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1. INTRODUCTION

Suppose that 9 is a fixed, non-empty class of functions analytic and
univalent in the unit disk 4.

In [6] the following definition of the Koebe set K(M) of I was
given:

(1.1) KM = N f(4)

rem
K(M) is not necessarily a domain in cases considered below so that the
notion Koebe set rather that Koebe domain seems to be more adequate
for our purposes.

If S denotes the class of functions f univalent and normalized in
the usual way: f(0) =0, f'(0) =1, then obviously K(9) is Koebe’s
one-quarter disk.

In this paper we determine the set K(“/) for various classes of uni-
valent functions subject to Montel’s normalization ([9], p. 66):

(1.2) JO0) =a,flz) =D.

Some thirty years ago an analogous problem was investigated by W. W.
Rogosinski [10] who gave the solution under an additional assumption of
starshapedness of f.

In this paper we give a general and simple method of evaluating KMy
for univalent functions subject to the normalization (1.2). This enables us
to reduce this problem to the following extremal problem which has an
independent interest: given a point w and a class & = G(a,b) of
simply connected domains £ in the open plane &2 such that a,b € Q,
find the supremum u(w,®) of Green’s function gla,b; Q) for all
Q2 €@ such that w € EE\ Q. This problem is solved here for classes of
convex, starlike and close-to-convex domains (Lemmas 2—4). Also the
general case of arbitrary simply connected domains is considered (Theorem
1).

As corollaries of Lemmas 1—4 we obtain Theorems 3—5 which yield
K(M)  for the relevant classes of functions.
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2. BASIC LEMMAS

We now prove the following

Lemma 1. Suppose that & is a class of simply connected domains Q
containing two fized, different points @ ,b of the finite plane ‘& Suppose
that & has following properties:

(i) if for a given, finite w there exists in & a domain omitting w, there
exists in & a domain Q. with the maximal Green’s function g(a ,b; 2)
among all Q € ® such that w € EEN\Q, i.e.

(2.1) gla,b; Q) <gla, b; L) = p(w; ®)

for any Q€ ® such that w € EXNLQ;
(ii) the set {z:g(a,z; D) > 0} belongs to & forall 0 <6 <g(a,b; Q).
Let 6, ={Q€®:g(a,b;2)=y},y>0.
Then N Q= {w:pw, ) <y}.

QE@V
Proof. Suppose that w does not belong to ) 2. Then there exists

.QGQ')V
Q, €®, such that w € E*\Q;. Now, g(a,b; Q) =y < u(w) by (2.1).
Thus [w € ( 2] implies [u(w) > y], or [u(w) < y] implies [w € n 2j.

Qeo, 2€o,
Suppose now that u(w) >y . From (i) it follows that g(a.b; Qu) =
u(w) >y . Consider now 2’ ={z:g(a,z; 2, > 0}. Clearly Q= . .
Since y > 0, we have g(a , b; 2°) = y forsuitably chosen § with e,
by (ii). Since 2° c Q. ,wehave w € E2\2° and consequently, w € N Q.

!26057,

This means that conversely, [w € ) 2] implies [u(w) < y]. Our lemma
Qew,

is proved.

We shall be now concerned with the evaluation of the function u(w, ®)
for various classes of domains. We start with the class of convex domains
&e.

Lemma 2. Let &° = &°(a,b) be the class of all convex domains Q
containing the points a,b. If w lies outside [a,b], Q € ° and w € ENQ,
then

(22) lu’(w’®c)=Sup g(a>b;9)=g(a>bygu)=
Qe¢’
lw—a| + lw— bl
) @ —b

The extremal domain is a half-plane Q. whose boundary 1 contains the point
w and subtends equal angles with segments [w , a], [w,b].
Proof. If © is a convex domain containing «,b and leaving w



J. Krzyz and E. Zrorkiewicz, Koebe sets for univalent functions 5

outside, there exists a half-plane H containing £ and such that w € fr H.
Since g(a,b; Q) <gla,b; H), it is sufficient to consider just the half-
planes H with w € fr H. Suppose now that H is the right half-plane,
w=0, a=4dé, b=~h®", Here d,h,x are real and fixed
(d,h > 0), whereas 6 has to be chosen so that g(de”, he'™*"; H) is
a maximum.

We have
(2.3) g(W ,de® ; H) = — log |z| , where
2= (W — de®))(W + de™™) , W = he'®"?) .
Hence max g(W ,de” ; H) corresponds to

(2.4) min |z| = min | he™ — d | | he'®T) 4 de® 1 =
€]

=la—b/(h+d)r=la—b (w—al+ jw—0)".

The extremal case occurs for 20 = — x, i.e. the normal of fr H at w
bisects the angle [a,w ,b]. Now, the equality (2.2) follows immediately
from (2.3) and (2.4). A simply connected domain is called close-to-convex
if it is an image domain of a disk under a close-to-convex mapping, cf. [5].
A necessary and sufficient condition for £ to be close-to-convex is that
E2\Q is a union of closed rays not intersecting each other [2], [8]. We
say that the rays [, and I, do not intersect each otherif /; N1, is either
empty, or it reduces to the origin of one of the rays.

We shall now evaluate the expression u(w, ") for the class G of
close-to-convex domains.

Lemma 8. Let &F = G (a,b) be the class of close-to-convex domains
Q containing the points a ,b. If Q€ &" and w € EXNQ then

(25) M(w,@L):Supg(Q,bQ) =g((l/b..(.).u)=
oewl
1y R, + R, + 2V R\R,
2 R T Ry (B + R — a— bR

where Ry = |lw — a|, Ry = |w — b]|.

The extremal domain Q. is the open plane ‘&2 slit along a ray l. ema-
nating from w which subtends equal angles with segments [w,a],[w, b]
and does not intersect the segment [a ,b].

Proof. If Q€ ®" and w€ENQ, it follows from the geometrical
definition of 2 that there exists in ‘¢*\ 2 a ray [ containing the point
w . On the other hand, Q c €2\J € " and consequently, g(a ,b; Q) <
gla,b;E\]). Hence we may restrict ourselves to the domains
Q = é2\. By shifting I along itself so that w becomes its origin,
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we increase g(a,b). Thus we may assume that Q = €2\, and I,
is a ray emanating from w. We can take I, as the negative real axis
and rotate @ ,b round the origin, i.e. we may take w = 0,a = de®,
b= he'®?) | After a transformation ¢ — 4/ we obtain the case already
considered in Lemma 2. In view of the conformal invariance of Green’s

function we have by (2.2):

. Vi+vh
!\/Je—iaﬁl o V}?eia/4| o
lbg d+h+2vVhd
2 7 d 4+ h— 2Vhd cos x/2

p(w , ) = lo

In case of a maximum we may obviously assume that the ray 1, does
not intersect the segment [a ,b] which means that 0 < & < 7.

Now, |a — b2 =d?+ h? — 2hd cos x = (d + h)> — 2hd(1 + cos «);
hence V(d + h)? — |a — b2 = 2V/hd cos «/2 and finally

h+d+2Vhd
h4+d—Vh+dE—la—b2

With d = R, ,h = R, we obtain the desired result. We can prove easily
in an analogous manner

Lemma 4. Let &* = G*(a,b) be the class of all domains Q starlike
with respect to a and containing b . If w lies outside [a ,b], 2 € B* and
w € EXNQ then

(2.6) uw , 8*) =sup{g(a,b; Q): 2 € B*, weE\ Q} =

Bt Ry q/(Bt Rg)z } R + R,
ZIOg[|a—bi+l({a—b,,,_l :Arcoshm.
The extremal domain £, is the open plane &2 slit along a ray l., ema-

nating from w whose prolongation contains the point a .
Due to symmetry of x with respect to R;, R, we have also

ulw , 8*a, b)] = plw, B*(b ,a)] .

log

DO | =

/"(w s ®L) =

3. AN EXTREMAL PROBLEM FOR SIMPLY CONNECTED DOMAINS

We shall be now concerned with a counterpart of Lemmas 2—4 for
general simply connected domains. We prove the following

Theorem 1. Let & = G(a,b) be the class of all simply connected do-
mains 2 containing the points a ,b . If A(t) is the modular function and
T, 18 the unique solution of the equation
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(3.1) A7) = (b — a)/(w — a)

contained in the fundamental domain B of A(t) then the maximal value
uw, @) of Green’s function g(a,b; Q) for Q€S such that w € EXNLQ
satisfies

(3.2) pw, ) = — log w1} im 1),
where
(3.3) wr) =1 K(V1 — »®)K(r)

is the modulus of AN\J[O0,r]. The extremal domain ., for which the upper
bound (3.2) is attained is a slit domain ‘E*\C., the slit C. being the image
of the segment [0,%] wunder the @-function of Weierstrass with periods
1,1,.

Proof. Suppose that Q € @ and w € E2\ Q2. After a suitable trans-
lation we may achieve @ + b 4+ w = 0. Consider the family I” of all
closed, rectifiable curves situated in 2 and separating a,b from fr Q.
It is well known that the modulus mod I of the family I satisfies

(3.4) mod I = »(e™%¥)

where g = g(a,b; Q2), cf. [3].

Consider now the family I" of all closed, rectifiable curves separating
a,b from w and such that the curves of both families I, I' are homo-
topic with respect to E2\{a;b;w}. Let @ be the elliptic function of
Weierstrass with periods 1,7 (im 7> 0) which are chosen so that
w=e=pF), a=€6=9p37),b=¢=pF(1 +1)). The -corre-
sponding value 7 is a solution of the equation

e—e€ b—a
(3.5) M= =
2 being the elliptic modular function.

The equation (3.5) has a countable number of solutions 7. There is
also a countable number of homotopy classes I of closed curves separating
a,b from w. If 7, is a suitably chosen solution of (3.5) then

(3.6) mod [} = § im 7,

cf. e.g. [1], p. 56.

All the solutions of (3.5) are congruent to each other with respect to
the subgroup M, of the modular transformations ' = (at + b)(ct 4 d)7?
with a=d=1(mod 2), ¢c=b=0(mod2), ad —bc=1.

Let B be the fundamental region of 2 w.r.t. M, i.e.



8 Ann. Acad. Sci. Fennicae A.I. 487

(3.7) mtB={r:(im7>0) A (rez] <1) A
Alr—=21>2) A (r+31> )}

To get B we add that part of fr B where rer <0 and imz7> 0.
There exists a unique solution 7, of (3.5) contained in B, cf. [4], p. 176.
The subgroup M, is generated by the transformations

Ty=7v+2,T,=1/(1—27),

cf. ibid., p. 176. The transformation 7T (or T3* = (T3')*) gives for a
suitably chosen integer k a point 7 with |re v/ <1 and does not change
im 7.

Hence we may consider only those [, which correspond to |re 7] << 1.
Suppose now that 7 lies in the strip [re 7| < 1 outside B, i.e. 7 satis-
fies one of the inequalities |t 7= 1| < 1. Then the point 7" = 7(1 F 27)~!
lies in B, whereas im 7" = |1 F 2¢/2im v > im 7. Thus among all
7. which satisfy (3.5) the point 7, with maximal imaginary part can be
taken as the unique solution of (3.5) contained in B . Wehave [" c I' = I}
for some k, hence by (3.4) and (3.6)

»(e7¢) = mod I < mod I" < maxmod I, = % im 7,
k

which implies e~® > (% im7,) , or

(3.8) g=g(a,b; Q) < —logry(zim 7,

for any simply connected domain Q with w € €2\ 2. We now construct
an extremal domain £, for which the sign of equality in (3.8) is attained.
Given the points @ .b,w with @ + b + w = 0 (which may be achiev-
ed after a suitable translation), we find the solution 7, = s, - it, € B
of the equation (3.5).
The function

u=-exp2nail=-exp2xié+in)

maps the parallelogram P =1[0,1,1 4 7,,7,] whose sides [0, 7,],
[1,1+ 7] are identified onto the annulus 4 = {u:exp(—2x i) < |u]
< 1}. The points (= 34;%7;%(1+ 7) correspond to = — 1;

exp(m i 7,) ; — exp(w i 7,) , resp. We take now 7 € (0, 1) such that
(3.9) »(r) =4 im 7, = & log e™

and map the ring domain AN\ [0, r] conformally onto the annulus A4, =
{u:exp(— wty) < |u| <1} so that z=0,r correspond to u =
exp (w1 7y) , — exp(w i 7,) , resp. The points of A4, correspond to the lower
half of P in the {-plane. If we identify in AN[0, 7] the opposite edges
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of the slit [0,r] which corresponds to the identification of points on
[} 7,1+ % 7] symmetric with respect to L(1 4 7,) then the resulting
transformation

(3.10) 2> —>W=9p(;1,7)=p()

maps 1:1 conformally the unit disk A4 onto the W-plane slit along the
arc C, where C, is the image of [0, 1] under @({). Obviously the
images of [0,23],[%,1] under g are identical and equal C, .

The fact that g is an even elliptic function of order 2 implies the uni-
valence of the resulting mapping, also cf. [7] p. 47. The points on |z| =1
corresponding to v =1, —1 and ¢ = 0,3, resp. give the end-points of
C. in the W-plane, ie. the points @(0) = oo, @) = w, whereas
r=00u=exp@it) > {=LrcW=9p%1) =a,
z=re>u=—exp@ir) =31+ 1)>W=9p31+17))=0"0.

The family of closed curves situated in A and separating 0,r from
fr 4 has the modulus »(r) = 1im 7, according to (3.9). On the other
hand, by the conformal invariance of Green’s function

(3.11) gla,b; ENC) = g(0,7: 4) = — log 7.
From (3.9) and (3.11) the equality
(3.12) gla,b; ENC0L) = — log v1(L im ;)

follows by eliminating » .

Theorem 1 is proved.

A related extremal problem was investigated by Schiffer [11] who
solved it in a different way by variational methods; also cf. [12].

4. THE DETERMINATION OF KOEBE SETS

Given 2z, € 4 consider the class “//{ = “)l(z)) of functions analytic
and univalent in the unit disk 4 which satisfy the conditions

(4.1) fO)=0, flz)=1.

If f€N then Q= f(4)€®O,1) where &(0,1) is the class of all
simply connected domains containing 0,1 . With each f€I we
can associate a domain @ = f(4) € B, where y = — log [z| which is
an obvious consequence of the conformal invariance of Green’s function.

Conversely, if Q € @, then © can be mapped on 4 conformally so
that @(0) =0, @)= ¢, where —log|{| =7y. Hence z,=e"¢,
for suitably chosen B and ¢l z) € M.

Thus
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(4.2) Nnfa)=n4e
€EMey  2€0

where y = — log |2, -

The above considerations as well as Lemma 1 yield

Theorem 2. The Koebeset K(N) = N f(4) for the class N = W(z,)

eC 7

of functions analytic and univalent in thézf uZZz[t disk A subject to the normal-
1zation (4.1) is the image set of B N H(r) wunder the mapping w = 1/A(7),
where r = || , H(r) ={r:im v < 2v(r) }, v being defined by (3.3); A
18 the elliptic modular function and B s its fundamental region.

The set ‘K(M) is symmetric with respect to the point w = % and is a
simply connected Jordan domain for 0 <r < 27 For 27 <r <1
the set ‘K(NM) is a union of two congruent, disjoint, simply connected Jordan
domains.

Proof. According to our previous remarks K(H) =QD® £ with
Y

y = — logr. In view of Lemma 1 and Theorem 1 N 2 ={ w: u(w, @)

NEG

<y} ={w:im 7o(w) < 2»(r)}. Thus 7,(w) € BN H(r)’j Moreover, z,(w)
satisfies (3.5) with a =10, b=1, ie. A7) =1lw, or w=1/A(t,).
This shows that w € K(M), iff w = 1/A(r,) with 7, € BN H(r).

We now prove the symmetry property.

To this end it is sufficient to show that 1 — w, € K(//l) as soon as
w,y € CK(CW'Z) .

Suppose that 1, € BN H(r) satisfies w, = [A(7y)]"L. Obviously one
of the points 7, F 1, say 7,, also belongs to BN H(r). Since A(r, T 1)
= M%)/[A(7o) — 1] = A7) , we have wy = [A(7y)]™" =[A(7)]™" [A(z) — 1]
=1 — w, € K(M).

Suppose now that »(r) > 1, or r < 272, Then the image of B N M(r)
is a Jordan domain whose boundary has the parametric representation

(4.3) w=[At + 2iv(r)) ], —1<t<1.

If »(r) <%, or r>27" thentheset BN[— 1+ 2iv(r), 1+ 2iv(r)]
is a union of three segments. If 7, 7; are the end-points of the intermediate
segment then [7; = 7/(1 — 2 7)] € M, and hence A(t;) = A(tr) which means
that the image under 1/i of [z, 7] is a closed Jordan curve. Similarly
the images of the remaining two segments set up a congruent Jordan curve.
Theorem 2 is proved.

A slightly more general case of functions with normalization (1.2)
reduces to the case just considered by the transformation W = (w — a)/
b—a).

We now apply Lemma 1 in a similar way as before with & = &,
® , " resp. and obtain in view of Lemma 2—4 the following theorems.
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Theorem 3. Let Nz, ,a,b) be the class of all convex mappings f
of the wunit disk A subject to the normalization (1.2). The Koebe set
K[N(zy , @, b)] is the ellipse

{w:lw—al+ |lw—">b] <la—bl|/lz]}.

Theorem 4 [10]. Let Nl*(z,,a,b) be the class of all mappings f of
the unit disk A subject to the normalization (1.2) and starlike with respect
to a. The Koebe set ‘K[N*(z,,a,b)] is the ellipse

{w:lw—al + |w—b| < Fla —b|(l2] + [2/™)}.

Theorem 5. Let M (z,,a ,b) be the class of all close-to-convex map-
pings of the unit disk A subject to the normalization (1.2). The Koebe set
K[M(z,, @, b)] has the form

{w. R+ R+ 2VR R,
R, + Ry — [(R; + R,)* — |a — b&2]1/2

-l

< %l J

where R, = |w —a|,R,= |lw—b].

Obviously K(/1") has w,= i(a +-b) as a centre of symmetry.
Moreover, w, € K(M*) iff |z < 27'%. It is easily verified that for
2] < 27'% the set K(M*) is a Jordan domain and for |z)| > 27 it
is a union of two disjoint Jordan domains containing @ and b, resp.

We conclude with an interesting consequence of Theorem 2. Since
the reflections with respect to the real axis and the straight line through
0,7z yield again a mapping of the class V!, we see that the real axis,
as well as the line re w = 15 are lines of symmetry of ‘K (“//{). This
implies that [0, 1] < K (W), if 0< 'z, < 272 Hence we deduce the
following CororrARY. If f is regular and wunivalent in the unit disk A\
and z,,2,€ /\ are such that the hyperbolic distance h (z; , z,) << ar tanh
(27'2) then the image domain f(/\) contains the straight line segment with
end points f(z,) , f(z,) . The constant ar tanh (27'7) is best possible.

M. Curie — Sklodowska University
Lublin, Poland
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