superharmonic on ¢
and v|E = oo, hence E is polar.

1.4. Basic concepts of the value distribution theory. The classical theory
of Nevanlinna concerning the value distribution of meromorphic functions
has been generalized mainly by Sario (see e.g. [18]) to analytic mappings
Jf:R—8 between arbitrary Riemann surfaces. In the theory of Sario
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([18], p. 51—60) there is at first formed on S a proximity function s(J, «).
This function is uniformly bounded from below. We denote do = IsdS.
where the density s is that one intreduced in [18], p. 57 and dS means
the Euclidean area clement in a parametric disc. Then

/dw=4n

S

(18], p. 58). Let R, be a fixed parametric disc and £, D R, a regular
region on R. We can define in R, — R, a harmonic function » such that
w|dRy = 0 and w/0R, = k. If the real constant k& is selected to satisfy
/ du* = 1, the function w is uniquely defined. We immediately verify
Oty
that R, c R, implies &y =k, Hence the directed limit

Imk=1F, =+ ©

Ry —R
existe. It is well known that I, < -+ oo if and only if R is hnperbolic,
We denote by »(f, &, £) the number of the {-points of the analytic mapping
f:R-—8 in the region

R, = R,U{z €80 <ul) <h}

counted with their multiplicities. The basic functions of the value distri-
bution thecory are

k
A B, 0 =42 [ olf 0, 0)dh
GI
B(f.k,0) = / s(f(5) , 0) du*
OR, - 0OR,
k
/c?c)(f(;)) dh .

lC(f,k)=0/

The following two relations between these concepts are well known ([18],
p. 60 and 65):
Lemma 5.

R,

1
Of . k) = - fA(f,k,C) do(Z) .
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Let n(f, ,2) be the multiplicity of the root of the equation f(z) =
The number n(f, {, A) of the [-points of an analytic mapping f: 2 — S
in a set 4C B counted with respect to their multiplicities has the
representation

w(f,l,4)= > n

€1

T

We use the corresponding notations n(f*, ¢, z) and n(f*,,4) also
for continuous extensions f* : Ry — S§s) of analytic mappings f: 2 — 8.
Now (€8§s and 4 < Rjy. This will be Juhlﬁe after we have later
mfmfd the multmhmh of & (-point for the extended mappings.

1.5. Regions of type SO, and mappings of type Bl. We sav that a
hyperbolic region ' C I is of type SO,,, if Hy = 1. Here the notation
HY means the uniqua solution of the Dirichlet problem for the Loundary
function @:0G¢ —R ([3], p. 21).

Definition 2. An analylic mapping f: R— 8 is of type Bl, if for every
point €S there cxists an open neighbourhood G < S such that the compo-
nents of f7G) are of type SOyp.

Lemma 8. Hvery non-constant analytic mapping f: RS on o para-
bolic Riemann surface is of type Bl. :

Proof. Let £ € 8. Take a paramctric disc U such that £ € U. The
components of f~(U) are hyperbolic subregions of R. Since every hyper-
bolic subregion on a parabolic Riemann surface is of type SOyp ([31. p. 31),
f is of type BI.

Remark. If f: R — S is an analytic mapping on a pc‘mbouc Riemann
surface, U C S is a region and V a component of f~'(U), then also
JIV:V—U is a mapping of type BIl.

We frequentiy use the following result of Heins ([6], p. 470 and [3],
. 116).

Lemma 7. If « non-constant analytic mapping f: R— S is of type Bl,

then outside of a polar set w(f,, R) = max n(f, ~x, R).
a€ S
Remark. If maxn(f,«, ) < co, then the exceptional polar set is

cloged. «€S

1.6. Lindelofian mappings. The following definition makes sense only
on hyperbolic surfaces or on hyperbolic subregions of parabolic surfaces.

Definition 3. 4 non-constant analytic mapping f: R — S is Lindelifian,
if for every point (€S

z n(f,l,a)g(z,a,R) <o,
flay=23
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where z € f'(¢) and g(z,a , R) is the Green’s function of R with the pole
at a.

1.7. Analytic functions on Riemann surfaces. In general we speak about
analytic mappings f: R — S between two Riemann surfaces. If in particular
S = 8, = the Riemann sphere, we will emphasize this situation by speaking
about analytic functions.

§ 2. CHARACTERIZATION OF QUASIRATIONAL MAPPINGS

2.1. Definition of quasirational mappings. From now on we suppose
that R is a parabolic and S either a parabolic or a compact Riemann
surface. We are looking for some subclass of analytic mappings f: B —§
which would consist of as simple mappings as possible. Such a subclass is
that of quasirational mappings which we define by

Definition 4. An analytic mapping is quasirational, if it has a continuous
extension f*: Rf — S§E.

Remark. If R =8 = 8, — {}, then Rf = Sk =28, and the class
of quasirational functions on R consists of ordinary rational functions.

2.2. Characteristic properties. The following theorem gives some equi-
valent properties for quasirationality. These statements contain only
partially new results. For the known parts of the theorem we refer to [3].
(4], [5] and [6].

Theorem 1. For a non-constant analytic mapping f: R — S the following
properties are equivalent:

1. f: R— 8 is quasirational;

2. n(f,C,R) is finite in some mon-polar set E C S;

3. there exists an integer N such that n(f,C,R) = N at every point
tes;

4. O(f , k) = O(k);

5. f:R—S is a Dirichlet mapping, i.e. @ mapping with a continuous
extension f5: Ry — Sh;

6. the restriction f|@:G—S into any hyperbolic subregion GC R
is a Lindeléfian mapping;

7. C(f|G, k) = O(1).

Proof. The proof of the theorem is arranged according to the adjacent
scheme:
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i /]

a) 2. < 3. Thisis a result of Heins ([6], p. 470). Werefer here to lemma 7.
b) 3. = 1. Let 2* € A% be an arbitrary point of the ideal boundary
and G (z*) the family of all open connected neighbourhoods G C Ri of
z* with the boundary oG compact in R. By lemma 1 SE is a Hausdorff

space, hence f\ ¥y = N f (G N R)* is either a continuum or a point
GE\.« =*)
([1], p- 8). In the first case we can find out a subcontinuum F C f yn s.
By property 3, lemma 2 and lemma 7 there exists a point , € F such that
n(f, {,, B) = N. By the remark to lemma 7 we can even find an open
neighbourhood U of CO such that n(f,«,R) =N for every point
x € U. Let us denote f~'({) = {#,.-.,%). By continuity of f we are
able to construct disjoint open parametric discs D; around every z; such
that their closures are compact and that f(D;) € U. Select now a connected
open neighbourhood ¥ C n f(D;) of &, Atonce we seethat f~( V n U D,
i=1

consists of exactly k& components and that «n(f,«,f (V)N U D) ; N

i=1

k
for all «€V. Hence n(f,x,R— UD,)=0. Since ¢, €f(GN R~
i=1
for every @ € G (z*), there exists an « € VN f(GN R). Selecting
k
Gc R — UD; we have a contradiction. Thus f(z*) must be a single
point. =1
Define now a mapping f*:Rf — SE by
If(z) , when z€R
N 1f(z) , when z€Af.
We have only to prove that this mapping is continuous. Let E c S§ be
an open set. The points z € RN f*'(K) are trivia,lly interior points of
f*7Y(E). For an ideal boundary point z we denote f*(z) = {. There exists
at least one @G € Q(z) such that f (@GN R* c E. To prove thls assume
conversely that f(Gﬂ R —E # O for every GE€ G(2). If G, € C(2)
for +=1,...,n, then

[*@)
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r%(f(G[nR)K annP —E;_f(ffnﬁ(;i)_-E:,eo,

i=1 i=1 =1

because ﬂ G, contains a component G, € G (z). The finite intersection
-

property 1mphes

O+LN JGNRY —E)=NfGNR)* —E=j¢) —E=:—E=0.
GE i) Ge ()

If now =* €GN AL, then G € G(z*) and so

I CH

N fG*NR*cfGNR)"cCE.

el

So
JHE) = HE AR UHEN AT C E

and also the points z € AF N f*(E) are interior peints
¢) 1. = 2. Let zF€AR. If "*EA and z*¥ = 2¥, there exists 2 compact
set Qc B and a real function k€ A such that I has
in the components of R — @ and A¥(z%) £ 1¥(zl) {scc
any restriction we can assume that @ € {£ }, where [R)} 1
of R by regular regions. Becaure there is at most a fiv ite nurs 'l v of coni-
pormr‘cg in R — B, it is possible to use only one mmtlon L, €N for R
with different values in the C(‘l’l“]f‘()neptb of R — R, Thus for every R,
at most o finite numb

Becauce {R} is count

of points z* € A% can b‘ separated
sle. AT is a conntoble set. Naturally f5(1]) ix
coun 41, too and so f#(A]) == SE.

Sivee f*(A45 ) is compact, there oxists a compect von-polay vt 2N

with F 0 f*(A5) = 0. hence

ey
|
1
=1

P

) N AR S FTUE) O PR = SR HE NP

Becauvse LE s a Hensdorff space, the disjeint closcd sets 10 ard 571K

are ((1‘} ¢t ard scpevetcd. This mcans that for evers J€E we have

n(f. < ]") w(f, L fHE)) < o

B G= nif, . By =N < oo, then also o(f. 0.0 =N for
By lemma 5

k k k
cif = | / wWf . b, Odo(Ddh < N / dh / (5} = 47N / dh — O .
J Job .
[ 4] b 4

e) 4. = 3. Beecavse B(f, k, ) is bounded below ([18], ch. TI), we have
\ d /
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for every (€S8. If C(f,k)= O(k). then A(f.k,() = O(k). Now

k
A(f.?l;,:):A(f,l~,§)+4z/ Wb Ok = A k. ) - da(f, b, Ok

kE
and so

L A(f, 26,0 — A(f, k. D) O(k)
Wk, 0= 4k S dnk

This is equivalent to the property 3, because n(f, . R) =sup»(f. %, {).
k

f) 3. < 5. Every Dirichlet mapping which is of type Bl has a finite
valence ([3], p. 118). The converse follows from [3]. p. 110.
¢) 3. = 6. Consider the mappmo fiR— S If ¢c R isan arbitrary

hyperbolic subregion and if #»(f, 7. R) = .N < «. then
Sa(f¢, I, agz,a, ()= N max gz ,a, @) < o,
Jla)=_ Flay=C

if z€4 — 7). Hence fG:G—>5 is a Lindelsfian mapping.

by 6. = 2. In the remainder of the proof we essentiaily show the
equiva 1«\“0\ of the properties 6 and 7. This has been mentioned by Heins
({3}, p. 379) and Fuller ([4]. p. 914).

Let us select two parametric dises D; and D, such that D, c D,

2
evdd that D, is compact in R Q = R — D, is o hyperbolic subregion,
hienieo
> oalfQ. ooz a. Q)
iy

converges, if 2 € Q — (). Additionally we can assume that £ € f(D,).
Henee infg(z, e, Q) =d > 0. By parabolicity of R ¢{z,a,Q) =d for
€00,
€ R — f)zﬂ. This implies that (/. I, R — D,) < = for every ¢ and
so W, Ry =a(f, ., R—D,) — n(f, . D) < =
i) 3. = 7. In an arbitrary hyperbolic subregion G C R we have
v(fG D) Ea(fG, ,0) Zx(f,,R) =N < . Hence

Cifid k) = / / v(fIG, h, Odo(l)dh = N / / do($)dh = 4xkN = O(1) ,
J o

S PEEIN

because lim k =k
Cp6

i) 7.= 6. Let ¢ c B be an arbitrary hyperbolic subregion. Consider

an arbitrary point ¢ € 8 and a point z € ¢ — f7({). Select a fixed para-

metric dise G, around z such that «(f, ¢, G) =0 and let {G,} be an

exhaustion of G by regular regions D G, Construct on G, — G, a

<< o by the hyperbolicity of 6.

max
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harmonic function w, with constant values on (G, — G,) such that
u,|06, =0 and u,|0G, =k, The constant £k, is selected to satisfy

du¥ = 1. Define a constant g, such that

G,
4un * max g(a ’ 2 > 6¥n) = kn = (kn - un(a))IaGO *

a €0G,
For every sufficiently large value of n we have

k

=
max g(a,z,G,) — 2max g (a,z, )
a €06, a€0G,

n kmax

Aun= :Au>0’

where k.. = gimckn. By the maximum principle we have in G, — G,
n’-)

1 1
— (ky — u,(a)) = 3 (k, — wu,(a)) .

Because C(f|G,k,) = O(1) and B(f|G,k,,) is bounded below, we
have with the standard meaning for % presented in the value distribution
theory:

1
0= > n(fld,,a)g@,z,6)=— > uflG¢,,a)k, — u,(a)
fla)=< M opy=¢

0 ky

1 1 1
- /hdv(ij,h D= /v(fla,k, Oh = - A(fI6 k)

n 0

1 1 1
— —O(f|IG, k) — —B(fIG ., k, . () = —C(fIG, k)~ O(1) = O(1).
P (fIG, k,) u (fi ) u (fl ) (1) (1)

Hence

S oafl6, ¢ age,a,6) =lim S alfl6, ¢ ayla,z, 6) =M< .
fla==: n>o fla) =

§ 3. QUASIRATIONALITY AND DIFFERENT COMPACTIFICATIONS

3.1. A preliminary lemma. In theorem 1 we saw that quasirationality
is equivalent to the concept of »to be a Dirichlet mapping». A rather general
question is the following one: If Ry, and Sfs, are some compactifications
of R and 8, what conditions would imply that a quasirational mapping
f:R— S8 is extendable to a continuous mapping f*: Rjr — Sis). and
conversely, if an extension of this kind is possible, what are the conditions
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to ensure the quasirationality of f. We present two theorems in this
direction. However, the contents of our theorems are rather narrow, since
they further imply a theorem which strongly restricts the structure of the
ideal boundaries of parabolic Riemann surfaces.

The following lemma is a direct consequence of [3], p. 99.

Lemma 8. Let @, C Q, be two classes of real-valued continuous functions
on R. Then it is possible to extend the identity mapping i: R— R con-
tinuously to i* : R§ — R .

We immediately obtain two corollaries.

Corollary 1. i*(43) C A4g, .

Corollary 2. If f: R— 8 is continuously extendable to f: Rf — S§,
if QCQ, and if Q3C @y, then there also exists a continuous extension
fi& Ry —S§.

3.2. Quasirationality and continuous extendability.

Theorem 2. If an analytic mapping f: R — S is continuously extendable
to a mapping f*: Rig — S§s), if K< QF) and if QR)C D, then f
18 quasirational.

Proof. Note first that if f is constant the theorem is trivial, so we
exclude this case. By the preceding corollary 2 there exists a continuous
extension [ : RE— S We follow the method of the proof of theorem
10.8 in [3], p. 118. Let us select three open parametric dises V,C V;C
Gc S such that V,c V;,, V,c G and G¥9c 8. Let y he a con-
tinuous function on S such that |V, =1, p|(S— V;) =0 and p is
harmonic in V7, — V,. Then y is continuously extendable to * : S — X
and so h* = p*of%. is a continuous real-valued function on Rj. A
theorem of Stone ([3], p. 5) implies that the class of the extensions to R}
of all continuous Dirichlet functions on R is dense in C(R}), hence there
exists a function ¢ € D with |p — h* R| < 1/3. We immediately see
that @, = 3 sup (inf (¢, 2/3),1/3) — 1 defines a continuous bounded
Dirichlet function which is = 1in f~(¥,) and = 0in f~(S — ¥;). Denote
by @, the components of f~(G) which are all of type SOqp, and by &
the sets f~'(V; — V,) N G,. Basic properties of Dirichlet functions ([3])
imply that

\dh¥g, = |dh*|; < gy,

for all 7. Because h*|G; =y o (f|G;) and fG,:G — G is of type Bl,
we have

ldyllz max n(f, £, R) = 2 [ldyl; max n(f, ¢, 6)

= 2 k¥, = 2 ldeoli; = ldplf < o
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Thus

> P
maxalf, £, B) = e <
which implies quasirationality by theorem 1.

As a preparation for the following theorem we need

Definiticn 5. 4 point x in a topological space X has a fundamental
system “V'(x) of meighbourhoods, if for every neighbourhood U of o there
exists a 1 €V(x) such that 17c: U.

Ve immediately see that it is possible to construct a fundamental system
of neighbourhoods consisting of cpen sets only.

Tneorem 3. Let B and S be two pairabolic Riemann surfaces and
Ry + S their commcmfzcaho;w Hvery quasivational mapping f: R— S
has a continuows extension f*: Rfp — S§, if either

(i) Q) C K ;

(it) K< QR)

or

(1) Ko OQR);

(2) ali points { € 8§y, have a countable fundamental system of neigh-

bowvihoods;

(3) there exists no continuum in A,

(1) K< QM)

Procf. The first case is trivial by corollary 2. To prove the second one
let f:R »-b be a non-constant quasirational mappi A
) ity is not restricted if we assume that Q(R) = K and K < Q(S).
Since I’¥ is locally connected, every ;mim © € RE hes a countable funda-
mertal svstem of connccted cpen veighbhourhoods,

Let ¢ (%) be this infinite family of oven conne
of a point z* € A%, Because [ is eontinuous and & N R connect
everv (¢ € '(2%), the set

7% = n. f(,np““‘

Ge

ed neichbouwrhoods
ed for

is a nen-veid, compact and connected set and so either & continvum or a
point.

To prove that f (z*) 1s a point, let us select an arbitrary point Gf(:*)
Note flIQT that f(GNR)YN U(L) =+ @ for every open neichbourhcod U(Z)
of ¢ and for every G € G (z%). Tndeed, ¢ Gf”’ yn U Cf G'N RN
U(¢) # © which immcdiately implies the desired pmnertv This fact and
the cxistence of a countable fundamental system of neighbourhoeds in
Rf and Sfe erable us to construct two sequences of distinet points
{z} iIn R ard {{} in S with z —=z% ( — ¢ and f(z) = (. By
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quasirationality there exists a unique (g € S§ with f(z;) — {x. From a
certain value of ¢ we have for the same reason

15(8) = & = f(z) € U(Lk) »

w h ere

: 8§ — Sk is the continuously extended identity mapping
(S =8 &nd U(g) is a given neighbourhood of Sy in SE. By e ontlLulty

A

of i¥ this is possible only if ¢¥({) = (. Thus we have Qi‘(f( 2%)) = {{k}-
If [ €8S, then f(z===) = {2} and if I €43, then flz¥)C Q By
property (3) f(z*) must be a point. If we define a mapping f’“ : R — s

with

w

;f(z) , when z€R

r A 23
{f(z), when =z € Ax,
we have the required extension.

To prove the continuity of f#(z) we can reproduce the continuity proof
in b) ef the proof of the theorem 1 with S’rj\) in place of SE.

Remark 1. The assumptions (2) and (3) in thecrem 3 are essential.
For nzstzu»(e in R} there existsideal boundery points without any countable
' stem of n ezghbourhoodg ([3], p. 103). Seibert ([20], p. 7)

les of parabolic Riemann surfaces

hemeomornhic i

remaolics an ioteresti

We know that for B}; . .SB
e (theorem 1). On the cother
to

and (mfzsz'el:t con;l)a(“yifzc:uor.i-' of ]3
these mapy
hard there exists continu
fi i f»;\,, and f¥: B
(181, p. 111y end [8! p 5(_)). Specis
beha‘ four of
fleations

ngs are net contivuously

[
analvil

mappin 5;

MG

3.3. Cn the structurc of the ideal boundaries.

Theorem 4. Let f:R—S be a 7207;-{:@;251({7# quasirational -mapping.
Under the conditions (1) —(4) of theoreni 3 the extended mapping f* : Rip —>
Shy s surjective.

Proof. Let &, € 8§, be arbitrary. By lemma 7 f covers S except
possibly a polar set F. S — E is dense in S§,, and (2) holds, so we can
construct two chuences of distinet points {z} in R and {{;} in S — F

«

with £, -+ %, and f(z;) = .. The point set {z} has at least one cluster

=i

point z, in Rfy. By continuity of f* we nlust have f*(z,) = {.
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Theorem 5. If K C @, if every point z € R has a countable fundamental
system of neighbourhoods and if Af does not contain any continwum, then
Ry = R for every parabolic Riemann surface.

Proof. Note that the identity of two compactifications is to be under-
stood in the sense that they are homeomorphic.

Take the identity mapping 7 : R — R which is quasirational. By lemma
8 and theorem 3 there are continuous extensions if:R§— Rf and
if : Rf — R§. By theorem 4 these extensions are surjective and so
if oty : Rf — R¥ is a continuous surjection on R}, whose restriction to
R is the identity mapping. By continuity ¢(if(z)) =z for all z € R{.
Elementary algebraic considerations show that 4 and 4 are homeo-
morphisms, thus R} = Rf.

3.4. N-valency of quasirational mappings. At first we define the multi-
plicity of the extended mappings at the ideal boundary points. Our definition
coincides with the usual definition of multiplicity for z € R. We denote
by &(z) the family of all open connected neighbourhoods of z € Rfx,.

Definition 6. For an analytic non-constant mapping f: R — S with a

continuous extension f* : Ry — Siis) we denote for every G € G ()

N(f,G)=maxn(f,{,GNR).

JES

The multiplicity of f* at z € R§y, is defined by

n(f*,f*z),2) =min N(f, ).
CEGE)

A trivial consequence of this definition is

Lemma 9. There always exists a mneighbourhood G, € G (2) with the
property n(f*,f*z),2) = N(f,G) for all GC G, with G € G (2).

Let us note that & (z) is always a non-void family and hence the above
definition is applicable without any restrictions to the compactifications
Rir and SFs alone, if we just have the continuous extension f*.

Lemma 10. Let f: R — S be a non-constant quasirational mapping and
f*: Rf — S§ ils continuous extension. If 5, €Sk, if G € .G (L) and if V
is a component of f* N G), then the restricted mapping f*|V:G —@G is
surjective.

Proof. Elementarily we can verify that RN f*(G) = f(GNAY),
hence f*[VNR:VNR—-GNS is a mapping of type Bl of a compo-
nent of f~(GNS) into GNS. By lemma 7 f¥|VNR covers G NS
except possibly a polar set E. We can construct two sequences of distinct
points {z}c VNRCV and {{}cGNS—ECG with {,—{, and
f*(z:) = ;. The point set {z} has at least one cluster point z, in the
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compact set V*. By continuity of f* we have f*(z)) = {,. Immediately
we see that z, is an interior point: z, € V.

Lemma 11. Let f:R-—> S be a mon-constant quasirational mapping.
Then f*:Rg— S§ 1is an open mapping.

Proof. Let G'C Ri be an open set and z € G. Denote f*(z) = { and
let U be an open connected neighbourhood of (. The number of the

components in f*(U) is bounded by N = max n(f,«, R), since 4z
o€ S
and A% arenon-separating and the number of the componentsin f~(U N S)

is finite ([3], p. 118). Let us select U such that f*'(U) has a maximal
number of components and denote by ¥V that component containing =z.
If U'c U is another open connected neighbourhood of ¢, then V' =
VN f*(U’) is connected by the above-mentioned maximality. Let
{U;} be a sequence of open connected neighbourhoods of { such that

Uy=U,U,,5c U, for all values of 7 and N U,={¢}. By con-
tinuity of f* we have =0

fONTE=n v apsiu)t.
i=0
Since every V,= VN f* (U, is connected, f*'()N VX is either a
continuum or a point. Because f[*({)C{z,...,z}U A%, where
{215,z =F7(C) is a finite set, the first case is impossible. Thus 2
is the only ({-point of f* in VX,

If there exists a U; such that V,C G, then U,C f¥(@) and { is
an interior point of f*(G). Otherwise V, — G %= @ for every 4. This
enables us to construct a sequence {z}C V such that z €V, — G,
f¥@z)=C €U; and (,— (. The set {z} has a cluster point 2z, 2
in VX and by continuity f*(z,) = ¢, a contradiction. The lemma follows.

Theorem 6. Let f: R— S be a non-constant quasirational mapping and
[ R§ — Sk its continuous extension. If f§ 1is an open mapping, then

n(fg, ¢, Bg) <

for all ¢ € Sk
Proof. Let us assume that there exists a point ¢ €SE with
n(f§ , ¢, R§) = oo. The multiplicity of all {-points is =< N, thus the set
E = {z € R§|f§(z) = (} is infinite. The compactness of R§ implies the
existence of a cluster point z, of the set E. By continuity of f§ we have
f§(z) = ¢. Take a neighbourhood G, € G(z) and let z,...,zy,, be
disjoint points in E N (Gy — {z}), where N = maxn(f,x,R), and
€S
G, c G, disjoint open neighbourhoods of these points. Since f§ is open,
N+1
there exists an open connected neighbourhood U cC N f§(G;) of ¢ and

i=1
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a component G of f~(UNS) in every G, The restricted mappings
N1

fIG] are of type BI, so there exists at least one point & € n J(G). Thus

we have a contradiction =t

a(f, & zi n(fi, &, 6) =N + 1.

Remark. Let S be a compact Riemann surface. In the next paragraph
we show that there exists a parabolic Riemann surface R and a quasi-
rational mapping f : R -8 — {{} such that =»{f,’,R) =N for all
€S — {{}. Now —{Lhi =28 and so by lemma 8 there exists
a continuous extenswn fo:R5—S. Clearly f—E,(J‘ff) = {{,}. Since the
power of A} is at least that of a continuum ([3], p. 103), we have
n(f5, &, RS) = co. Thus a continuous extension of a non-constant quasi-
rational mapping is net necesgarily open.

Theerem 7. Let f: R — 8 be a non-constant quasirational mapping and
fo + Ry — Sk its continvous extension with K C € on R. If the extension
zQK.RQ — RE of the ideniity mapping is ope/z, then

n(f, ¢, RE) = N = maxn(f,~,R)

for all { € SE. The equality holds for all ¢ € S if and only if Rj = RE.
Proof. Consider first the case of the K-compactific ation Let €8

By lemma 11 and theorem 6 f5'(¢) is a finite set: fE0) = {z,..., %}

Let us select disjoint open connected neighbourhoods Gi for every z;

such that =n(f%, 5 sz) =maxn({f,x, G N R) for every G;. Bylemmall

k 2 €S
the set U’ = ) fi(G) is an open set such that € U'. Let U be that
i=1

component of U’ containing {. Everv (7, contains an open component

V. of fi7'(U). Since the restricted mappings fi 7, N E are of tvpe BI,

there ex1sts a point £€UNS such that -mj ,E,R) =N and

w(f,&, V,NR)=maxn(f,x, V,NR) for i=1,...,k Thus

€S

T

k
n(fe, L, RE)=>n(fi,l, V) z nax n(f,~, V,N R)

H[\/J*

L

2 Wf, &, V,AOR)=n(f,&,R)=DN.

In the general case we know that the extension iy : R’Ql< — R} of the
identity mapping ¢:R— E is continuous and surjective, hence

n(ifx,2, Ry) =1
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for every z € RE. Further all values of iji are of multiplicity one. Consider
any peints § € SE, 2z € RE and 2’ € R} suchthat i (") = 2z and fi{z) = (.
Because f§ = fioije, then fi(z') = Let 7€ G(2) be selected to
satisfy  n(f§,¢,2) = maxa(f,«, G N E). By corollary 1 to lemma 8
x€S

we have if(G') N R = i5 (G’ N R), thes maxa(f,s, ¢ N R) = max

x€S xES
n(f, &, igr(G') N R). Since ifx(G') is an open connected neighbourhood

of z, definition 6 yields

n(fg:::z/) %n’(f;iaz;:z)a

thus

fQ ’ Q) E Z 71(f§,§,2)7?(?‘§]\~,2,]‘3§).

sef 5 )
From the above formulae we deduce the inequality
" .
"JQ::,BQ) (fl‘,s‘RK)‘

Tf now for some continuous extension fi : Ry — Si the comhtv holds for
JQ Q K
all £ € b"’K‘, then

N=u(ff, L R) = S ulfi, L ouli., BY)
s€f ()
= 3 ulfE. s =ulfE IR =N,
ek 0

Thus n(ify .z, RE) =1 for all =z €/%7'(3). This equation is valid for all
z € RE. Hence QQAR” — L% is a cmm wous bi i an
R} are compact Hausdorff spaces. (i 1s 2

§ 4. EXISTENCE THECRENMS

4.1. Exceptional sets of analytic mappings. Let 12 be a parabelic and

S a parabolic or a compact Riemann surface and f: P — S an analytic
neapping. It is a kpown result of Heins that »n(f, [, B) < N = max
€S

n{f,n,R) =< o at most in a polar set A (lemma 7). This set K
can be represented as a union K = UK, of closed polar sets

i=0

K, ={€8Smn(f,{,R)=1i<N}. By a thecorem of Matsumoto ([10], p.
143) it seems to be probable that the above result is maximal. Indeed,
modifying the construction method of Matsumoto we have the following

theorem.
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Theorem 8. Let K = U K, be formed out of disjoint closed polar sets
i=0

K, on a parabolic (or a compact) Riemann surface S. Then it is possible

to construct a parabolic Riemann surface R and an analytic mapping f: R— S

such that

]n(f,C,R):oo, when (€8 — K
|n(f,l,R)=p, when (€K, for p=0,1,2,...

Proof. Every region S, =8 — U K, can be considered as a parabolic
i=0

surface by lemma 4. We define an exhaustion of S, by regular regions

S.., on every surface S, durirg the following proof. The boundaries 9S8, ,

consist of a finite number of closed analytic curves and every component

of 8, — 8, ; isnon-compact. Let us denote by w, , the harmonic measure

of 9§, , with respect to the open set S, , — S, ,_,. By parabolicity we
can form the exhaustion {S, ,} to satisfy

b

1

< J—
D(w, ) = B
1

D(wy ) = % when k£ =2

([18], p. 181), where D(w; ;) means the Dirichlet integral of w;; over
S:.; —S’i In the set S, ;— S, , we select a compact arc L, with
LN (K, UK) =¢@. In forming {S,,} we suppose that L,c S, , —
S, o and that

1
D(wl, 2)

A

8
1
D(w, 1) §Zé, when k= 3.

If necessary, we further modify L, by taking a sufficiently small part of
it and denoting that part again by L, just making it satisfy

D(w(’),l) = 2 D(wy,,)
D(w;,z) =2 D(w,.,),

where , , (resp. o ,) denotes the harmonic measure of S, ,U L,
(vesp. 08,,,U Ly) with respect to (S, , — 8y o) — Ly (vesp. (Sy1—

81.¢) — Lo). In the set S, , — 8,,, we select a compact arc L; such that
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2 RS
LN U K, = 0. Generally, we form {S, ;} such that L, , C Sun— S na
i=0
and that

1
. D
|D(()n,n+l) = 2(77/ + l)n+1

1
]D(w,,,,\.) gk—mj, when k=n 4 2.

Additionally we assume the arc L, ; to be so small that

[ D@, _1.,) <2 Do, .,)
| D@, 1) = 2 Do)

with a clear meaning of o] ;. In S, .., — S, , we select again a compact

n+1
arc L, with L, NU K, = 0.
i=1
Now we connect the surfaces S; together in the following way: S, and

S, will be connected crosswise along the arc L, with the resulting surface
R\l, ]i?l and S, along L; resulting I?z ..., R, and 8., along L,
resulting }A?,,H and so on. It is clear that the limit surface R = lim IAB"

satisfies the conditions of the theorem, if we prove it to be parabolic. The
analytic mapping f:R-> S is nothing else than the covering mapping.

To prove the parabolicity we define an exhaustion {R,} of R as
follows: R, corresponds to the set S, , on the sheet S, R; the sets
Sy, and S, ; on the surface ﬁl ..., R, thesets Sy ., S .s.es8un
on the surface ]:én ,... and so on. The set R, — R, then corresponds to
Sy, and Sy, — ;SK connected along the arc L,. Let &, be the harmonic
measure of R, with respect to R, — R, and define

lw(,),l(z) , when 2z € (S, — S,.1) — Ly
uy(2) = i ‘
1 elsewhere.
The functions %, and @, have the same boundary values and wu, is piece-
wise continuously differentiable. Hence the Dirichlet principle is applicable
and we have

D(ay) = DRl—R,(ul) = D(U)(,),l) =2D(y,) =1.

The set R, — R; on R, correspondsto S, , — m , 81, — E-l and S, ,,
the latter two connected along the arc L;. Defining
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wy.5(z), when z € (S, , — E) — L,
Us(2) =g, 2, When z €8, , — SO_I
1 elsewhere ,
we have again by Dirichlet principle
D(a,) = DRz—ﬁl(uz) = D(wy,5) + D(¢°1,2) = D(wy,5) +2D(w,,) =1,

where @, is the harmonic measure of oR, with respect to R, — R,.

Generally, R, — R, ; on }?\n corresponds to the sets S, , — S; .1,
S — 8 w8 — St a1 s Sy . s the latter two connected
along the arc L, ;. Defining

, J—
O‘)n—l.n(z) ’ ‘Vhell z € (Sn—l.,n - Sn—l.n-l) - Ln—l

u,(2) = ; ,(2), when z€S,, — 8, ,, ¢=0,...,n— 2)
ll elsewhere.

We have with a clear meaning of &,

Thus we have for the exhaustion {R,}

0 1 . x‘i
2 D@y = TR by S T T
P

By a criterion of Noshiro ([16], p. 76) R is parabolic.

4.2. Existence of quasirational mappings. The general question about
the existence of a quasirational mapping between two given Riemann
surfaces R and S seems to be difficult. However, there exist non-trivial
quasirational mappings. Truncating the construction in the preceding proof

we have for quasirational mappings the corresponding
N-—-1

Theorem 9. Let K = U K, (N < ) be formed out of disjoint closed
i=0

polar sets K, on a parabolic (or a compact) Riemann surface S. Then it

s possible to construct a parabolic Riemann surface R and a quasirational

mapping f: RS such that
l%(f,C,R)zN, when €S — K
ln(f:C,R)zp, when CGKP for P=0,1,,N—1
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Proof. We begin by reproducing the first steps of the procedure in the
preceding theorem. Let us truncate the procedure after a finite number of

steps: R = }3\7_1. The arc Ly_, is the last one we define. The covering
mapping f: R -8 1is the desired one. The parabolicity of R is now
very easy to see. Consider S — K which is parabolic. Let g:7'—S — K be
the restriction of f into 7 =f~'(S — K). Now (T,g) is a complete
covering surface of S — K ([17], p. 49). Since g is finite-sheeted, then 7'
is parabolic ([17], p. 96). As an immediate consequence R is parabolic.

Theorem 10. Let R be a parabolic Riemann surface of a finite genus 7.
Then there exists a quasirational function f: R — S, with n(f*, ¢, R¥) =
r -+ 1.

Proof. The surface R can be embedded into a compact surface of genus
r ([2], p- 420). This compact surface is conformally equivalent to a (r + 1)-
sheeted covering surface of S, ([19], p. 275). The theorem follows.

The existence of a quasirational function f: R — S, gives us information
about hyperbolic subsurfaces ¢ of R. Using conventional notations we
say that G €0,, if there exists no non-constant Lindelofian function on it
and that @ € Uyp, if the Kuramochi ideal boundary of & contains at
least one point with a positive harmonic measure ([3], p. 169).

Theorem 11. Let R be a parabolic Riemann surface on which there exists
a mnon-constant quasirational function f: R —S,. Then every hyperbolic
subregion G R is not in Ugp U O

Proof. a) By theorem 1 we see that there exists an analytic Lindelofian
function on G, thus ¢ ¢ 0,.

b) Again by theorem 1 ¢ is a finite-sheeted covering surface over S,.
This implies G ¢ Uy, by [9], p. 88.

University of Helsinki and
University of Joensuu
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CORRECTION TO “QUASIRATIONAL MAPPINGS ON PARABOLIC
RIEMANN SURFACES”

by Irpo LaINE

In 4.1. before theorem 8 we incorrectly said that the sets K; are
N—1

closed. Of course, K is a union K = |J K; of polar sets K;=
n i=0
{:e€8n(f.¢,R)=1i< N}, where U K: is closed for 0 <n < N.

i=0
Theorems 8 and 9 have henceforth the following more general form:

Theorem 8. Let K = U K: be formed out of disjoint polar sets K;
i=0 n

on a parabolic (or a compact) Riemann surface S. If the sets | K; are
i=0

closed for 0 =<n < oo, then it is possible to construct a parabolic Riemann

surface R and an analytic mapping f: R — S such that

In(f,é‘,R):oo, when (€S — K
ln(f,C,R)zp, when (€K, for p=0,1,2,...

N-1
Theorem 9. Let K = | K: (N < ©) be formed out of disjoint polar
i=0 n
sets K; on a parabolic (or a compact) Riemann surface S. If the sets \J K
i=0

are closed for 0 <n < N — 1, then it is possible to construct a parabolic
Riemann surface R and a quasirational mapping f: R — 8 such that

n(f,.,R)=N, when €S —K
n(f,.,R)=p, when (€K, for p=0,1,...,N—1.
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