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On the nonexistence of perfeect 4-Hamming-error-correcting codes

1. Introduction. Let K = GF(q) be the finite field of ¢ = p" elements
where p is a prime. Let ¥V be the vector space K". For a € V, let |a]
be the number of nonzero components of a. The sphere of centre a and
radius e is defined as the set

B(a,e)={x€V|[x—al=e}.
A subset C of V is called a perfect (or close-packed) e-(Hamming-)error-
correcting code if

()U Bla,e) =V

a€C

and
(iija€C, b€C, a b implies B(a,e)N B(b,e) =0 .

The dimension n of V is called the block length of C'.

A perfect e-error-correcting code of block length n is called trivial if
e =n (one-word code) or if ¢ =2 and n = 2¢ + 1 (repetition code of
two words). For every ¢, there is an infinity of nontrivial perfect 1-error-
correcting codes. Nontrivial perfect e-error-correcting codes with e > 1
are known only for e=2,¢g=3,n=11,ande=3,9q=2,n=23.
Both of them are called Golay codes (see [3], pp. 302—309). It was proved
in 1968 or earlier (see [4], [1], [2] and references in [1]) that there are no
unknown perfect 2-error-correcting codes for ¢ = 9. In his paper [5] van
Lint proved the nonexistence of unknown perfect e-error-correcting codes
in cases ¢ = 2 and e = 3 for all ¢. The purpose of this note is to extend
that result to the case that e¢ = 4. We shall hence prove the following

Theorem. There are nmo nontrivial perfect 4-error-correcting codes over
finite fields.

2. Lemma. In the proof of this theorem we shall use the following

Lemma. If a nontrivial perfect e-error-correcting code of block length n
over GF(q) exists then the polynomial
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where
x . .
(J:x(m—l)...(x—z—l— jat,
has e distinct integral zeros among 1,2, ..., n — 1.

This lemma, which is due to Lloyd [6]in case ¢ = 2, is here in the form
in which van Lint gave it in [5].

3. Proof of Theorem. Assume the contrary: there exists a nontrivial
perfect 4-error-correcting code with block length n over GF(q). Because
the case ¢ = 2 has been considered by van Lint (see [5], p. 399) and be-
cause the trivial perfect codes are excluded, we may suppose that ¢ = 3
and n =5.

By the equation (1)

24q74P,(x) = a* — A’ + Au® — Azx + A,

where
(2) A, =4n — 6 — (4n — 16)g!
and
4
(3) 4= 24q—4go(4 " 1) (¢ — 1)

On the other hand, van Lint ([5], the eq. (2.2)) has shown that there exists
a positive integer &k such that

(4) > (4 " Z) (¢ — 1) =g

i=0

Furthermore, we know that

(5) Ty + X 2y +xy = 4,
and
(6) T Xg23%y = Ay

where @, 7, ,2; and (v, <, <3 <) are the zeros of Py(x).
A combination of the equations (6), (3), (4) and ¢ = p" gives the result

(7 2y 57, = 24ptr
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In the rest of this paper we shall show, by means of some easy but
rather lengthy calculations, that the number X = (z; + @, + x5 4 2,)/2y
is, by (7), considerably smaller than 4 and, moreover, that this result
with the inequality xz, <n — 1 and with the equations (5) and (2) leads
to a contradiction.

If p =2, one of the numbers z;, say z;, is of the form 3-2% the
others are powers of 2. If j=1, X <31/16; if j=2, X <17/8; if
j=3, X=5/2; if j=4, X =13/6. Consequently X =5/2 for
p = 2. Hence

(8) A4, <5 —1)2.

On the other hand, it follows from the equation (2) and from the inequality
q = 4 that

(9) A, =4n — 6 — (4n — 16)/4 = 3n — 2.

The inequalities (8) and (9) imply n = — 1 which is impossible.

If p=3, aawyr, is of the form 8- 3% If one of the factors z; is
divisible by 8 then X = 7/3 . If one factor is divisible by 4 and another by
2 then X = 5/2. In the case that only one of the x;’s is not divisible by
2 we find the result X << 2. Using the inequalities X < 5/2, v, =n — 1
and

2, + 2y + X5 + 2y = 4n — 6 — (40 — 16)/3
we get the impossibility
5(n — 1)/2 = (8n — 2)/3.
If p =5, xaeagr, is of the form 2%-3- 5% and therefore one of the

factors is of the form 2°- 3 - 57 and the others are of the form 2° - 5°. Using
this result it is possible to see that X = 79/25. Hence we get the impossibility

79(n — 1)/25 = (16n — 14)/5.
If p =7, we may see that X < 25/8. This implies the inequality
25(n — 1)/8 = (24n — 26)/7

which is impossible since n > 4.

Note added December 7, 1970. Prof. J. H. van Lint announced to me
to-day that he has recently extended his result to the case that e =4
(Nonexistence theorems for perfect error-correcting codes, to appear in
the proceedings of the A.M.S. Symposium in Algebra and Number Theory
1970) and even to cases ¢ =5, e =6 and e= 7 (On the nonexistence
of perfect 5-, 6- and 7-Hamming-error-correcting codes over GF(q). —
Report 70-WSK-06, Technological University Eindhoven). His method
differs considerably from that of this paper.
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