ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

487

KOEBE SETS FOR UNIVALENT FUNCTIONS WITH TWO PREASSIGNED VALUES

 $\mathbf{B}\mathbf{Y}$

J. KRZYŻ and E. ZLOTKIEWICZ

HELSINKI 1971 SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1971.487

Copyright © 1971 by Academia Scientiarum Fennica

Communicated 9 October 1970 by Olli Lehto

KESKUSKIRJAPAINO HELSINKI 1971

1. INTRODUCTION

Suppose that \mathfrak{M} is a fixed, non-empty class of functions analytic and univalent in the unit disk Δ .

In [6] the following definition of the Koebe set $\mathcal{K}(\mathcal{M})$ of \mathcal{M} was given:

(1.1)
$$\mathcal{K}(\mathfrak{I}) = \bigcap_{f \in \mathcal{M}} f(\Delta)$$

 $\mathcal{K}(\mathcal{M})$ is not necessarily a domain in cases considered below so that the notion Koebe set rather that Koebe domain seems to be more adequate for our purposes.

If $\mathcal S$ denotes the class of functions f univalent and normalized in the usual way: f(0)=0, f'(0)=1, then obviously $\mathcal K(\mathcal M)$ is Koebe's one-quarter disk.

In this paper we determine the set $\mathcal{K}(\mathcal{M})$ for various classes of univalent functions subject to Montel's normalization ([9], p. 66):

(1.2)
$$f(0) = a, f(z_0) = b.$$

Some thirty years ago an analogous problem was investigated by W. W. Rogosinski [10] who gave the solution under an additional assumption of starshapedness of f.

In this paper we give a general and simple method of evaluating $\mathcal{K}(\mathcal{M})$ for univalent functions subject to the normalization (1.2). This enables us to reduce this problem to the following extremal problem which has an independent interest: given a point w and a class $\mathfrak{G} = \mathfrak{G}(a,b)$ of simply connected domains Ω in the open plane \mathfrak{E}^2 such that $a,b\in\Omega$, find the supremum $\mu(w,\mathfrak{G})$ of Green's function $g(a,b;\Omega)$ for all $\Omega\in\mathfrak{G}$ such that $w\in\mathfrak{E}^2\setminus\Omega$. This problem is solved here for classes of convex, starlike and close-to-convex domains (Lemmas 2-4). Also the general case of arbitrary simply connected domains is considered (Theorem 1).

As corollaries of Lemmas 1-4 we obtain Theorems 3-5 which yield $\mathcal{K}(\mathcal{M})$ for the relevant classes of functions.

2. BASIC LEMMAS

We now prove the following

Lemma 1. Suppose that \mathfrak{G} is a class of simply connected domains Ω containing two fixed, different points a, b of the finite plane \mathfrak{E}^2 . Suppose that \mathfrak{G} has following properties:

(i) if for a given, finite w there exists in \mathfrak{G} a domain omitting w, there exists in \mathfrak{G} a domain Ω_w with the maximal Green's function $g(a,b;\Omega)$ among all $\Omega \in \mathfrak{G}$ such that $w \in \mathfrak{E}^2 \setminus \Omega$, i.e.

$$(2.1) g(a, b; \Omega) \leq g(a, b; \Omega_w) = \mu(w; \mathfrak{G})$$

for any $\Omega \in \mathfrak{G}$ such that $w \in \mathfrak{E}^2 \setminus \Omega$;

(ii) the set $\{z: g(a, z; \Omega_w) > \delta\}$ belongs to \mathfrak{G} for all $0 < \delta < g(a, b; \Omega_w)$.

Let $\mathfrak{G}_{\gamma} = \{ \Omega \in \mathfrak{G} : g(a, b; \Omega) = \gamma \}, \gamma > 0$.

Then
$$\bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega = \{ w : \mu(w, \mathfrak{G}) < \gamma \}.$$

Proof. Suppose that w does not belong to $\bigcap_{\Omega \in \mathfrak{S}_{\gamma}} \Omega$. Then there exists

 $\begin{array}{lll} \Omega_1 \in \mathfrak{G}_{\gamma} & \text{such that} & w \in \mathcal{E}^2 \diagdown \Omega_1 \,. & \text{Now,} & g(a \,, b \,; \, \Omega_1) = \gamma \leq \mu(w) & \text{by (2.1)}. \\ \text{Thus} & [w \not \in \bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega] & \text{implies} & [\mu(w) \geq \gamma] \,, & \text{or} & [\mu(w) < \gamma] & \text{implies} & [w \in \bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega] \,. \end{array}$

Suppose now that $\mu(w) \geq \gamma$. From (i) it follows that $g(a, b; \Omega_w) = \mu(w) \geq \gamma$. Consider now $\Omega^{\delta} = \{z : g(a, z; \Omega_w) > \delta\}$. Clearly $\Omega^0 = \Omega_w$. Since $\gamma > 0$, we have $g(a, b; \Omega^{\delta}) = \gamma$ for suitably chosen δ with $\Omega^{\delta} \in \mathfrak{G}_{\gamma}$ by (ii). Since $\Omega^{\delta} \subset \Omega_w$, we have $w \in \mathfrak{C}^2 \setminus \Omega^{\delta}$ and consequently, $w \notin \bigcap_{\Omega \in \mathfrak{G}_w} \Omega$.

This means that conversely, $[w\in\bigcap_{\Omega\in \mathfrak{G}_{\gamma}}\Omega]$ implies $[\mu(w)<\gamma]$. Our lemma

is proved.

We shall be now concerned with the evaluation of the function $\mu(w, \mathfrak{G})$ for various classes of domains. We start with the class of convex domains \mathfrak{G}^{c} .

Lemma 2. Let $\mathfrak{G}^c = \mathfrak{G}^c(a,b)$ be the class of all convex domains Ω containing the points a,b. If w lies outside [a,b], $\Omega \in \mathfrak{G}^c$ and $w \in \mathfrak{T}^2 \setminus \Omega$, then

(2.2)
$$\mu(w, \mathfrak{G}^{c}) = \sup_{\Omega \in \mathfrak{G}^{c}} g(a, b; \Omega) = g(a, b; \Omega_{w}) =$$

$$= \log \frac{|w - a| + |w - b|}{|a - b|}$$

The extremal domain is a half-plane $\Omega_{\mathbf{w}}$ whose boundary l contains the point \mathbf{w} and subtends equal angles with segments $[\mathbf{w}, \mathbf{a}], [\mathbf{w}, \mathbf{b}]$.

Proof. If Ω is a convex domain containing a, b and leaving w

outside, there exists a half-plane H containing Ω and such that $w \in \operatorname{fr} H$. Since $g(a,b;\Omega) \leq g(a,b;H)$, it is sufficient to consider just the half-planes H with $w \in \operatorname{fr} H$. Suppose now that H is the right half-plane, w=0, $a=de^{i\theta}$, $b=he^{i(\alpha+\theta)}$. Here d,h,α are real and fixed (d,h>0), whereas θ has to be chosen so that $g(de^{i\theta},he^{i(\alpha+\theta)};H)$ is a maximum.

We have

$$g(W, de^{i\theta}; H) = -\log|z|, \text{ where}$$

$$z = (W - de^{i\theta})/(W + de^{-i\theta}), W = he^{i(\alpha + \theta)}.$$

Hence $\max g(W, de^{i\theta}; H)$ corresponds to

(2.4)
$$\min_{\theta} |z| = \min_{\theta} |he^{i\alpha} - d| |he^{i(\alpha+\theta)} + de^{-i\theta}|^{-1} =$$
$$= |a - b| (h + d)^{-1} = |a - b| (|w - a| + |w - b|)^{-1}.$$

The extremal case occurs for $2\theta = -x$, i.e. the normal of fr H at w bisects the angle $[a\,,w\,,b]$. Now, the equality (2.2) follows immediately from (2.3) and (2.4). A simply connected domain is called close-to-convex if it is an image domain of a disk under a close-to-convex mapping, cf. [5]. A necessary and sufficient condition for Ω to be close-to-convex is that $\mathcal{E}^2 \setminus \Omega$ is a union of closed rays not intersecting each other [2], [8]. We say that the rays l_1 and l_2 do not intersect each other if $l_1 \cap l_2$ is either empty, or it reduces to the origin of one of the rays.

We shall now evaluate the expression $\mu(w, \mathfrak{G}^L)$ for the class \mathfrak{G}^L of close-to-convex domains.

Lemma 3. Let $\mathfrak{G}^L = \mathfrak{G}^L(a,b)$ be the class of close-to-convex domains Ω containing the points a, b. If $\Omega \in \mathfrak{G}^L$ and $w \in \mathfrak{E}^2 \setminus \Omega$ then

(2.5)
$$\mu(w, \mathfrak{G}^{L}) = \sup_{\Omega \in \mathfrak{G}^{L}} g(a, b; \Omega) = g(a, b; \Omega_{w}) = \frac{1}{2} \log \frac{R_{1} + R_{2} + 2\sqrt{R_{1}R_{2}}}{R_{1} + R_{2} - [(R_{1} + R_{2})^{2} - |a - b|^{2}]^{1/2}}$$

where $R_1 = |w-a|$, $R_2 = |w-b|$.

The extremal domain Ω_w is the open plane \mathcal{E}^2 slit along a ray l_w emanating from w which subtends equal angles with segments [w, a], [w, b] and does not intersect the segment [a, b].

Proof. If $\Omega \in \mathfrak{G}^L$ and $w \in \mathfrak{E}^2 \setminus \Omega$, it follows from the geometrical definition of Ω that there exists in $\mathfrak{E}^2 \setminus \Omega$ a ray l containing the point w. On the other hand, $\Omega \subset \mathfrak{E}^2 \setminus l \in \mathfrak{G}^L$ and consequently, $g(a, b; \Omega) \leq g(a, b; \mathfrak{E}^2 \setminus l)$. Hence we may restrict ourselves to the domains $\Omega = \mathfrak{E}^2 \setminus l$. By shifting l along itself so that w becomes its origin,

we increase g(a, b). Thus we may assume that $\Omega = \mathcal{E}^2 \setminus l_w$ and l_w is a ray emanating from w. We can take l_w as the negative real axis and rotate a, b round the origin, i.e. we may take w = 0, $a = de^{io}$, $b = he^{i(\alpha+o)}$. After a transformation $t = \sqrt{w}$ we obtain the case already considered in Lemma 2. In view of the conformal invariance of Green's function we have by (2.2):

$$egin{align} \mu(w\,,\,\mathfrak{G}^{L}) &= \log rac{\sqrt{d} + \sqrt{h}}{|\sqrt{d}e^{-ilpha/4} - \sqrt{h}e^{ilpha/4}|} = \ &= rac{1}{2}\log rac{d+h+2\,\sqrt{hd}}{d+h-2\,\sqrt{hd}\coslpha/2}\,. \end{split}$$

In case of a maximum we may obviously assume that the ray l_w does not intersect the segment [a, b] which means that $0 \le \alpha \le \pi$.

Now, $|a-b|^2 = d^2 + h^2 - 2hd \cos \alpha = (d+h)^2 - 2hd(1+\cos \alpha);$ hence $\sqrt{(d+h)^2 - |a-b|^2} = 2\sqrt{hd} \cos \alpha/2$ and finally

$$\mu(w~,~\mathfrak{G}^L) = rac{1}{2}\lograc{h+d+2~\sqrt{hd}}{h+d-\sqrt{(h+d)^2-|a-b|^2}}\,.$$

With $d=R_1$, $h=R_2$ we obtain the desired result. We can prove easily in an analogous manner

Lemma 4. Let $\mathfrak{G}^* = \mathfrak{G}^*(a,b)$ be the class of all domains Ω starlike with respect to a and containing b. If w lies outside [a,b], $\Omega \in \mathfrak{G}^*$ and $w \in \mathscr{E}^2 \setminus \Omega$ then

(2.6)
$$\mu(w, \mathfrak{G}^*) = \sup \{g(a, b; \Omega) : \Omega \in \mathfrak{G}^*, w \in \mathfrak{C}^2 \setminus \Omega\} =$$

$$= \log \left[\frac{R_1 + R_2}{|a - b|} + \sqrt{\left(\frac{R_1 + R_2}{|a - b|}\right)^2 - 1} \right] = \operatorname{Ar} \cosh \frac{R_1 + R_2}{|a - b|}.$$

The extremal domain Ω_w is the open plane \mathcal{E}^2 slit along a ray l_w emanating from w whose prolongation contains the point a.

Due to symmetry of μ with respect to R_1 , R_2 we have also

$$\mu[w \ , \ \Im^*(a \ , b)] = \mu[w \ , \ \Im^*(b \ , a)] \ .$$

3. AN EXTREMAL PROBLEM FOR SIMPLY CONNECTED DOMAINS

We shall be now concerned with a counterpart of Lemmas 2-4 for general simply connected domains. We prove the following

Theorem 1. Let $\mathfrak{G} = \mathfrak{G}(a,b)$ be the class of all simply connected domains Ω containing the points a,b. If $\lambda(\tau)$ is the modular function and τ_0 is the unique solution of the equation

$$\lambda(\tau) = (b-a)/(w-a)$$

contained in the fundamental domain B of $\lambda(\tau)$ then the maximal value $\mu(w, \mathfrak{G})$ of Green's function $g(a, b; \Omega)$ for $\Omega \in \mathfrak{G}$ such that $w \in \mathfrak{C}^2 \setminus \Omega$ satisfies

(3.2)
$$\mu(w, \mathfrak{G}) = -\log v^{-1}(\frac{1}{2} \text{ im } \tau_0),$$

where

(3.3)
$$v(r) = \frac{1}{4} K(\sqrt{1 - r^2}) / K(r)$$

is the modulus of $\Delta \setminus [0, r]$. The extremal domain Ω_w for which the upper bound (3.2) is attained is a slit domain $\mathcal{E}^2 \setminus C_w$, the slit C_w being the image of the segment $[0, \frac{1}{2}]$ under the \wp -function of Weierstrass with periods $1, \tau_0$.

Proof. Suppose that $\Omega \in \mathfrak{G}$ and $w \in \mathfrak{T}^2 \setminus \Omega$. After a suitable translation we may achieve a+b+w=0. Consider the family Γ' of all closed, rectifiable curves situated in Ω and separating a, b from fr Ω . It is well known that the modulus mod Γ' of the family Γ' satisfies

$$\mod \Gamma' = \nu(e^{-g})$$

where $g = g(a, b; \Omega)$, cf. [3].

Consider now the family Γ of all closed, rectifiable curves separating a, b from w and such that the curves of both families Γ' , Γ are homotopic with respect to $\mathcal{E}^2 \setminus \{a \; ; \; b \; ; \; w\}$. Let \wp be the elliptic function of Weierstrass with periods 1, τ (im $\tau > 0$) which are chosen so that $w = e_1 = \wp \left(\frac{1}{2}\right)$, $a = e_2 = \wp \left(\frac{1}{2}\; \tau\right)$, $b = e_3 = \wp \left(\frac{1}{2}(1+\tau)\right)$. The corresponding value τ is a solution of the equation

(3.5)
$$\lambda(\tau) = \frac{e_3 - e_2}{e_1 - e_2} = \frac{b - a}{w - a},$$

 λ being the elliptic modular function.

The equation (3.5) has a countable number of solutions τ_k . There is also a countable number of homotopy classes Γ_k of closed curves separating a, b from w. If τ_k is a suitably chosen solution of (3.5) then

$$(3.6) \operatorname{mod} \Gamma_k = \frac{1}{2} \operatorname{im} \tau_k ,$$

cf. e.g. [1], p. 56.

All the solutions of (3.5) are congruent to each other with respect to the subgroup M_0 of the modular transformations $\tau'=(a\tau+b)(c\tau+d)^{-1}$ with $a\equiv d\equiv 1\ (\mathrm{mod}\ 2)$, $c\equiv b\equiv 0\ (\mathrm{mod}\ 2)$, ad-bc=1.

Let B be the fundamental region of λ w.r.t. M_0 , i.e.

To get B we add that part of fr B where re $\tau \leq 0$ and im $\tau > 0$. There exists a unique solution τ_0 of (3.5) contained in B, cf. [4], p. 176. The subgroup M_0 is generated by the transformations

$$T_0 = \tau + 2$$
, $T_1 = \tau/(1-2\tau)$,

cf. ibid., p. 176. The transformation T_0^k (or $T_0^{-k} = (T_0^{-1})^k$) gives for a suitably chosen integer k a point τ with $|\text{re }\tau| \leq 1$ and does not change im τ .

Hence we may consider only those Γ_k which correspond to $|\text{re }\tau_k| \leq 1$. Suppose now that τ lies in the strip $|\text{re }\tau| \leq 1$ outside B, i.e. τ satisfies one of the inequalities $|\tau \mp \frac{1}{2}| \leq \frac{1}{2}$. Then the point $\tau' = \tau(1 \mp 2\tau)^{-1}$ lies in B, whereas im $\tau' = |1 \mp 2\tau|^{-2}$ im $\tau \geq \text{im }\tau$. Thus among all τ_k which satisfy (3.5) the point τ_0 with maximal imaginary part can be taken as the unique solution of (3.5) contained in B. We have $\Gamma' \subset \Gamma = \Gamma_k$ for some k, hence by (3.4) and (3.6)

$$v(e^{-g}) = \mod \Gamma' \leq \mod \Gamma \leq \max_{k} \mod \Gamma_k = \frac{1}{2} \operatorname{im} \tau_0$$

which implies $e^{-g} \geq v^{-1}(\frac{1}{2} \operatorname{im} \tau_0)$, or

$$(3.8) \hspace{1.5cm} g = g(a \; , b \; ; \, \varOmega) \leq - \, \log \, {\it v}^{-1}({\textstyle \frac{1}{2}} \, {\rm im} \, \, \tau_0) \; , \label{eq:gaussian}$$

for any simply connected domain Ω with $w \in \mathcal{E}^2 \setminus \Omega$. We now construct an extremal domain Ω_w for which the sign of equality in (3.8) is attained.

Given the points a, b, w with a + b + w = 0 (which may be achieved after a suitable translation), we find the solution $\tau_0 = s_0 + it_0 \in B$ of the equation (3.5).

The function

$$u = \exp 2 \pi i \zeta = \exp 2 \pi i (\xi + i \eta)$$

maps the parallelogram $P=[0,1,1+\tau_0\,,\,\tau_0]$ whose sides $[0\,,\,\tau_0]$, $[1\,,1+\tau_0]$ are identified onto the annulus $A=\{u:\exp(-2\,\pi\,t_0)<|u|<1\}$. The points $\zeta=\frac{1}{2}\,;\frac{1}{2}\,\tau_0\,;\frac{1}{2}(1+\tau_0)$ correspond to u=-1; $\exp(\pi\,i\,\tau_0)$; $-\exp(\pi\,i\,\tau_0)$, resp. We take now $r\in(0\,,1)$ such that

(3.9)
$$v(r) = \frac{1}{2} \text{ im } \tau_0 = \frac{1}{2\pi} \log e^{\pi t_0}$$

and map the ring domain $\Delta \setminus [0, r]$ conformally onto the annulus $A_1 = \{u : \exp(-\pi t_0) < |u| < 1\}$ so that z = 0, r correspond to $u = \exp(\pi i \tau_0)$, $-\exp(\pi i \tau_0)$, resp. The points of A_1 correspond to the lower half of P in the ζ -plane. If we identify in $\Delta \setminus [0, r]$ the opposite edges

of the slit [0, r] which corresponds to the identification of points on $[\frac{1}{2}\tau_0, 1+\frac{1}{2}\tau_0]$ symmetric with respect to $\frac{1}{2}(1+\tau_0)$ then the resulting transformation

$$(3.10) z \to \zeta \to W = \wp(\zeta; 1, \tau_0) = \wp(\zeta)$$

maps 1:1 conformally the unit disk Δ onto the W-plane slit along the arc C_w where C_w is the image of [0,1] under $\wp(\zeta)$. Obviously the images of $[0,\frac{1}{2}]$, $[\frac{1}{2},1]$ under \wp are identical and equal C_w .

The fact that \wp is an even elliptic function of order 2 implies the univalence of the resulting mapping, also cf. [7] p. 47. The points on |z|=1 corresponding to u=1,-1 and $\zeta=0,\frac{1}{2}$, resp. give the end-points of C_w in the W-plane, i.e. the points $\wp(0)=\infty$, $\wp(\frac{1}{2})=w$, whereas $z=0 \leftrightarrow u=\exp(\pi \ i \ \tau_0) \leftrightarrow \zeta=\frac{1}{2} \ \tau_0 \leftrightarrow W=\wp(\frac{1}{2} \ \tau_0)=a$, $z=r \leftrightarrow u=-\exp(\pi \ i \ \tau_0) \leftrightarrow \zeta=\frac{1}{2}(1+\tau_0) \leftrightarrow W=\wp(\frac{1}{2}(1+\tau_0))=b$.

The family of closed curves situated in Δ and separating 0, r from fr Δ has the modulus $\nu(r) = \frac{1}{2} \text{ im } \tau_0$ according to (3.9). On the other hand, by the conformal invariance of Green's function

$$(3.11) g(a,b; \mathscr{E}^2 \setminus C_w) = g(0,r;\Delta) = -\log r.$$

From (3.9) and (3.11) the equality

(3.12)
$$g(a, b; \mathcal{E}^2 \setminus C_w) = -\log \nu^{-1}(\frac{1}{2} \operatorname{im} \tau_0)$$

follows by eliminating r.

Theorem 1 is proved.

A related extremal problem was investigated by Schiffer [11] who solved it in a different way by variational methods; also cf. [12].

4. THE DETERMINATION OF KOEBE SETS

Given $z_0 \in \Delta$ consider the class $\Im ll = \Im ll(z_0)$ of functions analytic and univalent in the unit disk Δ which satisfy the conditions

(4.1)
$$f(0) = 0$$
, $f(z_0) = 1$.

If $f \in \mathcal{M}$ then $\Omega = f(\Delta) \in \mathfrak{G}(0,1)$ where $\mathfrak{G}(0,1)$ is the class of all simply connected domains containing 0,1. With each $f \in \mathcal{M}$ we can associate a domain $\Omega = f(\Delta) \in \mathfrak{G}_{\gamma}$ where $\gamma = -\log|z_0|$ which is an obvious consequence of the conformal invariance of Green's function.

Conversely, if $\Omega \in \mathfrak{G}_{\gamma}$ then Ω can be mapped on Δ conformally so that $\varphi(0) = 0$, $\varphi(1) = \zeta_0$, where $-\log |\zeta_0| = \gamma$. Hence $z_0 = e^{i\beta} \zeta_0$ for suitably chosen β and $\varphi^{-1}(e^{-i\beta}z) \in M$.

Thus

$$(4.2) \qquad \qquad \bigcap_{f \in \mathcal{I}(\mathcal{I}_{\mathbf{o}})} f(\Delta) = \bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega$$

where $\gamma = -\log |z_0|$.

The above considerations as well as Lemma 1 yield

Theorem 2. The Koebe set $\mathcal{K}(\mathfrak{M}) = \bigcap_{f \in \mathcal{M}} f(\Delta)$ for the class $\mathfrak{M} = \mathfrak{M}(z_0)$

of functions analytic and univalent in the unit disk Δ subject to the normalization (4.1) is the image set of $B \cap H(r)$ under the mapping $w = 1/\lambda(\tau)$, where $r = |z_0|$, $H(r) = \{\tau : \text{im } \tau < 2 \ \nu(r) \}$, ν being defined by (3.3); λ is the elliptic modular function and B is its fundamental region.

The set $\mathcal{K}(\mathcal{M})$ is symmetric with respect to the point $w = \frac{1}{2}$ and is a simply connected Jordan domain for $0 < r < 2^{-1/2}$. For $2^{-1/2} \le r < 1$ the set $\mathcal{K}(\mathcal{M})$ is a union of two congruent, disjoint, simply connected Jordan domains.

Proof. According to our previous remarks $\mathcal{K}(\mathcal{M}) = \bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega$ with $\gamma = -\log r$. In view of Lemma 1 and Theorem $1 \bigcap_{\Omega \in \mathfrak{G}_{\gamma}} \Omega = \{ w : \mu(w, \mathfrak{G}) < \gamma \} = \{ w : \operatorname{im} \tau_0(w) < 2 \ v(r) \}$. Thus $\tau_0(w) \in B \cap H(r)$. Moreover, $\tau_0(w)$

satisfies (3.5) with a = 0, b = 1, i.e. $\lambda(\tau_0) = 1/w$, or $w = 1/\lambda(\tau_0)$. This shows that $w \in \mathcal{K}(\mathfrak{I})$, iff $w = 1/\lambda(\tau_0)$ with $\tau_0 \in B \cap H(r)$.

We now prove the symmetry property.

To this end it is sufficient to show that $1 - w_0 \in \mathcal{K}(\mathcal{I})$ as soon as $w_0 \in \mathcal{K}(\mathcal{I})$.

Suppose that $\tau_0 \in B \cap H(r)$ satisfies $w_0 = [\lambda(\tau_0)]^{-1}$. Obviously one of the points $\tau_0 \mp 1$, say τ_1 , also belongs to $B \cap H(r)$. Since $\lambda(\tau_0 \mp 1) = \lambda(\tau_0)/[\lambda(\tau_0) - 1] = \lambda(\tau_1)$, we have $w_1 = [\lambda(\tau_1)]^{-1} = [\lambda(\tau_0)]^{-1} [\lambda(\tau_0) - 1] = 1 - w_0 \in \mathcal{K}(\mathcal{M})$.

Suppose now that $v(r) > \frac{1}{4}$, or $r < 2^{-1/2}$. Then the image of $B \cap M(r)$ is a Jordan domain whose boundary has the parametric representation

(4.3)
$$w = [\lambda(t + 2i \nu(r))]^{-1}, -1 \le t \le 1.$$

If $v(r) \leq \frac{1}{4}$, or $r \geq 2^{-1/2}$, then the set $B \cap [-1 + 2 \ i \ v \ (r) \ , 1 + 2 \ i \ v \ (r) \]$ is a union of three segments. If τ , τ_1 are the end-points of the intermediate segment then $[\tau_1 = \tau/(1-2 \ \tau)] \in M_0$ and hence $\lambda(\tau_1) = \lambda(\tau)$ which means that the image under $1/\lambda$ of $[\tau$, $\tau_1]$ is a closed Jordan curve. Similarly the images of the remaining two segments set up a congruent Jordan curve. Theorem 2 is proved.

A slightly more general case of functions with normalization (1.2) reduces to the case just considered by the transformation W=(w-a)/(b-a).

We now apply Lemma 1 in a similar way as before with $\mathfrak{G}=\mathfrak{G}^c$, \mathfrak{G} , \mathfrak{G}^L resp. and obtain in view of Lemma 2—4 the following theorems.

Theorem 3. Let $\mathcal{M}^c(z_0, a, b)$ be the class of all convex mappings f of the unit disk Δ subject to the normalization (1.2). The Koebe set $\mathcal{K}[\mathcal{M}^c(z_0, a, b)]$ is the ellipse

$$\{w: |w-a|+|w-b|<|a-b|/|z_0|\}.$$

Theorem 4 [10]. Let $\mathfrak{M}^*(z_0, a, b)$ be the class of all mappings f of the unit disk Δ subject to the normalization (1.2) and starlike with respect to a. The Koebe set $\mathcal{K}[\mathfrak{M}^*(z_0, a, b)]$ is the ellipse

$$\{w: |w-a|+|w-b|<\tfrac{1}{2}|a-b|(|z_0|+|z_0|^{-1})\}\,.$$

Theorem 5. Let \mathfrak{M}^L (z_0, a, b) be the class of all close-to-convex mappings of the unit disk Δ subject to the normalization (1.2). The Koebe set $\mathcal{K}[\mathfrak{M}^L(z_0, a, b)]$ has the form

$$\left\{w: \frac{R_1 + R_2 + 2\sqrt{R_1\,R_2}}{R_1 + R_2 - [(R_1 + R_2)^2 - |a-b|^2]^{1/2}} < |z_0|^{-2}\right\}$$

where $R_1 = |w-a|$, $R_2 = |w-b|$.

Obviously $\mathcal{K}(\mathfrak{I}\mathcal{I}^L)$ has $w_0 = \frac{1}{2}(a+b)$ as a centre of symmetry. Moreover, $w_0 \in \mathcal{K}(\mathfrak{I}\mathcal{I}^L)$ iff $|z_0| < 2^{-1/2}$. It is easily verified that for $|z_0| < 2^{-1/2}$ the set $\mathcal{K}(\mathfrak{I}\mathcal{I}^L)$ is a Jordan domain and for $|z_0| \geq 2^{-1/2}$ it is a union of two disjoint Jordan domains containing a and b, resp.

We conclude with an interesting consequence of Theorem 2. Since the reflections with respect to the real axis and the straight line through 0, z_0 yield again a mapping of the class $\Im ll$, we see that the real axis, as well as the line re $w=\frac{1}{2}$ are lines of symmetry of $\mathcal{K}(\Im ll)$. This implies that $[0,1]\subset\mathcal{K}(\Im ll)$, if $0<|z_0|<2^{-1/2}$. Hence we deduce the following Corollary. If f is regular and univalent in the unit disk \triangle and $z_1, z_2 \in \triangle$ are such that the hyperbolic distance $h(z_1, z_2) < ar$ tanh $(2^{-1/2})$ then the image domain $f(\triangle)$ contains the straight line segment with end points $f(z_1)$, $f(z_2)$. The constant $f(z_1)$ is best possible.

M. Curie — Skłodowska University Lublin, Poland

References

- [1] Ahlfors, L. V.: Lectures on quasiconformal mappings Princeton 1966.
- [2] BIERNACKI, M.: Sur la représentation conforme des domaines linéairement accessibles Prace Mat. Fiz. 44 (1936), 293-314.
- [3] Hersch, J.: Longeurs extremales et théorie des fonctions Comment. Math. Helv. 29 (1955), 301-337.
- [4] HILLE, E.: Analytic Function Theory, vol. II Boston 1962.
- [5] Kaplan, W.: Close-to-convex schlicht functions Michigan Math. J. 1 (1952), 169-185.
- [6] KRZYŻ, J. and READE, M. O.: Koebe domains for certain classes of analytic functions - J. Analyse Math. 28 (1967), 185-195.
- [7] LEHTO, O. und VIRTANEN, K. I.: Quasikonforme Abbildungen Berlin-Heidelberg-New York 1965.
- [8] Lewandowski, Z.: Sur l'identité de certaines classes de fonctions univalentes I -Ann. Univ. Mariae Curie-Skłodowska Sect. A 12 (1958), 131-146.
- [9] Montel, P.: Leçons sur les fonctions univalentes on multivalentes Paris 1933.
- [10] ROGOSINSKI, W. W.: Über den Wertevorrat einer analytischen Funktion, von der zwei Werte vorgegeben sind - Compositio Math. 3 (1936), 199-226.
- [11] Schiffer, M. M.: On the modulus of doubly-connected domains Quart. J. Math., Oxford Ser. 17 (1946), 197—213.
- [12] WITTICH, H.: Über eine Extremalaufgabe der konformen Abbildung Arch. d. Math., 2 (1949/50), 325-333.