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INTRODUCTION

One of the basic problems in the theory of n-dimensional quasiconformal
mappings is to determine whether or not two given homeomorphic domains
can be mapped quasiconformally onto each other. The problem is closely
related to the possibility of extending quasiconformal mappings of domains,
which, in turn, has an immediate connection with the behavior of the
mappings near the boundaries.

The mapping and extension problems indicated have mostly been studied
in the special case where one of the domains is a ball. (See, for example, the
papers [1] — [6] of Gehring or Viisdld.) The reason for this is obvious.
Namely, when = > 2, there is no analogue of the Riemann mapping
theorem, which states that a plane domain can be mapped quasiconformally
onto a disc if and only if its boundary is a connected set containing at least
two points, and which may be frequently used while discussing the boundary
extension of plane quasiconformal mappings.

The starting point of this thesis is, however, more general. For we will
study the boundary behavior of n-dimensional quasiconformal mappings
between domains about whose boundaries we make hypotheses as weak as
possible. Our main interest will be directed to an examination of the exten-
sion of such mappings to and over the boundaries, but at times we will
also investigate the conditions under which two homeomorphic domains
can be mapped quasiconformally onto each other.

We begin in Section 1 by introducing the concepts, associated with
the boundary of a domain, upon which almost the entire subsequent theory
is essentially based. In Section 2 we study, by means of cluster sets, the local
behavior of quasiconformal mappings on the boundary of a domain.
Most of the next section deals with questions related to the global boundary
behavior of quasiconformal mappings. The developed theory will then be
applied to quasiconformal mappings of a ball in Section 4. For example,
we characterize those domains D for which every quasiconformal mapping
between D and a ball can be extended to a continuous mapping between
the closures. Furthermore. by refining a result due to Gehring [2], we
show that a Jordan domain D in 3-space can be mapped quasiconformally
onto a ball if and only if every point in its boundary has a neighborhood
U such that U N D can be mapped quasiconformally onto a ball. Some
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of our results suggest the investigation of the extent to which the presence
of a sharp edge in the boundary of a domain destroys the smoothness
properties of the domain. The final section is devoted to this investigation.

Notation and terminology. We denote by R! the real number system
and by R!= R'U{cc, — oo} its two-point compactification. Given two
real numbers ¢ and b, a<< b, we let (¢,b) denote the open interval
{t:a< t< b} and [a,b] the closed interval {t:a <{¢ < b}. Unless
otherwise stated, all point sets considered in this paper are assumed to lie
in B*= R"U{oc}, n > 2, the one-point compactification of the euclidean
n-space R". For each point 2 € R* we let x; denote the i-th coordinate
of @, taken with respect to a fixed orthonormal basis (e;, ..., e.). The
subspace x, = 0 of R" will be identified with R"™1. Sometimes we shall
also use cylindrical coordinates (r, ¢ ,z) (polar coordinates (r,q) if
n = 2) for a point x € R". This means that r >0, 0 < ¢ < 27, 2 € R"?,
and a; =7rcosg, x,=rsing, a=z_, for 3 <i<n FEach point
x € R* will be treated as a vector with norm x! = (af -+ ...+ ah)'’

Given a point x € R" and a number » >0. we let B"(x,r) denote
the nm-dimensional ball {y € R": ly — x| << r} and S"7}(x,7) its (n — 1)-
dimensional boundary sphere {y € R": 'y — &' = r}. We will also employ
the abbreviations

B"(r)y = B*0,r), B"=DB"(1),
Sy = 80, ) L ST = SMT(D)
where 0 denotes the origin, and write
B (r) ={x €B"(r): 0, >0}, B = B"(1).

For each set Ec R* we let 0E, E. and CE denote the boundary,
closure, and complement of E, all taken with respect to R". Further-
more, given two sets £ and F in R, welet E\F denote the difference
set {vx:x€K,x¢F} and d(E,F) the euclidean distance between E
and F.

As a measure in R" we use the n-dimensional Lebesgue measure my,
where the subscript » may be omitted if there is no danger of misunder-
standing. The measure of a set E c R* is defined as that of E\{oo}.
Obviously, m, is also defined for sets in n-dimensional smooth sub-
manifolds of R, n’ >n. We abbreviate w, = m,(S").

A neighborhood of a set E is an open set containing E. A domain is
an open connected non-empty set. The notation f:D— D’ includes the
assumption that D and D’ are domains in R". A domain D is said to
be a Jordan domain if 9D is homeomorphic to S"71. A ring is a domain
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whose complement consists of two components. A continuwm is a compact
connected set which contains more than one point.

Let G be a subset of E". By a path in (' we mean a continuous
mapping y:4 — (@, where A is a closed interval of R!. Suppose also
that E and F are subsets of R". Then welet A(E, F: @) denote the
family of all paths which join E and F in G; thatis,apath y:[a,b]—R"
is an element of A(E , F : G) if and only if one of its end-points y(a) , y(b)
belorgs to E, the other belongs to F, and y(t) €G for a < t<<b.
The locus |y| of a path y:4 - R" is the point set yA = {y(f): ¢t € 4}.
A subpath of a path y is a restriction of y to a closed subinterval. A path
family I3 is said to be minorized by a path family I, if every path of
I'y has a subpath belonging to I}.

Suppose next that I" is a family of paths in R*. We let F(I') denote
the family of all Borel functions o : R* — B! which are non-negative and

for which
/ ods >1

o

7
for every rectifiable path y € I. The p-modulus (p > 1) of I' is then
defined as

My(I') = inf /gl’ dm, .
0€F(I)
Rn

If F(I') = O, we set M,(I') = co. This occurs if and only if I" contains
a constant path. To simplify notations, we write M(I") instead of M,(I")
and call it the modulus of I

We shall also use surface moduli of path families. Let S be an (n — 1)-
dimensional smooth manifold in R". (In this paper, however, we need
only the cases where S is a plane, a sphere, or the lateral surface of a
right circular cylinder.) If I" is a path family in S, we again denote by
F(I') the family of all non-negative Borel functions p: 8 — R! for which
the line integral of p is greater than or equal to one along every rectifiable
path » € I The p-modulus of I' with respect to S is defined as

JI;(]’) = inf /QP dm,_, .
o€ F(I') )/
§
Let D and D’ be two domains in R". A homeomorphism f: D — D’
is said to be K-quasiconformal, 1 < K << oo, if it satisfies the double
inequality

% M(I') < M(fT') < KM(I')
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for each path family I'" in D. Here fI'= {foy:y € I'}. (Sometimes the
factor K in the above inequalities is replaced by K", for example in
Gehrirg — Viirdld [4]. This is obviously a matter of notation only.) A
homeomorphism f is said to be quasiconformal if it is K-quasiconformal
for some K. The maximal dilatation of f, denoted by K(f), is then defined
as the least K for which f is K-quasiconformal. Firally, the domains D
and D’ are called quasiconformally equivalent if there exists a quasi-
conformal mapping of D onto D'

1. Classes of boundary points

We begin by defining a number of concepts allowing us to describe the
behavior of a domain at a boundary point. Then we give alternative
characterizations for some of these concepts and finally determine relation-
ships between them.

Recall that unless otherwise stated, all point sets considered lie in R",
n > 2.

Definitions. Altogether we introduce seven properties. Some of them,
however, are nothing but natural generalizations of others. (Cf. Vaisila
[8, 17.5].)

1.1. Connectedness properties. Let b be a boundary point of a domain D.

(i) D islocally connected at b if there exist arbitrarily small neighborhoods
U of b such that U N D is connected.

(i) D is m-conmected at b, m = 1.2, ..., if m is the least integer for
which there exist arbitrarily small neighborhoods U of b such that
UND consists of m components.

(iii) D is finitely connected at b if there exist arbitrarily small neighbor-
hoods U of b such that U N D consists of a finite number of
components.

1.2, REMARK. Obviously a domain is locally connected at a boundary
point if and only if it is 1-connected at the point. Furthermore, m-con-
nectedness always implies finite connectedness. The following example
shows that the converse is not true.

1.3. ExaMPLE. Let (r, ¢, z) be the eylindrical coordinates in R", and

m

let D=R"\U4: where A;i={x=(r,q¢,2):0<r<1/i, ¢ =1},
i—1

—1/i < |z] < 1fe}. If m << oo, then D is m-connected at the origin b,
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while if m = co, then D is still finitely connected at b, but no longer
m-connected for any integer m.

1.4. Quasiconformal collaredness. Let b be a boundary point of a domain
D.
(iv) D is quasiconformally collared at b if there exists a neighborhood U
of b and a quasiconformal mapping ¢g:UN D — B’ such that
lim g(x) = 0 and lim g~'(y) = b.
x>b 0
(v) D is quasiconformally m-collared at b, m = 1,2, ..., if there exists
a neighborhood U of b such that UN D consists of m com-
ponents, E,,...,E,, for each of which there is a quasiconformal
mapping ¢;: B;— B". with limgi(x) =0 and lim g;}(y) = b.
x—>b >0
1.5. REMARK. Obviously a domain is quasiconformally collared at a
boundary point if and only if it is quasiconformally 1-collared at the point.
It is also evident that the half-ball B’ could be replaced in 1.4 by several
other domains, for example by the ball B". The choice of the origin to be
the limit at b of the mapping in question is unessential as well. We have,
however, given a preference to the formulations in 1.4 because of certain
technical advantages.

1.6. ExamPLE. Let D be the domain in Example 1.3 with a finite m,
let (r,@,z) be the cylindrical coordinates in R", and let

B'(l/m)N{x=(r,p,z):p€&[l/m, 1]} if ¢=1,

o {B”(l/m)ﬂ{x: (g, lfi<e<li—1} if i=2,...,m
Then E,,...,E, are the components of DN B*1/m). For x=
(r,p,2) €EE; set fi(x) = (r, hi(p),2), where

ax +¢ —1)/2x+1/m—1) if 0 <¢< 1l/m and ¢=1,
hi(p) = 3wl — 1)/(2x + 1/m — 1) if l<p< 2z and ¢t=1,
(i — 1)(p — 1/2) if 1=2,...,m.
Next for y € B*(1/m) let g(y) = my. Then ¢;=gof; is a quasicon-

formal mapping of Z; onto the half-ball B*N{x:z, >0} with
lim gi(x) = 0 = lim g;(y). Hence D is quasiconformally m-collared at
y—>0

x>0

the origin.

1.7. Quasiconformal flatness and accessibility. Let b be a boundary
point of a domain D.
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(vi) D is quasiconformally flat at b if M(A(F,, F,: D)) = co whenever
F, and F, are two connected subsets of D with b€ F N F,.

(vii) b is quasiconformally accessible from D if, given any neighborhood
U of b, there exists a continuum A c D and a number 6 >0
such that M(4(A4 ,F : D)) > 6 whenever F is a connected subset of
D with b€F and FNoU = @.

1.8. REMARK. In Viisild [8], »quasiconformally flat» is called »property
Py and the property of being »quasiconformally accessible» is similar to
yproperty Pyy.

1.9. ExamMpPLE. Let D again be the domain defined in 1.3. Arguments
similar to those to be presented in 1.17 and 1.18 show that D is quasi-
conformally flat at the origin & if and only if m = 1, and that b is quasi-
conformally accessible from D regardless of whether m is finite or infinite.

The following abbreviated expression will be used throughout the paper:
If a domain has one of the properties (i) — (vii) at each boundary point,
it is said to have the property in question on the boundary.

Alternative characterizations. We will now describe alternative ways of
defining some of the concepts (i) — (vii). For example, we show, with a
view to the study of cluster sets in Section 2, how the topological concepts
(i) — (iii) can be defined in terms of sequences of points.

1.10. Theorem. Given a domain D and aboundary point b, the following
statements are equivalent:

(1) D s m-connected at b.

(2) There exists a meighborhood U of b such that U N D consists of m
components each of which is locally connected at b.

(3) There exist arbitrarily small neighborhoods U of b such that U N D
consists of m components each of which is locally connected at b.

(4) There exist arbitrarily small neighborhoods U of b such that U N D
consists of m components, the boundary of each containing b.

() m is the least integer for which the following condition holds: If
(b)) (b)) are m -1 sequences of points in D converging
to b and if U is a neighborhood of b, then there exists a component of
UND which contains subsequences of two different sequences.

Proof. (1) = (2): Let D be m-connected at b. By the definition, there
exists a neighborhood U of b such that U N D consists of m compo-
nents, ¥, ,..., B, and that VN D hasatleast m components whenever
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V c U is a neighborhood of b. We claim that every K, 1 =1,...,m,
is locally connected at b. Obviously, b is a boundary point of each domain
E;.. If some E; say FE,, is not locally connected at b, there exists a
neighborhood U, c U of b with W N E; containing at least two com-
ponents whenever W c U, is a neighborhood of &. But then W N D
has at least m -~ 1 components for all such neighborhoods W, which
contradicts the m-connectedness property of D at b.

(2) = (3): Let U and E,, ..., E, beasabove andlet W be a neigh-
borhood of b. Since E;, i =1,...,m, is locally connected at b, for
each ¢ there is a neighborhood U;c W of b such that U;NE; is
connected. Then U* = (U;N... N U, )U((U,NE)U... UU.NE,) is
a neighborhood of b, U*c I, and U*N D consists of components
UNE,,...,U.NE, Since VND has at least m components
whenever ¥V c U¥* is a neighborhood of b, we see as above that U; N E;,
i=1,...,m, is locally connected at b.

(3) = (4): This implication is trivial.

(4) = (5): Let U be a neighborhood of b andlet V< U be a neigh-
borhood of b such that ¥ N D consists of components £, , ..., B, for
which b €0K;, i =1,....m. Next let (b;,)...., (b, 14 be p-+41
sequences of points in D converging to b. If p > m, then at least one
E; contains subsequences of two different sequences mentioned above.
These subsequences are thus contained in a single component of U N D.
Consequently, if m, is the smallest number for which the condition in (5)
holds, then m, <m. To prove that m, > m one only need choose for
i=1,...,m a sequence (b;,) in such a way that b, € E; for all £
and b;,,—~0b as k— co.

(5) = (1): Assume that (5) holds but (1) does not. Then, by what was
proved above, D cannot be p-connected at b for any p, 1 <p <m.
Thus there exists a neighborhocd U of b such that VN D contains
points of at least m 4 1 different components of U N D whenever V
is a neighborhood of b. Assume, for convenience, that b # co. For
i=1,...,m-+ 1 choose a point b,, € DN B, 1/k) so thatif i # j,
then b, and b,,, b=1,2...., I=1.2,..., belong to different
components of U N D. The sequences (b,,),..., (b, 1)) converge to
b, but the condition in (5) is not satisfied. contrary to the hypothesis.
The proof is thus complete.

The next theorem offers an analogue of Theorem 1.10 in case of finite
connectedness. Since its proof follows the same reasoning as that of Theorem
1.10, being even simpler, it may be omitted. (See also Viisild [8, Theorem
17.71.)



14 Ann. Acad. Sci. Fennicae A. 1. 484

1.11. Theorem. Given a domain D and a boundary point b, the following

statements are equivalent:

(1) D s finitely connected at b.

(2) There exist arbitrarily small neighborhoods U of b such that U N D
constists of a finite number of components, the boundary of each containing
b.

(3) There exist arbitrarily small neighborhoods U of b such that U N D
consists of a finite number of components each of which is finitely connected
at b.

(4) If (bx) 1is a sequence of points in D converging to b and if U is a
neighborhood of b, then at least one of the components of U N D contains
a subsequence of (bx).

The next theorem is a quasiconformal analogue of Theorem 1.10. Its
simple proof also may be omitted.

1.12. Theorem. Given a domain D and a boundary point b, the following
statements are equivalent:
(1) D is quasiconformally m-collared at b.
(2) There exists a neighborhood U of b such that U N D consists of m
components each of which is quasiconformally collared at b.
(3) There exist arbitrarily small neighborhoods U of b such that U O D
consists of m components each of which is quasiconformally collared at b.
(4) There exist arbitrarily small neighborhoods U of b such that U N D

consists of m components, E,,...,E., for each of which there is a
quasiconformal  mapping  ¢i: Bi— B.  with limgi(x) =0 and
lim g; '(y) = b. w>b

»—=>0

1.13. REMARK. In the statement (4) of Theorem 1.12, if the requirement
concerning the existence of the limits of ¢; and g¢;' is replaced by the
mere requirement b € 9E;, then g¢; has alimit b; at b, which, observing
that E; is locally connected at b, can be proved essentially in the same
way as in the case where the image domain is B". (See, for example, the
proof of Viisdld [6, Theorem 1].) However, g;' may fail to possess a
limit at b;. This is seen, for example, by considering the domain

D =B 2\ U, where Iy ={x = (r,¢): 0 <r <1, ¢ = 1]k}, at the
k=1
point b = e,

Among the concepts (i) — (vii) introduced above, the quasiconformal
flatness and accessibility properties are not readily perceived, particularly
the latter. We will next show that the choice of a continuum is of secondary
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consideration in the definition of quasiconformal accessibility (see 1.7).
That is, given a domain D, a point b € 8D, and a continuum 4 c D,
the point b either is or fails to be quasiconformally accessible from D,
independently of A. (It is therefore justified to use the expression » is
quasiconformally accessible from D» without explicit reference to any
continuum.) In order to prove this, we must establish a strengthened version
(Lemma 1.15) of the following well-known result: If 4 and A* are two
disjoint connected compact sets in R", then M(4(4,A4*:R") >0
provided that neither 4 nor A* degenerates into a single point. For this
purpose, an auxiliary lemma is needed.

1.14. Lemma. Let a, and a, be two points in a domain D and let
D, be a subdomain of D containing a, and a,. Then there exists a homeo-
morphism f: D —D such that f is quasiconformal in D, f(ag) = ag, and
fx) =« for x € D\D,.

Proof. Without restriction it may be assumed that @, # o % @, Let
L, be a polygonal arc with successive vertices a,,a;,...,a,,a, joining
a, and @, in D, We will first construct a homeomorphism f,: D — D
so that f, is quasiconformal in D, fy(a) =a,, and fi(x) =2 for
x € DN\ D,.

Let 0 <d, << d(L,, dD,)/n'2. Performing a preliminary similarity trans-
formation, we may assume that @, = d,e., and a, = d; e, with 0<<d, <d,.
Denote

C ={0:0< v —ae <dy, 0<w,<d,+d},
C'={x:0<|x—aue| <dy—an, 0 <, <dy},
C"={2:0 < | —anes] <do(wn —dp)dy, dy <, <dy+dy},

and set
x if € D\C,
dl_do ] . ’ 7
x + 7 (d — |x — ane)en If 2 €O\ (C"UC),
0
fol@) = d, — d, _ )
x -+ d Zn€n if x€(C,
0
d, — d, . )
x -+ d (do + dy — @n) en if z€C”.
1

Then f, is a piecewise differentiable homeomorphism of D onto itself
with f,D = D. A simple calculation shows that f, is (d;/dy)" '-quasi-
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conformal in D. Moreover, fy(a,) = a; and fy(x) =2 for x € D\ D,,
as desired.

Similarly, for ¢ = 1,...,p there exists a homeomorphism f;: D — D
such that f; is quasiconformal in D, fi(x) =a for « € D\D, and
fila;) = a,,, where a,., = a,. The mapping

f=fpoiofy

then satisfies the conditions of the lemma.

1.15. Lemma. If A and A* are two continua in a domain D, then
M(A(A , A* : D)) > 0.

Proof. We may assume that 4 N A* = @ and that D # R", for other-
wise M(A(A , A*:D)) = oo or the assertion is a well-known result. Choose
points a, € A, a* € A*, so that |a, — a* =d(4,4%), and set

2r = min {d(4 , A%), d(4*,9D), maxd(x,a*)}.
xEA*
Next choose a point @, € D\ A* with d(a,,a*) =7 and a subdomain
D, of D with a, € Dy, a; € D, ANCD, + @, and A*N D, = @. If f
is a mapping of the preceding lemma, then S" '(a*,?) meets both f4
and f4* = A* for r<<t<< 2r. Since B*a*,2r)c D, we obtain, by
Viisild [8, Theorem 10.12],

M(A(A, A% : D)) = ¢, log 2/K(f),

where ¢, >0 is the n-modulus of the family of all paths joining e, and
— e, in 8"7', and where K(f)< oo is the maximal dilatation of f in D.
The lemma is thus proved.

We are now in a position to present a stronger form of the definition of
quasiconformal accessibility.

1.16. Theorem. 4 boundary point b of « domain D is quasiconformally
accessible from D if and only if the following condition is satisfied: Given
any neighborhood U of b and any continuum A* in D, there exists a
positive number 6% such that M(A(A* , F : D)) > 0* whenever F is a
connected subset of D with b€ F and F Nl £ @.

Proof. It evidently suffices to prove the necessity part. Let 4* be an
arbitrary continuum in D, let U be a neighborhood of b, and let A4
and J be the quantities appearing in 1.7.(vii), the definition of quasicon-
formal accessibility, corresponding to the neighborhood U. We have to
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find a constant 6* >0 for which the modulus condition in the present
theorem is satisfied.

Assume first that 4 N A* = @, and, for convenience, that oo ¢ 4.
Let

4r = min {d(4 , A*) ,d(4 , oD)},

let A4,,...,4, be a finite covering of A by closed balls with centers
a; €4, 1=1,...,p, and radii r, and let

(1.16.1) M(T¥) = 6,
where I'* = A(4:, A*: D). By Lemma 1.15, each 6; > 0. We claim that
(1.16.2) 0* =3"min{d/p, d;,..., 0, , c.log 2},

where ¢, >0 is as defined in Vaisdla [8, (10,11)], can be chosen for the
desired positive constant. ’

Now let F bea connected setin D such that b € F and F N U # 0.
Set

I'=AA,F:D)y, I'=A(A4;,F:D), I'*=A(A*,F:D).

Since the modulus is a monotone and subadditive function,

5 < M(I) < M) A;, F: D)) < zp M(T).

i=1
Thus for some i, say ¢ =1,

(1.16.3) M(Iy) = o/p.

We must show that M(['*) > 6*. It is sufficient to consider the case
where A*NF = @, for any path family containing a constant path
has infinite modulus.

Choose ¢ € F(I'*). If

~

(1.16.4) /g ds Z% or / ods >

71 )

wW| -

for every rectifiable path y, € I, , % € I'¥, then 39 € F(I) or 39 € F(I'¥).
This implies
(1.16.5) /g" dm > 37" min {M(I}) , M(I'})}.

Rn

Assume now that there exist rectifiable paths y, € Iy and ¥ € I'ff
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for which (1.16.4) is not true. Suppose first that F N B*(q,, 2r) = @.
Let R; be the ring r<< |x — ay| < 2r and set 4, = A(|y,|, y¥|: R).
Since ¢ € F(I™),

(1.16.6) /g ds >%

L41

for every rectifiable path «, € 4,. Thus 3p € F(A,). Since every 8" '(a, , t)
meets both |y;| and [yf| for r< t< 2r and since B"(a,,2r)c D,

(1.16.7) /Q"dm > 37"c, log 2

o

R

according to Véisdld [8, Theorem 10.12]. Suppose finally that F N
B'(a, , 2r) # @. Let RY be the ring 2r < v —a, < 4r and set AF =
A(F , |y¥|: R¥). Taking into account the fact that b € F, we see that
also in this case (1.16.6) holds, with «f in place of «;, for every rectifiable
path of € 4. Hence we conclude as above that (1.16.7) holds. Con-
sequently, since ¢ € F(I'*) was arbitrary and since either (1.16.5) or
(1.16.7) is true, we obtain M(I'*) > 6* by combining (1.16.1) — (1.16.3),
as desired.

In the preceding argument we assumed that AN A*=@. If 4
meets A%, we may choose a continuum Af c D> (4 U A*) and apply
the above procedure first to the continua A, AF, and then to A} , A*.
This completes the proof of the theorem.

Interrelations. We conclude this section by investigating relations
between the concepts (i) — (vii). Some trivialities have been pointed out
in earlier remarks. We now present some less trivial relationships.

1.17. Theorem. Let D be a domain which is quasiconformally m-collared
at a boundary point b. Then
(1) D ¢s m-connected at b.
(2) D s quasiconformally flat at b if and only if m = 1.
(3) b s quasiconformally accessible from D.

Proof. (1) follows from Theorems 1.10.(4) and 1.12.(4). The sufficiency
part of (2) is proved like the corresponding assertion in Theorem 17.10 of
Vaiiséld [8], while the necessity part of (2) can be deduced from (1) and
from the next theorem. Thus it remains to establish (3).

For this, let U be a neighborhood of 5. By Theorem 1.12.(4), we
can find a neighborhood V< U of b such that VN D consists of m
components, E, , ..., En., for each of which there exists a quasiconformal
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mapping g¢;: E; — B, with lim gi(x) = 0, lim g; '(y) = b. By the latter
x—>b y—>0
limit condition, we may choose a number 7, 0<r< 1, so that the distance
between ¢; 1B’ (r) and 9V is positive for each 4. Denote by I’ the
segment x; =... =z, ; =0, /2 <z, <r, and by I the union of the
sets ¢;71I’. Next let 4 € D be a continuum which contains I. We will
show that the modulus condition in 1.7.(vii), the definition of quasiconformal
accessibility, is satisfied by this 4 and by ¢ = b,log 2/K, where b, is

a positive constant depending only on % and where K = max K(g,).
1<i<m

Now let F be a connected set in D with b€ F and FNoU = O.
Since lim g;(x) = 0 for each ¢, the origin belongs to the closure of

x—>b

g(E; N F) for at least one 4. Fix such ¢ and set
I = J(g,(E, n A) , gi(E,‘ n F) : B::_) o

If gi(E:N A) intersects g¢:(E:N F), then M(I") = oo, and there is
nothing to prove. Otherwise choose o € F(I). From the choice of » and
A and from the connectedness of F we infer that every hemisphere
S_(t) =8"Y(f)N B". meets both g¢g(EiNA) and g¢g(E;NF) for
r/2 < t<<r. Since p|S.(f), the restriction of o to S.(f), belongs to the
family  F(I'(t)) where I'(t) = A(g(E:N A), ¢g(E:NF):8.(t), we
obtain

r

/g”dmz / dt / o*dm,_, > b,log 2

2 sy

e

R? r/

by Fubini’s theorem and by Viisald [8. Theorem 10.2]. Hence M(I") >
b, log 2. Finally, the monotoneity of the modulus and the K-quasicon-
formality of ¢; imply

MAA ,F:D)) = Myg~'I") > b,log 2/K ,

thus completing the proof of (3).

1.18. Theorem. Let D be a domain which is both quasiconformally flat
and finitely connected at a boundary point b. Then D is locally connected
at b.

Proof. Suppose, contrary to the assertion, that I is not locally con-
nected at b. Performing a preliminary inversion if necessary, we may
assume that & =% o. Since D is finitely connected at b, there exists,
by Theorem 1.11.(3), a neighborhood U of b such that U N D consists
of components X, ,....E, p>2, each of which is finitely connected
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at b. Let d =d(b,oU). Again by Theorem 1.11, there is for ¢ =1,2
a connected set F;c E;N B*(b,d/2) with b€ F;. Denote

I'=A(F,,F,:D),
A = AS™'b ,dJ2), 8"'(b,d): R),

where R is the ring d/2 < |x — b| << d. Since the path family I" is
minorized by the family 4, we obtain

M(I') < M) =, ,(log2) ™" < .

But this contradicts the hypothesis that D is quasiconformally flat at b.
The theorem is thus proved.

Tt is generally a laborous task to find out, by direct use of the definitions,
whether a given domain D has the implicit properties of being quasi-
conformally flat and accessible at some boundary point b. In many
circumstances it is, however, easy to verify that D is quasiconformally
m-collared at b for some integer m (as an example, see 1.6), in which
case the conclusions concerning quasiconformal flatness and accessibility
follow from Theorem 1.17. As another example we next present a simple
geometric condition which implies quasiconformal m-collaredness for
m=1 or m=2.

1.19. Theorem. Let b = o be a boundary point of @ domain D and let
e be a unit vector. Suppose that b has a mneighborhood U such that
S = UNaD is homeomorphic to B*~', and suppose that for each pair of
points by, b, in S, the acute angle which the segment bb, makes with e
s never less than « >0. Then
(1) D is quasiconformally collared at b if b € dD.
(2) D is quasiconformally 2-collared at b if b€ aD.

g Proof. Let T be the (n — 1)-dimensional hyperplane through & which
has e as its normal. By hypotheses, there exists a neighborhood V c U
of b such that every point z € ¥ has a unique representation of the form
x=s -+ te, where s €S and ¢, € RL.. Let p:S—7T be the orthogonal
projection and for x € V set g(x) = p(s) + tie. By the n-dimensional
analogue of Corollary 5.1 in Gehring — Vaisild [4]. ¢ is a quasiconformal
mapping. Since g(V N S)c T, there exists a neighborhood W V of
b such that g maps each of the two components of T\ S onto a half-
ball. If b € 0D, one of these two components coincides with W N D,
and D is thereby quasiconformally collared at b. Otherwise, the compo-
nents of W\ are the same as those of TN D, in which case D is
quasiconformally 2-collared at b. The proof is complete.
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1.20. REMARKS AND COUNTEREXAMPLES. (1) In Theorem 1.17, quasicon-
formal collaredness is not a necessary condition for quasiconformal flatness
or accessibility. The domain D = R™\{b} serves as a counterexample.
More generally, by methods similar to those used in the proof of Theorem
1.17 one can show that @ domain D has the quasiconformal flatness and
accessibility properties at a boundary point b = oo if there exists a positive
number r such that A,_,(S"'®,H)N D) =0 (S"'b,t)N oD =@ if
n = 2) for almost every t € (0 ,r). Here A, , isthe (n — 2)-dimensional
Hausdorff measure.

(2) In Theorem 1.18, quasiconformal flatness does not alone imply local

connectedness. For example, the domain D = Bi(?)\ U, where I,
k=1

is as defined in Remark 1.13, is quasiconformally flat, but not locally con-

nected, at points te;, 0 <¢<< 1.

(3) In Theorem 1.19, the angle condition is superfluous when n = 2.
For if UN oD is an open Jordan arc, there is a neighborhood V < U
of b such that ¥\ @D consists of two simply connected components, and
therefore the requirements in the definition of quasiconformal collaredness
are readily seen to be satisfied. On the contrary, if » >3, then, as we
shall see in Section 5, the other hypotheses of the theorem imply, in fact,
neither quasiconformal flatness nor accessibility.

2. Cluster sets

In the present section we study the local boundary behavior of quasi-
conformal mappings. This will be done in terms of the properties possessed
by the sets of all their limit points. We therefore introduce the following
topological concept:

2.1. Cluster set. Let f be a mapping of a domain D into R* and let
b be a point in 9D. The cluster set C(f,b) of f at b is the set of all
points b’ € R* for which there exists a sequence (b)) in D such that
b —b and f(bi) —b'. Alternatively, C(f,b) =NjU N D) where U
runs through all neighborhoods of b. The cluster set C(f, E) of f on a
non-empty set E C 0D is defined as the union of the sets C(f,b), b € E.

2.2. REMARK. Obviously, C(f,bd) is a non-empty compact set, f
has a limit at b if and only if O(f,b) reduces to a single point, and
C(f,b)c ofD if f is a homeomorphism.
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Cluster sets and topological properties. We begin by considering cluster
sets at points where a given domain has one of the topological properties
(i) — (iii), defined in 1.1.

2.3. Theorem. Let f: D — D" be a quasiconformal mapping and let D
be m-connected at a boundary point b. Then the following holds:

(1) C(f, b) contains at most m components.

(2) If C(f.,b) contains exactly m components. C,,...,Cn, there exist
arbitrarily small neighborhoods U of b with U N D consisting of m
components, K, ,..., E,, such that C;= C(f(E;,b), i=1,...,m.

(3) In particular, if C;={b;}, then b, = lim f Ei(x).

x-~b

(4) If D' is quasiconformally flat at every point of C(f,b), then C(f,b)
contains at least m points.

(8) O(f,b) either contains ai most m — 1 points, quasicon formally accessible
from D', or consists of m points.

(6) If D' has the quasiconformal flatness and accessibilily properties at every
point of C(f,0), then C(f,b) contains exactly m points.

(7) If U is a neighborhood of b with U N D consisting of components
E,,...,E. and if b is a point, quasicorformally accessible from D',
belonging to C(f!E;.b) for i=1,.... m, then b = lim f(x).

x—=b

Proof. (1) By the statement (3) of Theorem 1.10 and by the definition
of C(f,b), there exists for each positive integer L a neighborhood U,
of b such that U,.,c U, U,ND consists of m components, say
By, ....,E, . E, CE, for ¢=1,....m. and

€0 = UN 7.

k1
oc
The assertion follows now from the fact that for each i, the set [ j£,,,
k=1
as an intersection of a contracting sequence of continua, is either a con-
tinuum or a point.
(2) Again by Theorem 1.10.(3), there exist arbitrarily small neighbor-

hoods U of b with UN D consisting of m components, X, , ..., E,,
each of which is locally connected at b. Since C(f E;.b), i=1,...,m,
is connected by virtue of (1), we conclude, poszibly by relabeling, that
Ci = C(f|E;,b).

(3) follows from (2).

(4) We may assume that m > 2, for otherwise there is nothing to
prove. Composing [ with an auxiliary inversion if necessary, we may
further assume that b £ oo. Let U be a neighborhood of b with each
of the components, £, ...., E,, of N D being locally connected at b.
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Set d = d(b, aU). Again by Theorem 1.10.(3), there is for ¢ =1,...,m
a connected set F,c E;N B'b,d/2) with b€F,. Denoting I =

AF;,F;: D), 1<i< j<m, and appealing to the argument given in
the proof of Theorem 1.18, we obtain

‘J[(I"j) S ™, ](log 2)1—" < o

If C(f,d) cortaired at most m — 1 points, there would exist integers ¢
and j,1 <i<j <m, and a point ¢ in C(f,b) such that ¢ € jF; N {F;.
But since fF; ard fF; are connected sets in D’ and since D’ is quasi-
conformally flat at c.

M) = MUA(fF: fF;: D) = oo,

which contradicts the quasiconformality of f and proves that C(f,b)
contains at least m points.

(5) Suppose, contrary to the assertion, that C(f,b) contains m 4 1
distinct points by,....b,., and that b;,...,b, are quasiconformally
accessible from D’. In order to avoid technical difficulties we assume, as
we obviously may, that both b and each bj', j=1,...,m+ 1, are
finite points.

Let 2r = min b —b;, 1 < j<m -1, and choose a continuum
A’ c D’. By Theorem 1.16. there exists foreach ¢ = 1,...,m a constant
d; > 0 such that

MIA F DY) = o

whenever F’ is a connected setin D’ with b, € F" and F' N 8"~'(b. ,7) #
J. Let
0 =min §; .d = d(d , oD),
1<i<m

where A = f~1A4’. Then ¢ and d are both positive. For j=1,...,m 41
choose a sequence (b;,) in D so that b, ,—0b, f(b;,)— b]'-. Fix e,
0 <e<d. Since D is m-connected at b. there exists, by Theorem
1.10.(5), a component F of B"(b,e) N D and integers ¢ and j, 1 <17 <
j <m + 1, such that F contains subsequences of (b;,) and (b;;). Set
F' =fF, '=AA4,F:D), I"=A(4",F" :D'). Since F’ is connected
and F’ contains the points b; and b;,

M) = 0.

On the other hand, the path family I is minorized by the family
A8 ,e), 8" (b, d): D). Consequently,

1—n
M) <o (10g _) .
&
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These inequalities for M(I”) and M(I') must hold for all ¢, 0 < & < d.
Letting ¢ — 0 leads to the desired contradiction.

(6) follows from (4) and (5).

(7) By Theorem 1.10, we may assume that each E; is locally con-
nected at b. The method used in the proof of (5) then shows that " =
lim f|Ei(z). Thus b’ = lim f(x), and the proof is complete.

x—>b x—>b

The next theorem, proposition (2) of which will be frequently referred
to in the sequel, is an immediate consequence of propositions (1) and (5)
in Theorem 2.3.

2.4. Theorem. Let f:D — D’ be a quasiconformal mapping and let D
be locally connected at a boundary point b. Then the following holds:
(1) C(f,b) is either a continuum or a point.
(2) If there is a point b in C(f,b) which is quasiconformally accessible

from D', then b = lim f(z).

ab

An argument similar to that employed in the proof of Theorem 2.3.(4)

yields the following result:

2.5. Theorem. Let f: D — D" be a quasiconformal mapping and let D
be finitely connected at a boundary point b without being m-connected for
any integer m. If D' is quasiconformally flat at every point of C(f,b),
then CO(f,b) is infinite.

2.6. REMARK. Propositions (1) — (3) in Theorem 2.3 hold for every
continuous mapping, as is evident from their proofs. The same is true of
the first statement in Theorem 2.4.

Cluster sets and quasiconformal properties. We next consider cluster
sets at points where a given domain has one of the quasiconformal properties
(iv) — (vi), defined in 1.4 and 1.7.

2.7. Theorem. Let f:D — D' be a quasiconformal mapping and let D
be quasiconformally m-collared at @ boundary point b. Then, in addition
to the statements of Theorem 2.3, the following holds:

(1) C(f,b) contains at most m points at which D’ is finitely connected.
(2) C(f,b) contains exactly m points if D' is locally connected at every

point of C(f, D).

(8) If D’ is finitely connected at every point of C(f,b), if U is a neighbor
hood of b with UN D consisting of components E,,...,En. and
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if there is a point b’ belonging to C(f|E;,b) for ¢ =1,...,m, then
b" = lim f(x)
x—>b

Proof. (1) Suppose, contrary to the assertion, that D’ is finitely con-
nected at m + 1 distinet points by ,...,b,., of C(f,b). Composing f
with an auxiliary inversion if necessary, we may assume that each b # oo,
j=1,...,m+1 Let 2d=min [b; —b]], 1 <i<j<m+1, and
choose for j=1,...,m -+ 1 a sequence (b;,) in D so that b, —>0,
f(b;1) —b;. Since D’ is finitely connected at b' there exists, by virtue
of Theorem 1.11.(4), a component F of D'N B" b , d/2) which contains
a subsequence of (f(b;,)). Thus b E F and it follows that

J>
M(A(F] , F;: D)) <w,_y(log 2)" ™" < o
whenever 1 <1 <<j<m -+ 1.

On the other hand, since D is quasiconformally m-collared at b,
there exists, by Theorem 1.12.(2), a neighborhood U of b such that

UND consists of m components, E,,...,En each of which is
quasiconformally collared at b. Next, since the set F;= [,
j=1,...,m-+1, is connected and b€ F;, and since each £,
l=1,...,m, is quasiconformally flat at b according to Theorem 1.17.(2),

there existintegers 7, j, and I, 1 <i <j<m+1, 1 <1 <m, for which
_Z”(A(F,,,F]D)) Z M(J(F,ﬂ El,an Ez :El)) = O

This contradicts the quasiconformality of f.

(2) Local connectedness implies finite connectedness; hence, by (1),
C(f,b) contains at most m points. We thus claim that C(f,b) contains
at least m points. The case m = 1 is immediate, because C(f,d) # @.
Suppose that m > 2 and that C(f,D) contains at most m — 1 points.
Let U and E,,...,E. be as above. By Theorem 1.17.(1), each £,
i=1,...,m, is locally connected at b. Thus, by Theorem 2.4.(1),
C(f|E: ,b) reduces to a single point. Consequently, there exist integers ¢
and j, 1 <i<j<m, and a point b’ € C(f,b) such that

lim f|Ey(zx) = b = lim f Ej(z) .
x—>b x—=>b
On the other hand, D’ is locally connected at b’ and, by virtue of

Theorem 1.17.(3), b is quasiconformally accessible from D. Hence, by
Theorem 2.4.(2), b = hm f‘ . We may therefore choose a neighborhood

V' of b" such that V’ N D’ is connected and f(V'ND)c U. But
fY(V'N D) is also connected and must thus be included in one of the
components E; and E;. This is a contradiction.
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(3) By Theorem 1.12, we may assume that each E; is quasiconformally
collared at b. The method used in the proof of (1) then shows that b’ —
lim f|By(x). Thus b = lim f(z), and the proof is complete.
xb wrb

2.8. REMARK. In the proof of proposition (1), it would have been suffi-
cient to assume, instead of quasiconformal m-collarednessof D at b, that
m  represents the greatest integer for which the following condition
is satisfied: There exist connected sets F,,...,F, in D with
beF,N...NF, suh that MU@F;,F;:D)) < o whenever
I <i<j<m. In the case m =1 this yields the following result
(Theorem 17.13 of Viisild [8]):

2.9. Theerem. Let f: D — D' be a quasiconformal mapping and let D
be quasiconformally flat at a boundary point b. Then C(f,b) contains at
most one point at which D' is finitely connected. In particular, if D' is finitely
connected at every point of C(f,b), then f has a limit at b.

2.10. REMARK. Observe the following difference between Theorems
2.4.(2) and 2.9: Let f:D-— D" be a quasiconformal mapping and let
b€oD, b"€C(f,b). If D is locally connected at b and if b’ is quasi-
conformally accessible from D’, then & = lim f(x). On the other hand,

x—>b

if D is quasiconformally flat (or collared) at & and if D’ is finitely con-
nected (or locally connected) at &, then f need not necessarily possess
a limit at b. This is seen, for example, by choosing B" for D, the
n-dimensional analogue of the domain described in Gehring — Viisili [4,
10.7] for D', the origin for &', and lim fY(y) for b. Indeed, C(f,b)

y—>b
consists of the segment z;, = ... =2, ;, =0, 0 <, < 1.

3. Boundary extension

In the present section we study the global boundary behavior of quasi-
conformal mappings. This, however, is closely related to the local one.
Accordingly, we shall begin by considering the possibility of extending
quasiconformal mappings to one boundary point.

Viisild proved in [6] that if a domain is locally connected on the
boundary, then every quasiconformal mapping of it onto a ball can be
extended to a homeomorphism between the closures. In the middle part of
the section we discuss the same extension problem for domains more general
than a ball. (The extension of a quasiconformal mapping to a continuous
mapping between the closures of the domains in question will not be dealt
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with before Section 4, and there only in the special case where one of the
domains is a ball.) This section will be concluded with an investigation of
the extension of quasiconformal mappings over boundary surfaces.

Extension to one boundary point. Let f: D — D’ be a quasiconformal
mapping and b a point in dD. Theorems 2.3.(7), 2.4.(2), 2.7.(3), and 2.9
provide certain conditions under which f has a limit at 5, and under
which f therefore can be extended to a continuous mapping of D U {b}.
We consider now aspects pertinent to our demand that this extended
mapping be a homeomorphism.

3.1. Theorem. Let b and b be boundary points of domains D and
D', respectively, and let f: D U{b}— D" U{b’'} be a homeomorphism which
is quasiconformal in D. If D has any one of the properties (i) — (vii) at b,
then D' has the same property at b’

Proof. (i) Local connectedness: A special case of (ii).

(ii) m-connectedness: Lett U’ be a neighborhood of b’. By hypotheses,
there exist a neighborhood V of b and a neighborhood V7’ of b such
that VN D consists of m components, say K,,...,HE,, that
fvnNDyclU’, that V'cU’, and that fY(V'ND)c V. Then
W' = V"U f(V N D) is a neighborhood of b, W' c U’, and W' ND" =
f(V N D) consists of m components, namely fE, . ..., fE,.. Consequently,
D’ is m/-connected at b’ for some m’, 1 <m’ < m. Considering like-
wise the inverse mapping f~!, we conclude m < m'.

(iii) Finite connectedness: The proof is similar to that of (ii).

(iv) Quasiconformal collaredness: A special case of (v).

(v) Quasiconformal m-collaredness: Let U" be a neighborhood of b
such that U N D consists of m components, E,, ..., E,, for each of
which there exists a quasiconformal mapping g¢,: E:;— B with
lim gi(z) = 0, limg;'(y) = b. Choose a neighborhood V' of b with

x-»b y—=>0
fv'nbD)c U. For i=1,...,m set E; =fE;. Then U’'=
V'UE;U...UE, is a neighborhood of b with U’N D’ consisting
of components E,,...,HE,. Set f,=fE, and h; =g,of7"'. Since for
each 4, h(B)) = B, limh(x) =0, limh;'(y) = ', and since h, as a
x—>b’ y—0

composed mapping of two quasiconfdrmal mappings is itself also quasi-
conformal, D’ is quasiconformally m-collared at &’.

(vi) Quasiconformal flatness: Let F; and F, be two connected sets
in D’ with v’ € F; N F,. Set F, = fF,, F, = fF,, I'= A(F,, F,: D),
I" = A(F, , F,: D’). By hypotheses, F, and F, are connected sets in D
with b € F,N F,. Thus M(I') = co, which implies M(I") = 0.
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(vii) Quasiconformal accessibility: Let U’ be a neighborhood of %',
let U be a neighborhood of b with f(UND)c U’, and let A4 and ¢
be as in 1.7.(vii), the definition of quasiconformal accessibility. We show
that in the same definition, 4’ = f4 and §/K(f) may be chosen for the
quantities corresponding to the domain D’, the point ', and the neigh-
borhood U’. To this end, let F’ be a connected set in D’ such that
b’ €F and F'NoU’ # @. By hypotheses, the set F = f71F" is con-
nected, b€F, and FNoU # @ Hence M(A(A,F :D)) > 6, which
implies  M(A(A", F': D)) > 6/K(f). The proof of the theorem is thus
complete.

3.2. REMARKS. (1) Theorem 3.1 shows that all of the properties (i) —
(vii) are quasiconformal invariants. The first three of these are, in fact,
topological invariants.

(2) Theorem 3.1 does not apply to every continuous mapping which is
quasiconformal in D. To see ‘this, let f be a quasiconformal mapping of

D = B? onto D' = R U I, where I, is as defined in Remark 1.13,
k=1

and let b = e/2. It is not difficult to find a point b € 9D for which
lim f(x) = 0". The domain D has all of the properties (i) — (vii) at b,

x—b
while D’ has none of these at b’.

(3) In Theorem 3.1, if f is continuous, and quasiconformal in D, and
if D and D’ possess any one of the properties (i) — (vii), except (iv) or
(v), at b and &', respectively, then f need not necessarily be a homeo-
morphism, as is readily seen by means of examples. However, if f preserves
either (iv) or (v), then it is a homeomorphism, as the proof of the next
theorem will show.

3.3. Theorem. Let f: D — D' be a quasiconformal mapping and let D
be quasiconformally m-collared at a boundary point b. Suppose that U is
a neighborhood of b, appearing in the definition of quasiconformal m-col-
laredness (see 1.4), E,,...,HE, being the components of U N D. Then f
can be extended to a homeomorphism of D U {b} if and only if D’ is quasi-
conformally — m-collared at some point belonging to C(f E;,b) for
t=1,...,m.

Proof. The necessity of the condition was established in Theorem 3.1.
For the sufficiency, let b be the point of 9D’ at which D’ is quasicon-
formally m-collared and which belongs to C(f|E;,b) for i =1,...,m.
Since D is m-connected at b and since b’ is quasiconformally accessible
from D’ (Theorem 1.17), f can be extended to a continuous mapping of
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DU {b} onto D'U{b'} according to Theorem 2.3.(7). In order to prove
that this extended mapping is a homeomorphism, we must show that
b = lim f(y).

y—=>b’

If m = 1, the assertion follows directly from Theorem 2.4.(2), because,
again by Theorem 1.17, D’ is locally connected at b’ and b is quasi-
conformally accessible from D. Assume next that m > 2, and, for con-
venience of notation, that b # oo. Since b’ = lim f(x), we can use Theorem

x—>b

1.12.(3) to find a neighborhood U of b and a neighborhood U’ of b’
such that f(UND)c U’, UND consists of components £, , ..., En,

U’ N D’ consists of components G, ..., G,, each E; is quasiconformally
collared at b, and each @] is quasiconformally collared at b,
i=1,...,m. Let d=d(b,oU), and choose for each ¢ a connected

set F:c E;N B'b,d/2) with b€ F,. Appealing to the argument given
in the proof of Theorem 2.3.(4), we infer that M(I';) << co whenever
1 <i<j<m. Here I;=AF:,F;:D). Accordingly, since b’ € fF;
for i =1,...,m and since each G is quasiconformally flat at &’
(Theorem 1.17.(2)), the sets fF; and fF; must belong to different com-
ponents of U’ N D’ whenever i # j. Thus b € O(f~1|G;,b’) for each i.
Theorems 1.17 and 2.3.(7) now imply that b = lim f~%(y), as desired.

As an immediate corollary we obtain ¥

3.4. Theorem. Let f: D — D" be a quasiconformal mapping and let D
be quasiconformally collared at a boundary point b. Then f can be extended
to a homeomorphism of D U {b} if and only if D" is quasiconformally
collared at some point of C(f,b).

Extension to the whole boundary. We now proceed to investigate the
homeomorphic extension of a quasiconformal mapping to the entire
boundary. Before establishing our main theorem in this subsection, namely
a generalization of Theorems 1 and 2 in Viiséld [6], we state without proof
a simple topological lemma which describes the relation between the local
and the global boundary extension. With a view to the discussion in Section
4, where not only the homeomorphic but also the continuous extension
of a quasiconformal mapping to the whole boundary will be dealt with, we
formulate the lemma as follows:

3.5. Lemma. Let f:D— D' be a homeomorphism. Then
(1) f can be extended to a continuous mapping f:D— D' if and only if
lim f(x) exists for every b € dD.

x—>b



30 Ann. Acad. Sci. Fennicaee AL I 48¢

(2) [ can be extended to a homeomorphism f*:D D', if and only if
lim f(x) and lim f~(y) exist for every b € 0D ,b’ € 3D'.

x—>b y—>b’

3.6. Theorem. Let f: D — D" be a quasiconformal mapping and let D
be locally connected on the boundary.

(1) If D s quasiconformally collared on the boundary, then f can be extended
to @ homeomorphism f* : D — D" if and only if D’ also is quasiconformally
collared on the boundary.

(2) If D is quasiconformally flat on the boundary, then f can be extended
to a homeomorphism f*:D—D" if and only if D' also is locally
connected and quasiconformally flat on the boundary.

(3) If D has the quasiconformal accessibility property on the boundary, then
[ can be extended to a homeomorphism f*:D — D" if and only if D’
also is locally connected and has the quasiconformal accessibility property
on the boundary.

Proof. (1) is an immediate corollary of Theorem 3.4 and Lemma 3.5.(2).
Propositions (2) and (3) follow from Theorems 2.4.(2), 2.9, 3.1, and Lemma
3.5.(2).

As an application we show that domains of certain types are not quasi-
conformally equivalent.

3.7. Theorem. Let D be a domain which is locally connected on the
boundary.

(1) If D is not quasiconformally collared at every point of 8D, then it cannot
be mapped quasiconformally onto any domain which is quasiconformally
collared on the boundary.

(2) If D does not have the quasiconformal flatness and accessibility properties
at every point of 9D, then it cannot be mapped quasiconformally onto
any domain which has both of these properties on the boundary.

Proof. (1) If f: D — D’ is a quasiconformal mapping and if D’ is
quasiconformally collared on the boundary, we may use Theorems 1.17,
2.4.(2), and 2.9, in conjunction with Lemma 3.5.(2), to infer that f can be
extended to a homeomorphism jf*:D — D’. Thus, by Theorem 3.6.(1),
D is quasiconformally collared on the boundary.

(2) The assertion follows from Theorems 2.4.(2), 2.9. 3.6.(2), 3.6.(3),
and Lemma 3.5.(2).

3.8. REMARKS. (1) Lemma 3.5 as well as Theorems 3.6.(1) and 3.6.(3)
remain valid if one insists that the hypotheses concerning boundary points
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be satisfied at every point of any sets B c oD, C(f, E) € oD’. The same
is not true of Theorem 3.6.(2) (see the example in 2.10).

(2) Tt is not known to the writer if Theorem 3.6 holds without the
additional assumptions, that is, if a quasiconformal mapping between two
domains which are locally connected on the boundaries is always extendable
to a homeomorphism between the closures. The same question remains
open also in case of Jordan domains. For plane Jordan domains, however,
as is very well known, the extension is possible.

Extension over boundary surfaces. We conclude this section by in-
vestigating the possibility of extending quasiconformal mappings over
quasiconformal spheres. A set § is said to be a quasiconformal sphere if
there exists a quasiconformal mapping f of a domain D D 8§ with fS =
S"~'. From a result due to Gehring [2] it follows that D can actually be
chosen to be the entire space R". We generalize Theorem 3 of Viiséla [7]
to n dimensions. The proof we will give also applies to the case n = 2
and is slightly different from that of Viisél4.

3.9. Theorem. Let f: D — D' be a quasiconformal mapping and let 0D
consist of a quasiconformal sphere S and of a compact set (possibly @) not
meeling S. Denote by D, the component of CS for which DN D, = O
and by S’ the cluster set O(f , S). Then f can be extended to a quasiconformal
mapping of DU S U Dy if and only if S’ is a quasiconformal sphere.

Proof. The necessity of the condition is trivial. For the sufficiency, assume
that S’ is a quasiconformal sphere. We will first show that there is a neigh-
borthood U of S, a neighborhood U’ of §’, and a quasiconformal
mapping h: U — U’ such that h(x) = f(x) for « € UN D. Then we
apply Theorem 2 of Gehring [2].

Since D and D’ are quasiconformally collared at all points of § and
S’, respectively, f can be extended, by Remark 3.8.(1), to a homeo-
morphism f*:DUS—=D'"US. For 0<ir <<r,< o let R(r,r)
denote the spherical ring B"(r,)\ B"(r;). Then, by virtue of hypotheses,
there is a mneighborhood V' of S and a quasiconformal mapping
g V' —R(1/2,2) such that ¢'(V’' N D)= R(1,2). Similarly, there is
a neighborhood U of S and a quasiconformal mapping ¢ : U — R(1/2, 2)
such that g(U N D) = R(1,2) and f(UND)c 1. Forz € S" ' U R(1, 2)
set fy(x) = ¢’ o f*ogl(x). Then f, is a homeomorphism of $"~' U R(1, 2)
onto ¢’ o f*(I" N D), and it is quasiconformal in R(1,2). We can there-
fore extend f, by reflection to obtain a quasiconformal mapping f, of
R(1/2,2) onto a domain GcC R(1/2,2). Set U' =g¢'G¢ and & =
g tof,og. Then U’ is a neighborhood of S’, and A:U—U" is a
quasiconformal mapping agreeing with f in U N D.
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Now let D; be the component of €S’ which does not meet D'.
Applying Theorem 2 of Gehring [2] to the domains D; and D), to the
neighborhoods U and U’, and to the mappings ¢|U N D, and ¢ |U'N D,
respectively, we find neighborhoods U; of S =aD,, U, of 8" = D,
and quasiconformal mappings 7%, :D,—B", h;:D;—B", such that
hy(x) = g(x) for x € U;ND;, and kyz) =g'(x) for x € U;N D,. The
same theorem applied to the domain B", to the neighborhood ¢(U N [7,),
and to the mapping A;ohoh'lg(U N U,) N B* yields a neighborhood
W of §*~! and a quasiconformal mapping A, : B*— B" such that hy(x) =
hyohohi'(x) for € W N B Set

[f(x) if z€D,
f@) =) @) if €8,
byt o hyo hy(x) if x € D, .

Then f is the desired extension of f.
By repetition of the above argument we obtain the following result:

3.10. Theorem. Let f:D— D" be a quasiconformal mapping and let
0D consist of a finite number of disjoint quasiconformal spheres. Then f
can be extended to a quasiconformal mapping }: R — R" if and only if also
the components of 0D’ are quasiconformal spheres.

4. Quasiconformal mappings of a ball

In order to apply and illustrate the results of Sections 2 and 3, many
of which are not always apparent because of their fairly general nature,
in this section we restrict our discussion to quasiconformal mappings between
two domains one of which is a ball. We begin by considering cluster sets of
a quasiconformal mapping f:D— B" and the correspondence of the
boundaries induced by f. We postulate, for example, a condition which
describes the behavior of D at a point b € 9D and which is both necessary
and sufficient that the cluster set of f at b contain exactly m points
(m=1,2,...). We also characterize those domains D for which either
f or f7 (or both) admits an extension to a continuous mapping between
the closures.

In the latter part of the section we discuss the possibility of mapping
a domain quasiconformally onto a ball. As our main result there, we show,
eliminating a superfluous condition in a result due to Gehring [2], that a
Jordan domain D in R? can be mapped quasiconformally onto B3 if
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and only if every point in 6D has a neighborhood U such that U N D
can be mapped quasiconformally onto B3

Cluster sets and boundary extension. In the following two theorems
we summarize a number of results related to those presented in Sections
2 and 3. (See also Gehring [3, Theorem 1] and Viisala [6].)

4.1. Theorem. Let f:D —B" be a quasiconformal mapping and let

b€oD. Then

(1) C(f,b) reduces to a single point, i.e., f has a limit at b and therefore
can be extended to a continuous mapping of D U {b}, if and only if D
is quasiconformally flat at b.

(2) C(f,b) reduces to a single point with b the cluster set of f=1 at that
point, i.e., f can be extended to a homeomorphism of D U {b}, if and only
of D has the quasiconformal flatness and accessibility properties at b.

(3) C(f,b) contains exactly m points, m = 2,3 ,..., if and only if m
s the greatest integer for which the following condition holds: There exist
connected sets Fy,...,Fn. in D with b€F, N...NF, such that
M(A(F; , F;: D)) < o whenever 1 <1 <j < m.

(4) C(f,b) isinfinite if and only if the condition in (3) holds for every positive
integer m.

(5) In particular, if D is m-connected at b, m =1,2,..., then C(f,Db)
contains exactly m points.

(6) In particular, if D is finitely connected at b without being m-connected
for any integer m, then C(f.b) is infinite.

Proof. Because (5) and (6) can be deduced from Theorems 1.17, 2.3.(6),
and 2.5, it is unnecessary to show that they are special cases of (1) — (4).
The necessity part of (2) follows, for example, from Theorems 1.17 and 3.4,
whereas its sufficiency part is due to proposition (1) and Theorem 2.4.(2).
Since (1) is equivalent to (3) with m = 1 and since (3), combined with
(1), implies (4), it remains to verify (3) for every positive integer m.

Fix such m. To prove the sufficiency part, note that C(f, ) contains
at most m points by virtue of Theorem 2.7.(1) and Remark 2.8. We thus
claim that C(f,b) contains at least m points. The argument parallels
the one given in the proof of Theorem 2.3.(4). Since C(f,b) # @, it is
sufficient to consider the case m > 2. If C(f,b) contained at most
m — 1 points, there would exist connected sets F;, F; in D and a point
¢ in O(f,b) such that b€F,NF;, MUF;,F;:D)) < o, and
¢ € jF; N fF;. But this is impossible, because B" is quasiconformally
flat at c.

Finally, to prove the necessity part, suppose that C(f,b) consists
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of m distinct points by,...,b,. Let F,,... , Fp, be connected sets in
D with b€F,Nn...NF, such that M(A(F;, F;: D)) < o whenever
1 <1 <j<p. If p>m, weconclude as above that M(A(fF;, fF;: B")) =
o for some i+ j. Consequently, the greatest number for which the
condition in (3) holds cannot exceed m. On the other hand, in view of
Theorem 2.7.(1) and Remark 2.8, it can neither be less than m. The theorem

is proved.

4.2. Theorem. Let f: D — B" be a quasiconformal mapping. Then

(1) f can be extended to a continuous mapping f: D — B" if and only if D
1s quasiconformally flat on the boundary.

(2) f7 can be extended to a continuous mapping f-t: B*— D if and only if
every point in 0D 1is quasiconformally accessible from D.

(3) J7* can be extended lo a continuous mapping f:B"— D if and only
of D s finitely connected on the boundary.

(4) f can be extended to a homeomorphism f*:D — B if and only if D
1s locally connected on the boundary.

(5) [ can be extended to a homeomorphism f*:D — B" if and only if D
s a Jordan domain which is quasiconformally collared on the boundary.

(6) f can be extended to a quasiconformal mapping f: Rr — B» if and only
of 0D 1is a quasiconformal sphere.

Proof. Propositions (1), (5), (6), and the sufficiency parts of (2) and
(3) follow from Theorems 4.1.(1), 3.6.(1), 3.10, 2.4.(2), and 2.9, (plus Theorem
1.17 and Lemma 3.5), respectively. A direct proof for (4) is given in Viisald
[6]. The result can also be deduced from Theorems 3.6.(1) and 3.7.(1) in
this paper. Thus it remains to establish the necessity parts of (2) and (3).

In order to do this for (2), let f1: B*— D be contiruous, let b € 3D,
let U be a neighborhood of b, and let 4 = f15"(1/2). We must find a
positive number 6 such that M(A(A,F : D)) > o6 whenever F is a
connected set in D with b € F and F N ol = O. For this, let V' be
a bounded neighborhood of the compact set C(f,b) with f(V' N B c U.
Because of the continuity of f-1, such a neighborhood can be chosen. Set
r = d(C(f,b),dV’). Since each point of 9B" is quasiconformally accessible,
we infer from Theorem 1.16, on the basis of svmmetry, that there exists
a positivenumber ¢’ such that M(A(fA , fF : B") > ¢ whenever fF c B"
is a connected set whose closure contains a point 5 € §"~! for which
SENS"7' B, 7) # O. Consequently, §'/K(f) serves as the desired number
d.

Finally, in order to prove the necessity part of (3), let f~1, b, and
U be as above, and let (b,) be a sequence of points in D converging
to b. In view of Theorem 1.11.(4), it is sufficient to find a component
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of UN D which contains a subsequence of (b,). To this end, choose a
converging subsequence (b]f) of (f(by)) and let b = lim b; . By hy-
j> o
pothesis, b = lim f1(y). Thus there exists a number » >0 such that
y—>b’
fUB N B ,r))c U. But since fYB"NB"b",r)) is connected, it
must be included in a single component of U N D. Consequently, this
component contains a subsequence of (b,). The proof is complete.

4.3. ExampLE. The domain described in Gehring — Vaiséla [4, 10.7] is
quasiconformally flat, but not locally connected, on the boundary. Any
quasiconformal mapping of it onto a ball can therefore be extended to
a continuous mapping, but not to a homeomorphism, between the closures.

Mapping theorems. The Riemann mapping theorem states that a plane
domain D can be mapped quasiconformally onto B? if and only if oD
is a connected set which contains at least two points. This geometric con-
dition is necessary but not sufficient for a domain D C R, n >3, to be
quasiconformally equivalent to B". Furthermore, in contrast to the case
n = 2, in higher dimensions one cannot generally conclude whether or
not a domain D is quasiconformally equivalent to B* by looking only
at @D. In [2] Gehring showed, however, that to draw such a conclusion
one need only look at the part of D near 9D. That is, a domain D c R"
can be mapped quasiconformally onto B" if and only if 9D has a neighbor-
hood U such that UN D can be mapped quasiconformally into B"
with @D corresponding to 9B". This characterization is of global nature.
It is therefore natural to seek for a local characterization. In the rest of
this section we investigate local conditions for those domains that possess
certain connectedness properties on the boundaries so as to be quasicon-
formally equivalent to B". We begin with a necessary condition, and then
show in one special case that this condition will also be sufficient.

4.4. Theorem. Let D be a domain such that for each point b € 0D, D
is m(b)-connected at b for some positive integer m(b). If D 1is quasicon-
formally equivalent to B", then D is quasiconformally m(b)-collared at b.

Proof. Let f:D - B" be a quasiconformal mapping and b a point
in aD. By hypothesis, D is m-connected at b for some integer m. We
must find a neighborhood U of b as in 1.4.(v), the definition of quasi-
conformal m-collaredness.

By Theorem 4.1.(5), C(f,b) contains exactly m points, b;,...,D,.
For i=1,...,m set E, =B"NBYb;,r), where r >0 is so small
that E; N E,= 0 if j k. Next, for each ¢ let %;:E; — B be a
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quasiconformal mapping with lim k(y) = 0, lim k;'(z) = b;. Finally, set
y—>blC z—>0 m

E; = f'E; and choose a neighborhood ¥ of b so that f(V N D)c U E;.
i=1

Then U= VUE U...UE, is a neighborhood of b, U N D consists

of components K,,...,E, and ¢ =hof/E; is a quasiconformal
mapping of E; onto B'. Since b; = lim f|E,(z) and b = lim f-1(y) by
x—>b y_>blf

virtue of Theorems 2.3.(3) and 2.9, respectively, it follows that lim g,(z) = 0
and lim g;'(z) = b. The proof is thus complete. w>b
z—>0
In the case where m(b) =1 for each point b € 9D, Theorem 4.4 (or
Theorems 4.2.(4) and 4.2.(5)) provides a slightly strengthened version of
Theorem 3 in Vaisild [6]:

4.5. Theorem. Let D be a domain which is locally connected on the
boundary and quasiconformally equivalent to B*. Then D is a Jordan domain
which is quasiconformally collared on the boundary.

4.6. REMARK. Gehring showed in [2, Theorem 4] that a Jordan domain
Dc R is quasiconformally equivalent to B3 if it is quasiconformally
collared on the boundary in the following stronger sense: Each point
b € 0D has a neighborhood U such that there exists a quasiconformal
mapping ¢ : U N D — B’ which can be extended to a homeomorphism
g*: UND-— B’ UB2. From an aesthetical point of view, and also for
the purpose of obtaining analogous results for domains more general than
Jordan domains, it would seem desirable to remove the requirement on
the extendability of g in the above condition. In the next theorem we
show that this really can be done. In order to make clear that in 3-space
the necessary conditions given in Theorem 4.5 are also sufficient, we for-
mulate the result as follows:

4.7. Theorem. Let D c R? be a domain which is locally connected on
the boundary. Then D can be mapped quasiconformally onto B3 if and
only if the following conditions are satisfied:

(1) D is a Jordan domain.
(2) Every point in 0D has a neighborhood U such that U N D can be
mapped quasiconformally onto B3.

Proof. The necessity part follows from Theorem 4.5. In order to prove
the sufficiency part, we only need show that D is quasiconformally collared
on the boundary in the sense stated in Remark 4.6.

For this purpose, fix a point b € 3D. By (2), b has a neighborhood
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U such that there exists a quasiconformal mapping ¢:U N D — B’.
Since each point of 3B’ is quasiconformally accessible from B’ (Theorem
1.17.(3)) and since U N D is locally connected at b, lim g(x) exists

x—>b
according to Theorem 2.4.(2). We may assume, without restriction, that
lim g(x) = 0. Next, since B’ is quasiconformally flat at the origin (Theorem

x—>b

1.17.(2)), since C(g~1,0) is connected (Theorem 2.4.(1)), and since U N D
is locally connected, a fortiori, finitely connected at each point of U N aD,
Theorem 2.9 implies that b = lim g~Y(y). Choose », 0 <r <1, so that

y—>0
O(g~', B¥r))c U N aD. Arguing as above we conclude that for every
point ¢’ € B(r), lim g~}(y) = ¢ exists and that ¢’ = lim g(z). Set

y—=>c x—>c

V =g1B’ (r)UC(g, B¥r)) U cD.

Then V is a neighborhood of b and gV N D can be extended to a homeo-
morphism (g|V N D)*: VN D— B’ (r) U B*r). Composing (g9/V N D)*
with the mapping h, defined by h(y) = y/r, we obtain a homeomorphism
of VN D onto B> UB? which is quasiconformal in ¥ N D. The proof
of the theorem is thus complete.

Gehring showed in [1] that a quasiconformal mapping f: D — B® can
be extended to a quasiconformal mapping f: R — R® if and only if D
is a Jordan domain whose exterior is quasiconformally equivalent to B3,
Together with the previous theorem this yields:

4.8. Theorem. A domain D C R3 can be mapped onto B* by means of
a quasiconformal mapping of B3 if and only if D is a Jordan domain and
every point in 8D has a neighborhood U such that UN D and U N cD
can be mapped quasiconformally onto B2

4.9. REMARKS. (1) It is not known whether the 7n-dimensional analogue
of Theorem 4.7 is true for » > 3, but it is well known that the analogue
holds in the case n = 2. (Indeed, the condition (2) can be disregarded
in the plane.)

(2) It is not known whether the n-dimensional analogue of Theorem
4.8 is true for » > 3, but it is well known that the analogue is false in the
case n = 2.

4.10. ExampLE. Let D c R?® be a Jordan domain for which the simple
angle condition of Theorem 1.19 is satisfied at every boundary point. Then
D can be mapped quasiconformally onto B3 Moreover, each such quasi-
conformal mapping can be extended to a quasiconformal mapping of the
whole space.



38 Ann. Acad. Sci. Fennicee A, I. 484

5. Quasiconformal ridges

The results of Sections 3 and 4 indicate that the smoothness (together
with the similarity) of the boundaries usually determines whether two given
domains can be mapped quasiconformally onto each other, and, if such
a mapping exists, whether it can be extended to or over the boundaries.
Theorem 1.19 offers a simple geometric condition which (combined with a
topological condition) implies that the boundary of a domain D is »quasi-
conformally smooth» in a neighborhood U of a point of 8D; thatis, D
(as well as a component of CD) has the quasiconformal collaredness,
flatness, and accessibility properties at all points of 9D N U. This poses
a question concerning the properties of D at the boundary points for
which this geometric condition is not satisfied. In Remark 1.20.(3) we
observed that the condition is immaterial for plane domains, and claimed,
without any conclusive proof, that such is not the case in higher dimensions.
We shall now state arguments to support this assertion, through a detailed
examination of the domains whose boundaries contain sharp edges. For the
sake of clarity, we will restrict ourselves to 3-space R®, although the
ensuing results can be carried over to n-space R", n >3, without
difficulty.

5.1. Quasiconformal ridges. Generalizing Gehring — Vaisild [4, 10.9]
we say that a point set S in R® is a quasiconformal g-ridge if there exists
a quasiconformal mapping f, of R® which sends S onto

Sy ={2: v =g),0 <a;<a, |y <b},

where ¢ < o0, b < oo, and the function ¢ is subject to the following
restrictions:

1°. g is continuous in [0,a],g(0) =0, and g(x) > 0 for
o<u<a.

(5.1.1) 4 g0, g’ is continuous and non-decreasing in (0, a).

I 3° lim ¢'(u) = 0.
u—>0
The pre-image of the set
Ey={xv:v,=2,=0, v, <b}
under f, is called the edge of S. (By Theorem 1.19.(2) in this paper and
by Theorem 10.5 in Gehring — Viisild [4], the domain R\ S, is quasi-

conformally 2-collared at each point of Sy\ E, but at no point of E,.
Thus, by Theorem 3.1, the edge of S does not depend on the choice of
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the mapping f,.) A set S is called a quasiconformal ridge if it is a quasi-
conformal g¢-ridge for some function g¢ satisfying (5.1.1).

A domain D c R3 is said to have a quasiconformal ridge in its boundary
if some point @ € @D has a neighborhood U such that S = UNaD
is a quasiconformal ridge with @ as a point of its edge. Let f,: B3 — R3
be a quasiconformal mapping with f,S = 8,. Then there exists a constant
¢ > 0 such that either f;'(te,) €D for 0 <t <c or fy'(te;) €CD for
0 < t < c. The ridge S is said to be outward directed in the first case and
ward directed in the second case.

A domain D whose boundary contains a quasiconformal ridge § is
evidently locally connected at each point of S, irrespective of whether §
is outward or inward directed. Hence, with regard to the concepts (i) —
(vii) introduced in Section 1, only the quasiconformal properties (iv), (vi),
and (vii) are of interest in relation to the properties of D at the points of
S. By virtue of Theorems 1.19.(1) and 3.1, D is quasiconformally collared
at all points of S other than edge-points. Whether this is also the case at
edge-points depends on the direction of § with respect to D.

5.2. Theorem. A domain D C R® whose boundary conlains a quasi-
conformal ridge S is quasiconformally collared at the edge-points of S if and
only if S is tnward directed.

Pioof. Since B3 and B’ are quasiconformally equivalent, the necessity
part follows immediately from Theorem 10.5 of Gehring — Viisdld [4].
Conversely, assume that S is inward directed. Let f; be as in 5.1. By
Theorem 10.7 of Gehring — Viisdld [4], there exists a domain ¢, locally
connected on the boundary and quasiconformally equivalent to B3, and
an open set U, such that UNfiD =UNG and Sy =f,S=UNof,D =
U N 8G. Theorem 4.5 then implies that &, and a fortiori f D, is quasi-
conformally collared at every point of S,. According to Theorem 3.1, the
same is true of D at the points of S. The proof is complete.

A domain D whose boundary contains an inward directed quasi-
conformal ridge S has all the three quasiconformal properties at the edge-
points of S (Theorem 1.17). The situation is different if S is outward
directed, not merely in view of quasiconformal collaredness but with
regard to the quasiconformal flatness and accessibility properties as well.
For, as will soon be seen, whether or not D has these latter properties at
the edge-points depends on the sharpness of S.

5.3. Theorem. Let D cC R?® be a domain whose boundary contains an
outward directed quasiconformal g-ridge S.
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(1) A necessary condition for D to be quasiconformally flat at the edge-
points of S is the existence of a number d > 0 such that

d =2

(5.3.1) / /g(r sin @)r~2dedr = oo .
0 0

(2) A sufficient condition for D to be quasiconformally flat at the edge-
points of S is the existence of a number d > 0 such that

d Az
/ -2
/ ( /g(r sin ¢) "2 7‘d<p) dr = o .
0 0 '

Proof of (1). Suppose that (5.3.1) is not true for any positive number d.
We want to show that D is quasiconformally non-flat at every edge-
point @ of S. In view of Theorem 3.1, we may assume S to be the ridge
S, in 5.1. It obviously suffices to prove the assertion for the yjoint @ = 0.

For ¢t >0 let

Cty={x=(,¢,ay):r <<t,lr, <t}.

(5.3.2)

where (r, ¢, a,) are cylindrical coordinates in R® with the polar angle
¢ being measured from the positive half of the w,-axis. Choose £, > 0
so that

S, N C2t,)) = oD N C(2¢,) ,
and set
Fi=DNCO{t)N{x=(,¢,2,):0 <r<t,.¢=m/4},
F,=DNCOt)N{x=(r,q¢g.2):0<r<t,.qg =374},
I' =AF,,F,: D).
Since F, and F, are connected sets in D with 0 € F, N F,, we only

need show that M(I") < co.
For = (r,¢p,x,) let

—n
fo—

J — if x € DNCORLYN(Clt) N{r = (r,q¢.2,):
o(x) = ¢ <<a't or ¢ > 3a/4}),
| 0 otherwise.
Since each path of I' has a subpath which joins either the sets F; and

F, or the lateral surfaces of 9C(t) and 9C(2t;) in D N C(2t,), o € F(I).
Consequently,



Ramvo Nikki1, Boundary behavior of quasiconformal mappings 41

2, a2 g(r.sinq)
M(I) g/ 3dm < 4 // /7"‘2d372d¢d'r

0 /4 0

2, /2
<4// (rsin g)r—2dedr.

With antithesis this implies M(/") < co and thereby proves (1).

Proof of (2). Suppose that (5.3.2) holds. We must show that D is quasi-
conformally flat at every edge-point @ of S. Because of the quasiconformal
invariance of this property, it is sufficient to verify the validity of the
modulus condition in 1.7.(vi), the definition of quasiconformal flatness, in
the case of the ridge S = 8, aud the point @ = 0.

Let E; and E, be two line segments lying one in the positive half and
one in the negative half of the aj-axis with the origin as their common
end-point. Choose ¢, > 0 so that

Sy N C(ty) = 2D N C(ty) ,
() NE; =@, i=1,2
(5.3.3) gi(t) < 1.

For ¢t >0 set
Ity = ME, . E,: DN oClt)) .

As the first step we show that

o

(5.3.4) MO > / (fsin ) 121y |

9

for every ¢ € (0,¢,).
Fix such ¢ and let o € F(I\(f)). For each v €(—1,1) define a
rectifiable path y,:[0, 7] — D N 3C(t) by setting

yo(u) = (t, u, vg(u)),

where the same cylindrical coordinates have been used as in the proof of
(1). Since y, € I'y(t) and since ¢'(t) <1 by (5.1.1) and (5.3.3), Holder’s
inequality gives

o

o .
1g</9d3) <(2/Qf(]f[)

Vv 0
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<8 / 0%g(t sin @)tdep ( /g(t sin )12 tclq))z .
0 0 ’
Integrating with respect to v yields
1 . )2
/g3dm2 > / dv / 0%g(¢ sin @)tdp > (4 /g(t sin ¢) 712 td¢>—2 ;
ac(r) -1 0 0
and (5.3.4) follows.
Now let F, and F, be two arbitrary connected sets in D such that

0€F,NF,, let t, be as before, with F; in place of E;, and for > 0
set

I'ty=AF,,F,: DN oC(t)) .
As the second and crucial step we show that

MO (t
(5.3.5) MAOT(t)) = 3;,)(7“(&
for every ¢ € (0, ).
Fix such ¢. We may assume that F(I'(t)) # O, for otherwise (5.3.5)
follows trivially. Let o € F(I'(t)). If

1
(5.3.6) /gds > 5
Yo
for every rectifiable path 1y, € I'y(t), then 30 € F(I(t)), which implies
. MEEO(T (1))
(5.3.7) o3dm, > e
0C(y)

Suppose now that (5.3.6) is not true for some rectifiable path y, € I'y(t).
Choose a point @; € F; N aC(t), © = 1,2. Then a, # a,, because F(I'(t))
was assumed to be non-empty. Consider first the case where @, and a,
both lie outside |y,|, the locus of y,. Define a mapping f from cylindrical
coordinates (r, ¢ ,,) to orthonormal coordinates (;,x,.a3) by

f(r,¢,x2) = (7'9:”257‘('7/2 - ‘l)) .
Then f carries D N 9C({) onto the closure of a plane domain
Gty X(t) ={x:a, =1}.
Moreover,
(5.3.8) MFO(fT) = M3°O(T)



Ramto Nixkk1, Boundary behavior of quasiconformal mappings 43

for each path family I" in DN aC(t). Let a = f(a;), ¢ =1,2, and
ve =foy,. Obviously a; € |y,]. Next choose a point b; € y,/ so that
its wy-coordinate is equal to that of @/, and set ¢, = f(te,), c5 = f( — tes),

Iy(t) = A{er} » {ea} - G(1) -
By (5.1.1) and (5.3.3), for each ¢ there exists a path family
Ll € Aay, (b)) - 601)
which is similar to I'((t). Thus, by virtue of Véisild [8, Theorem 8.2] and
by (5.3.8),
(5.3.9) MYOT](1) > MIL(t) = MEO(Ty(1)) .

Next let I"(t) = fI(t) and define a function o : X(t) — R' by setting
o'(x) = g o (fID N oC(t))Y(x) for a € G(t) and o'(x) = 0 otherwise. Then
o' € F(I''(t)). Since (5.3.6) is false also with o' and y, in place of ¢ and
ves it follows that

i 1 & 1
(5.3.10) inf / o'ds > 3 or inf/ o'ds > -,
7 v 4
where the infima are taken over all rectifiable paths y; € I'y(f) ., y5 € I's(t).
Hence either 3o € F(I'j(t)) or 3¢" € F(IL(t)). In each case

’ T D)
(5.3.11) o’dmy > / o3dmy > —————

ac(r) X

27

by (5.3.9).

In the preceding argument we assumed that both of the points a; and
a, lie outside |y,|. If one, say a;, belongs to '»y', then the right hand
inequality in (5.3.10) is valid, and (5.3.11) thereby follows. Note that
‘v cannot contain both «; and «, because (5.3.6) was assumed to be
false. All in all, since ¢ € F(I'(t)) was arbitrary and since either (5.3.7)
or (5.3.11) holds, we obtain (5.3.5), as desired.

To complete the proof, set ['= A(F,.F,: D). We must show that
M) = oo. If FINF, =0, the assertion follows trivially. Otherwise
choose o € F(I'). Since o 0C(t) € F(I'(1)) for 0 <t <{,,

. a2
p

. o 1 : _2
/ o*dmgy > / dt /Q3d'm2 > 132 / < / g(t sin qp)lf'?fd([> dt = oo
&0) g

Rs 0 ac(t [

by Fubini’s theorem in cylindrical coordinates, by (5.3.5), by (5.3.4), and
by (5.3.2). Hence M(I') = oo, and the proof of (2) is complete.
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5.4. Theorem. Let Dc R? be a domain whose boundary contains an
outward directed quasiconformal g-ridge S. Then the edge-points of S are
quasiconformally accessible from D if and only if there exists a number
d >0 such that

d

du
(5.4.1) /W - »

0

Proof of the necessity. Suppose that (5.4.1) is not true for any positive
number d. We want to show that every edge-point @ of S is quasi-
conformally non-accessible from D. As in the proof of the preceding
theorem, we may, without loss of generality, restrict our consideration to
the ridge S = S, and to the point @ = 0. Choose » > 0 so that

So N B2r) = 8D N BY2r)

let 4 be a continuum in D, and fix a positive number §. To prove the
assertion, it suffices to find a connected set Fc D with 0 € F,
FNS8Sr)# @, and M(A(A,F:D)) <.

To this end, choose &,0 << & << min {2r,d(4, D)}, so that

(5.4.2) eg(e) < 0r?/8 .
By antithesis, there exists a number s> 1 for which

3 / du <16r>1"2
(5.4.3) g(u)llz: )

&fs

Now set
F=DNB¥r)N{x:a, < ¢s|,
=A(4,F:D),

and define a function ¢: R¥— B! as follows:

1 =
I[ - if x€DNB2r)N{w:a; <els),
o(x) = J ’ ! 0 1/21 i B3(2 1 / 1
lmaxl-; (lbrg ) ’lf r€DNB2r)N{x:es <a; <&},
l 0 otherwise .

Since every path of I' has a subpath which joins either the spheres S(r)
and S8%(2r) or the planes a; = ¢/s and ; = ¢ in DN B32r) N {x:2; < ¢}
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we infer, by taking (5.4.3) into account, that ¢ € F(I'). Consequently,
by (5.4.2) and by (5.4.3),

e gx) 2r

p) 3/2
M) < o*dm < 4 R
( )_/‘ = /0/6/(1(”9(@'1)) day doy doy -+

R3

m(D 0 B¥2r) N {x:x; < e))
2

&

e <_(1‘)3/2/ day B 4eg(e) oy
167) 9(1'1)1/2 ! 72

efs

This proves the necessity part of the theorem.

Proof of the sufficiency. Suppose that (5.4.1) holds. We must show that
every edge-point @ of S is quasiconformally accessible from D. Because
of the quasiconformal invariance of this property, it is again sufficient to
consider the ridge S = S, and the point ¢ = 0.

Let U be a neighborhood of the origin. For ¢ > 0 set

V{t) ={x:la; <t, i=1,2,3}.
Next choose a number 7,0 <r <d, so that V(2r)c U and
SeN V(2r) = 20D N V(2r).

By the condition 3°in (5.1.1), we may choose another number s, 0 <& <Z 7,
so that

(5.4.4) g(s) g'(rl) .

Finally set

5.4.5 — mi
( ) ) min ' 21g

where

(5.4.6) K = ( / (1 + g'(w)2/4)34 g(u)ﬂ/?du)z.

0
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By (5.1.1) and (5.4.1), K is finite and ¢ therefore positive. We will show
that the modulus condition in 1.7.(vii), the definition of quasiconformal
accessibility, is satisfied by the above A4 and .

For this, let F be a connected set in D with 0 € F and F N sl == 0.
We claim that M(I') > 6, where

I'=AA4,F:D).
We may assame that AN F = @, for otherwise there is nothing to
prove. Set
X(t) ={v:a; =1},
Zt) ={x a0y =1}.
Then at least one of the followirg two conditions holds:
1. X(t) N V(s) meets F for s/2 <t <s.
2. Either Z(t) N V(s) meets F for 0 <t <s or Z(#) N T'(s) meets
F for —s<t<O.

We must prove that in each case M(I') > 6.

Case 1. Let ¢ € F(I'). For every ¢ € (s/2,s) there exists a closed dise
Bc DN X(t) of radius less than g¢(s)/2 such that B meets both ¥
and A4;. Thus

o*dmy > / o’dmy, > ——

X(1)

by Viisald [5, Theorem 3.5]. Integrativg with respect to ¢ and using
[Fubini’s theorem we obtain

s

/ o*dmy > /dt oddmy >
21g(s)

K sz X()

Together with (5.4.5) this implies M(I") > 4.

Case 2. Assume, for example, that Z(t) N T'(x) meets F for every
t€(0,s). Set
G ={v:0<a, <r, x <gl)?2,r0,=0,
Ty= (4, {0}: G) .

As the first step we show that MZ(O(I7) > 0.
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Let o € F(Iy). For each v € (— 1/2,1/2) define a rectifiable path
v [0,1]— G by
yo(u) = (u, vg(u) , 0) .
Then v, € I, and Holder’s inequality yields

4

1< ( / ods )3 — < —/Q(u ,vg(u) , 0)(1 + Uzgl(u)2)1/2du>3
Y J y

< / ?g(u)du ( / (1 + v29’(u)2)3/49(u)‘”2du>2.
0 0

Integrating with respect to » and taking (5.4.6) into account we obtain

1/2 r

/ Q*dm, = / dv / Pgluydu =
K

Z(0) “12 0
Since this holds for every o € F(I)), we have

, 1

(5.4.7) MENIg) = T
For the second and crucial step, set

Ity = A(A4,, F: DN Z{)) .

We will now show, with the aid of (5.4.7), that MZY(I'(t)) > 1/K for each
(i €(0,s).
Fix such #, choose a point p = (p;.p,.t) of FN V(s), and set

.
(5.4.8) = — rpl :

Since p; <s and [p,] < ¢(p,), it follows from (5.4.8), from the condition
2° in (5.1.1), and from (5.4.4) that

kg(r) (= pg()  pg() _ g(r)

M| =
9 +(p21< : : 2

(5.4.9) 5 >

Defining a conformal affine mapping f: Z(0) — Z(t) by

we thus see that f(0) = p, and, if * = (r,x,,0) €GN A4,, then f(x) =
(xy, x5 ,t), where o, = kr + p, = r by (5.4.8) and where |a,| < kg(r)/2 +
pei << g(r)/2 by (5.4.9). Consequently,
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Iy={foy:y€lyc I

From Theorem 8.2 in Viisdld [8], from (5.4.7), and from (5.4.8) it then
follows that
1 1
(5.4.10) MEO(I()) = M3O(I) =7 MO (Iy) = X
as desired.
To complete the proof, let o € F(I'). Since ¢ Z(t) € F(I(t)) for
0 <t < s, we obtain, by Fubini's theorem and by (5.4.10),

/ dmg > /dt/ o*dm, = MZO(I'(t ))/dt>?.

Z(1)

Together with (5.4.5) this implies M (") > d. The proof of the sufficiency
part, and thus of the whole theorem, is complete.

5.5. ExampLESs. (1) Let D be a domain whose boundary contains an
outward directed quasiconformal ridge S defined by the function g(u) =
wP, p > 1. Then D is not quasiconformally flat at the edge-points of S.
Jontrary to this, the edge-points are quasiconformally accessible from D
if and only if 1 < p < 2.

(2) The function g¢(u) = u/|/log |, 0 <u < 1/2, defines an outward
directed quasiconformal ridge in such a way that the corresponding domain
has the quasiconformal flatness and accessibility properties at the edge-
points.

(3) The first example implies that there exist ridges such that the edge-
points are quasiconformally accessible from the corresponding domain,
although the domain is quasiconformally non-flat at the edge-points. We
finally show that there also exist ridges such that the domain is quasicon-
formally flat at the edge-poirts, although these points are quasiconformally
non-accessibie from the domain. For this purpese. let ¢(u) = u/ log u|,
g*(u) = u?, and

s A . c
I(g,b,c) = / ( / g(r sin <p)_1/2¢d<p) 2dr , I¥(g*.,b,c) = /g*(u)_llzdu .
h 0 b
Then I(g,0,1/2) = oc = I*(g*,0,1/2). Choose 12 = af > a¥ > a, >

ay>...>af >af >a,>a,,, > ...>0 so that I(g,ay , ay_,) =
1 = I*g*,af,ak ), k=1,2,..., and

gy ) = g*(a3i) — g(as,_,) 7y — g(ay) — g*(a%.1)
e afe — Mgy 2 Ao — 311 :
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Define a function §:[0,1/2] — R! as follows:

g% (u) if ay <w<aj_,,
9(@g_1) + y' (1) (@ — ay_y) i ay_, <u<aj,

glu) = | g(u) if ay <u <ay .
g¥(adi ) + g’ (ay)(w — af .y if aj,, <u<ay,
0 if w=0.

Then the conditions 1°—3° in (5.1.1) are satisfied with § and 1/2 in place
of g and a, except that §'(u) does not exist for v =ajf, k=2,3,....
However, it is clear in what manner § can be modified to produce a function
which does not suffer from this deficiency. Since 1(§,0,1/2) = o0 =
I*(g,0,1/2), we conclude from Theorems 5.3 and 5.4 that this modified
function defines a quasiconformal ridge in such a way that the corre-
sponding domain is quasiconformally flat at the edge-points, although
these points are quasiconformally non-accessible from the domain.
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Helsinki, Finland

University of Michigan,
Ann Arbor, U.S.A.
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