ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

490

ON ESTIMATING OF
A FOURTH ORDER FUNCTIONAL FOR BOUNDED
UNIVALENT FUNCTIONS

JULIAN EAWRYNOWICZ and OLLI TAMMI

HELSINKI 1971
SUOMALAINEN TIEDEAKATEMIA

doi:10.5186/aasfm.1971.490


koskenoj
Typewritten text
doi:10.5186/aasfm.1971.490


Communicated 13 November 1970 by LAurI MYRBERG

KESKUSKIRJAPAINO
HELSINKI 1971



Preface

The authors are indebted to Mr K. Kuvaja for tabulating on a computer
IBM 1620 the function b* appearing in this paper.

This work was supported in part by a Scholarship of the Finnish Min-
istry of Education at the University of Helsinki.

1. Introduction and statement of results

The authors are concerned with the class S(b;) of univalent functions
f) =bz+bg2+...,0<b <1,

which map the closed unit disc into itself. This class has often been studied
in the equivalent from of functions

F = (l/bl)f ’
whose coefficients we shall denote by a,. Both classes have been developed
quite extensively since 1950 (cf. e.g. [14], [4], and [9]). In this paper the
authors investigate the problem of finding the sharp estimate for the func-
tional of the fourth order
B = |ay — payas - qall , p, q real,
in dependence on p,q, and b;, where f ranges over S(b,).
Given real p,q, and b, 0 < b, = 1, let
M(x) = —3(1 — b)) [1 —5p — p*> + 12¢ — (11 — 9p — p* + 129)b,]
— 33+ p+2p>— 12¢ + (2 — 3p — 2p* + 129)byJx
+ 27 — 3p + 3p* — 129)2% 4 3(4 — 2) ({3(2 — p)?
+ 15— 9p + 12¢ — (8 — 11p + 12¢)b, — L(5 — 9p + 12¢)a 2}z
— 3[6 — 9p + 129 — (8 — 11p + 129)b; — (5 — 9p + 129)2]),
where «x is supposed to be real. Further, let D denote the set of pairs

(p, q) for which there is a b(p, q) such that if 0 << b; =< b(p, q), then the
corresponding M satisfies the condition M(x) < 0 for 0 <z < 2(1 — b,).
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Table 1
Table of values of the functions b* estimated from below
|\ 67| i
16])\\\ —4 -3 -2-1 0 1 2 3 4 5 6 7 8 9 1o 1 12
| |
| —12 | .000 .018 .108 .172 .189 .205 .220 .234 .248 .260 .272 .283 .294 .304 .314 .323 .332
© —11 | -000 .009 .103 .166 .185 .202 .217 .232 .246 .259 .272 .283 .295 .305 .315 .325 .334%
—10 | .000 .000 .096 .160 .179 .197 .214 .230 .245 .259 .272 .284 .295 .306 .317 .327 .336
—9 | .000 .000 .085 .152 .173 .193 .211 .227 .243 .258 .271 .284 .296 .308 .319 .329 .339
—8 | .000 .000 .071 .144 .167 .188 .207 .225 .241 .25 71 .285 .297 .309 .321 .331 342?
—7 | .000 .000 .051 .134 .159 .182 .202 .221 .239 .255 .271 .285 .298 .311 .323 .334 345:
—6 | .000 .000 .025 .123 .150 .175 .197 .218 .237 .254 .270 .285 .300 .313 .325 .337 348?
—5 | .000 .000 .000 .109 .140 .167 .192 .214 .234 .253 .270 .286 .301 .315 .328 .340 352%
—4 | .000 .000 .000 .086 .128 .158 .185 .209 .231 .251 .270 .287 .302 .317 .331 .344 .356
—3 | .000 .000 .000 .048 .113 .147 .177 .204 .228 .249 .269 .287 .304 .320 .334 .348 .360
i —2 1 .000 .000 .000 .000 .096 .134 .168 .197 .224 .247 .269 .288 .306 .323 .338 .352 .366
f —1 1 .000 .000 .000 .000 .074 .119 .157 .190 .219 .245 .268 .289 .308 .326 .342 .357 .371}
0 | .000 .000 .000 .000 .039 .099 .143 .180 .213 .242 .267 .290 .311 .330 .347 .363 378
1 | .000 .000 .000 .000 .000 .074 .125 .169 .206 .238 .266 .291 .314 .334 .353 .370 386;
2 | .000 .000 .000 .000 .000 .041 .103 .154 .197 .233 .265 .293 .318 .340 .360 .378 .395
3 | .000 .000 .000 .000 .000 .000 .073 .135 .186 .228 .264 .295 .322 .346 .368 .388 .40(3;
| 4 | .000 .000 .000 .000 .000 .000 .032 .109 .171 .220 .262 .297 .328 .354 .378 .399 ‘419;
5 | .000 .000 .000 .000 .000 .000 .000 .073 .150 .210 .259 .300 .335 .365 .391 .414 .435
6 | .000 .000 .000 .000 .000 .000 .000 .016 .119 .196 .256 .304 .344 .378 .407 .432 .455
7 | .000 .000 .000 .000 .000 .000 .000 .000 .071 .174 .250 .309 .357 .396 .429 .457 .481
8 | .000 .000 .000 .000 .000 .000 .000 .000 .000 .138 .241 .317 .375 .421 .459 .491 .518
9 | .000 .000 .000 .000 .000 .000 .000 .000 .000 .067 .224 .329 .404 .461 .506 .542 .572
10 | .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .183 .346 .450 .523 .577 .619 652
11 | .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .051 .351 .502 .594 .656 .701 735;
12 | .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .250 .500 .625 .700 .750 .785

In all cases listed above, where b*(p,q) A .000,
—12< 6p <12, —12< 6g < —4 we also have b*(p, q) = 0.

we

have b*(p,q) = 0. For

Given a (p,q) in D, let b*(p, q) denote the least upper bound of b(p, q),
while let b*(p, ¢) = 0 otherwise. Hence D is the set of (p, ¢) such that
b*(p, q) > 0. The table enclosed gives the values of b* for various p
and g¢. For more clarity this is also given in the form of a map in the
(p, @)-plane with level-lines corresponding to fixed values of b*.

The results obtained in this paper may be formulated as follows.

Theorem 1. If (p,q) and f belong to D and S(b,), respectively, where
0 << by =< b*(p, q), then the corresponding B does not exceed

B* = 2(1 — b}) + 2(1 — b,)2[3 — 3p + 4g — (3 — 5p -+ 4q)by] .

The estimate is sharp for every p,q, and by. All the extremal functions are
given by the formula



5

Juriaxy LawryNowicz and Orrr Tammi, On estimating of a fourth order

«Q uorgouny oty 03 Surpuodselioo soul[-[oAer] 1 B

B i i i e 0" = (bd)yq
: e i =i 1= (b id)yg
do Hil 3 i § 1 ﬁ‘ it TR TS0
i e i i Ll 7 (b ‘d)yq
§8ss il a8 % 38 T ]
, | il £ = (bd)yg
j

e bd)eq 9= (hid)yg ¢ = (bid)yg ¥ (bid)yg PP



6 Ann. Acad. Sci. Fennicae A. 1. 490

[¥2) = e P70, P(e2)), P(2) = 2/(1 — 23, 2| 1, —a<c=m.

c

A

Theorem 2. If p =35 and f belongs to S(b,), where

(p—2° +p*—p—4q+3%
(p—=3F+p —p—4+3

w1

)

IA

by =1 for ¢ = §(p* —p +

while

(p— 22 —3(p*—p — 49 + %)
(p— 32 —3(p*—p— 49+ %)

then the corresponding B does not exceed

by=1forq=4(p*—p+%,

IA

B = 31— b)).

The estimate is sharp for every p,q, and b, All the extremal functions are
given by the formula

f¥¥@2) = e_icls“l(blﬁ(eicz)), ﬁ(z) =z/(1 =28 2l =1, —a<c==.

The paper is concluded by few applications and remarks. In particular,

the authors obtain the sharp estimates of the third coefficients of
f/(z) f//(z)

L h(z) =1+ 25—, iz

@ e
Actually, these classical functionals (cf. [1], [12], and [13]) gave reason to
introduce the fourth order functional B of the present paper. The func-
tional B is also an analogue of the functional |a; — paj|, p real, con-
sidered in the case where 1 <p <1 in [14], formula (37), and in the
general case in [3].

I
—

2. Proof of Theorem 1

The proof is analogous to that given in [7] for B = a,.
We start with the estimate
(1) |y — 2ay05 + {30y + ala, 4+ 3(ag — a3) + 20y(ay — 3a3),
= 31— b)) — $by[ay? + 2[ay (1 — by)
+ [y X1 — 07) — 2b,Re(w,d,)
which holds for any =z, 2, (not necessarily real). Inequality (1) is a simple

consequence of the Grunsky-Nehari inequalities (cf. [7], inequality (4)).
Let us choose z;, 2, to be real. Then we get
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ay — 200, 4 T3 4 2uy(a; — Fa3) + ajay + ay(ay — a3)|
=301 — by) — gbilas 2 + 22i(1 — by)
— 2u,b; Re a, 4- 23(1 — b)) .
Here the left-hand side is not less than
Rela, — 2a,a; + L3a} 4+ 20(ay — 3a3) + ajay, + 23(a5 — a3)]
= Re[a, — paya; + qa3)
 Re[(p — 2ty — (¢ — )b + 20, + dlay + 23— Jad)].
where
)= ay; — 3a; .
Therefore
(2) Re(a, — payi; + qay)
< 31— b)) + (2 — p) Re(p) + (% — 4p + q) Re a} — 30,10, 2
— 2,(Re 7 + b, Re a,) + 223(1 — b, — 3+ Rea,)
a3l — b} —Re 2+ 1 Reay).
Now we notice that la, — a3] = 1 — b3, (cf. [15], formula (19)), whence
31 — b —Re X+ L1Read) =0.
Therefore we choose
(3) X

On the other hand, there is no loss of generality if we assume

=0.

[©]

(4) ay - psay -+ qas >0, Rea, =0,
since this normalization can always be achieved by a properly chosen
rotation. Consequently, from (2), (3), and (4) we infer
(5) B = ay — payu, + qu;
= 31— ) + 2 — p)Re(@y?) — (5 — Ip — q) Red}
— 1bjay? — 22 (Re A -+ b, Re a,) — 227(1 — b, — tRe a,) .
The estimate (5) implies, in particular,
(6) 1—b —31Reay, = 0.
We shall consider, separately, two cases: 1 — b — tRea, =0 and
1 —b —31Reay>0.

Suppose first that 1 — b, — 4Rea, = 0. It is well known (cf. [7])
that this implies f = f&, whence
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bz + bz + bjasz® + biagt + ... bz

(—1 + bz + bjaye® + bjagz® + .. )2 (1 — 2)?

and, consequently,

ay = 2(1 — by,
ay = 3 — 8b, + 507,
a, = 2(2 — 10b, + 15b; — 7b})
Hence
B =31 — b)) + 21 — b [5(1 — 4b,) — p(3 — 5by) + 4q(1 — by)]

= B* .
Suppose mnext that 1 — b, —1Rea, > 0. Then we can minimize

the right-hand side of (5) by choosing

Re 4 4+ b; Re a,
= 2(1 — by) — Re a,

and find the most favourable estimate

(1) B =31—1b)+ (2 — p) Re(ay?)

(Re 2 -+ b, Re a,)?
L (5 _ 3 3 a2 — -
(15 — 4p + Q)R? ay — by lay? 2(1 — b;) — Rea, ~

The right-hand side of (7) may be rewritten in the form

F1—0) — (3 — )by Reay + (5 — §p + @) Reas

— (2 — p)Im a, Im 2 — }b, ImZa,
(Re 2 + b; Re a,)?
2(1 — b)) — Rea,

+ (2 — p)Re a, (Re 2 + bjRe @) —
and it attains its maximum with respect to Re i - b; Re @, treated as
the only variable for

Re 4 + b Rea, = (2 — p)Re ay(l — b — 3Re ) .
Hence
= 2(1 —b}) — (5 — p)bRe2a, + (% — 2p + q) Re i — b, Im2a,
— (2 —p)Ima, Im 2 + 1(2 — p)?Re2uy(1 — b, — TRe @)
or, after a rearrangement,
B =31 —0Y) + 32— pP — (3 — p)b,]Re,
— (5 — i + i — ORa, — (5 — §p + 39)Re ayIm?q,

5
— (2 — p)Im a, Im 2 — 1b,Im2q, .
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Thus we have removed the parameter Re 4. In order to remove Im 2
we introduce the quantities

Rea,=2(1 —b) — 2,0 <ax=21-—0),
Ima,=y,ImA=n—>bIma,.
Under these notation we have
B =3(1—6) + 3@ —pP— (3 — pPhl 20— b) — P
— (% — p+4p—q)[2(l—b)—x]
— (3 — i+ 30 [20 —b) — 2l — 2 — pyn + (G — Py
= ¢y + ¢ + c2? + cx’ — 1[5 — 9p + 12¢
— (8 — Llp + 12q)by — (5 — 9p + 129)2]y* — (2 — p)yn,
where ¢y, ¢;, ¢y, ¢; do not depend on . Direct calculation gives
co=5(1 — b)) + 2[(2 — p? — (38 — pHb] (1 — by)?
—8(i5 — 4P+ P2—Q)(1_b1)3
— b}

= 3(1 — b)) + 2(1 — b,[3 — 3p + 49 — (B — 5p + 49)b,]
= B*,
o =—2[2—p— (3 —pPhl(1—1b)
+12(% — &p + 1p* — ) (L — by)?
= — (1 —0b)[1—3p—p>+ 12¢ — (11 — 9p — p* + 12¢)b],
g =32 —p?P— B —pPh]—6(%5—1p+EIpP—9 (1 —0b)
= — 33+ p+ 20— 120+ (2 — 3p — 2p* + 129)b],
¢ = {5 — 4P + 1P’ — ¢
= %(7 — 3p + 3p* — 129) .
Therefore

(8) B— B* = — (1-b)[1—5p—p*+12¢—(11—9p—p*+ 129)b,Ju
— 33+ p+ 2p% — 12¢ + (2 — 3p — 2p* + 12¢)b,Ja?
+ 5(7 — 3p + 3p* — 129)a°
— 3[6 — 9p + 12¢ — (8 — 11p + 129)b,
— (6 — 9p + 129)2]y2 — (2 — p)yn .
Now we apply the identity
1

/ 1 __‘zp 2
— (2 —pyn = |1 — 3pl(y® + 37 — 51—%pla(y+ — n)
x{l —3p|
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with a free parameter « > 0. Clearly,
1= gy + =22

— 11— 2P XY + all — 1p] 77) =0,
whence

— 2=y = 1 — 3pl(a + a7l .
We utilize further the estimate (cf. [7], inequality (27))

7= jr— @24y

Therefore
) @ pn = 11— | e — 2t — gt g
Besides, it is easily seen that
(10)  Jr —a®— g+ g = 2y ke — a2 — g

whenever 4z — a2 — 2 = 0, but this inequality must hold since the right-
hand side in (8) is bounded from below for any « > 0, and for the term
— (2 — p)yn in (8) we have derived the estimate (9). If 42 — a2 — >0
and y # 0, in order to obtain equality in (10) we have to choose

& = 34w —a® — Ay 2k,
whence (9) becomes
(11) — =Py =12 —pl lyl [ — 22 — y2)]F .
If 42 —a? —y2 =0, (11) is an immediate consequence of (9). Finally,
if y =0, (11) is trivial. Combining (11) with (8) we obtain
(12) B — B* = — (1 —by)[1 — 5p — p* + 129 — (11 — 9p — p? — 12¢)b,Jx
— 33 4 p 29 — 12¢ + (2 — 3p — 2p? — 12¢)b a2
+ 12(7 — 3p + 3p? — 12¢)a3
— 305 — 9p + 12 — (8 — 11p + 12¢)b,
— 25 — 9p + 129)2]y% + |2 — p| [y[F(dx — 22 — ).

In order to find for fixed x the maximum of the right-hand side in
(12) with respect to y we consider the function

(13) Q) =—UprP+ 2—ply(V — Lyt —@BVE <y < 3V),
where

U= 35— 9p+ 12¢ — (8 — 11p + 129)b, — 1(5 — 9p + 12g)a],
V=124 —2).



JuLiaN LawryNowricz and Orrr Tamwmri, On estimating of a fourth order 11

Since @ is even in y, we may, without loss of generality, assume that
y = 0. Straightforward differentiation leads to the following condition
for the value of y at internal extrema:

(14) 1 —3pl(V — 3V — 32t = Uy.

Solving this equation for y, we obtain two possibilities:

9

yi =3V —{U¥[52 —pP + U}),
o =3V + {U[52 — pP + U2
If U > 0, equation (14) requires V — $y2 > 0 since we look for positive
values of y. In this case only %? will be permissible. If U < 0, we have

to demand V — 242 < 0, which leads to the only possibility y3;. Con-
sequently the internal extremal point for  satisfies the equation

(15) v =3Vl — UJlh2 — pP + U2y,
Since
Q(0)=0,Q (y) = — o as y— (3V)F,
relation (15) leads to a maximum of ¢, and we find from (13) and (14)
max Q(y) = V{[H2 — p)* + U7k — U}
Thus from (12) we obtain
B—B*=— (1 —0b)[1 —5p—p*+ 12¢ + (2 — 3p — 2p* + 129)b,]x
— 303 +p 4+ 2p* — 120 + (2 — 3p — 2p* + 129)b, a2
+ (7 — 3p + 3p* — 120)2" + FV{[3(2 — p)* + U2} — U}
— (L —=0)[1 — 5p — p* + 12¢ — (11 — 9p — p* -+ 129)b,]x
— 33 +p + 2p* — 120 + (2 — 3p — 2p* + 129)b, ]
+ %(7 — 3p + 3p® — 129)2° + Ja(4 — @) (32 — p)?
4[5 — Op - 12g — (8 — 11p + 12g)b, — }(5 — 9p + 12q)a2}}
—3[6—9p + 129 — (8 — 11p + 12q)b; — 3(5 — 9p + 12¢9)z])
= TaM(x).
If (p,q) belongsto D and 0 < b; = b*(p, q), then, by the definition

of M, we have M(z) =0 for 0 <a < 2(1 —b,). Since x has been
restricted to this interval, B — B* < 0, as desired.

Finally we notice that, by (5), where we have assumed (4), in order to
demonstrate that B = B* can only hold for f= f¥ it is sufficient to

show that equality in (6) can only hold for f = f¥, but this is a well known
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result (cf. [7]). On the other hand, for any f*, —a <c¢ <7z, we have

¢’

B = B*, as it was verified before by direct calculation. Thus the proof
is completed.

3. Proof of Theorem 2

The proof is analogous to that given in [7] for B = |a,|.

We againvstavrt with the estimate (1), where we put a; = 2,a,, 22 = Ty,
and choose ay, x, to be real. Then we get

s+ (20 + @ — 2)ayy + (@ — $3, — @ + 1)l
= 300 — b)) + [5l(1 — b)) lag] + [233(1 — by) — 236, — by]lay/2
Here the left-hand side is not less than
Re[a, + (22 + @ — 2)agay + (25 — 32 — &y + 13)a] .
We choose @, so that 2, + i, — 2 = — p, ie.
Ty=2—p— 27,
Therefore
Re[a, — pagay + (@1 + 321 + p — 1)as]
=31 -0+ 12—p— 27\51: (1 — b)) lay]
+ [227(1 — by) — 22,6, — 3b,](asf?
whence
(16)  Re(a, — pagt, + qal)
S31 ) 12— p— 201 — )
+ [2{"2{(1 —by) — 29{;'161 — 301 a,
— @+ +p—q—DRed].

Now we notice that there is no loss of generality if we assume

(17) Ay — Pagtty + qad >0, ay =u +iv,u <0,

since this normalization can always be achieved by a properly chosen
rotation. Consequently, from (16) and (17) we infer
B = a, — payay + qa3
= B 4 (2 —p — 23 (1 — b])(w2 + o)} + [243(1 — by)

— 203hy — $b)(w? + 0?) — (3} + 3o +p—q— 12w’ — 3w?) ,
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where B** = 2(1 - b}). Since (1 — b2) (u? + 03} =0, we choose
so that 2 — p — 22, = 0, ie.

Hence
22 — (p — 3)%b] (u? + 0)
Lp? — p — 4q + P’ — 3uw?)

NS l\.:

or, after a rearrangement,
(18) B — B** = Lw’(p — 2P — (p — 3)%; — 5(p* — p — 4 + 3)u]
+ 3%(p — 2)* — (p — 3%, + $(#* — p — 4g + F)u].

We shall consider, separately, two cases:

(19) P—p—4¢+%5=0,p #3,
and
(20) P—p—4g+LT=0,p#3.

In both cases, by (6) and (17), we have
(21) 21 —b)=u=0.

Suppose first (19). By (21), in order to obtain
(22)  dul(p — 2 — (p — 3Py — bp* —p — 4 + Pl

+ R — 2 — (p — 3%y + Hp—p — g + Pl =0

we have to assume
(23) (p—2P—(p—3)h — 3P —p—4+ 5 (—2)(1—b)=0
and
29 (-2t RH—p—dg+F) 0=0.
Inequalities (23) and (24) are equivalent to

(p—2P2+p*—p— 49+

7
25 b, = 3
(25) 1= (p—3Rp+p>—p—49+7%
and
(26) by = (p — 2/ (p — 3)%,

respectively, where, by (21), we should assume

m — 9 i _
(27) (p—22+p>—p—49+ 3% ~
(p—38F+p>—p—4g+ %
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and
(28) (p—2P/(p—3P=1.
On the other hand, as it can easily be verified, conditions (19) and (28)
imply
(p—2F (p—2P+p*—p—49+3%
(p—3F " (p—3P+p—p—4+7%
and (27). Consequently we have to assume (25) and (28), or, what is the

same, (25) and p =< 3. Under these conditions we can assert (22).
Suppose next (20). By (21), in order to obtain (22) we have to assume

(29) (P — 22— (p— 3% — 3P —p — 49+ 5 0=0

IA

(30) (p—2P2—(p—32 +3(P—p—4¢+%(—2)(1—b)=0.

Inequalities (29) and (30) are equivalent to (26) and

(p—22—3(p—p—49+ 3

(p—3F—3(p*—p—4g+3°
respectively, where, by (21), we should assume (28) and
— 22— 3(p*—p—4q+ %
(32) (» )2 ‘(102 P q‘i’)gl.
(» =3P =3 —p — 49 + %)
On the other hand, as it can easily be verified, conditions (20) and (28)
imply

(31) by

v

(P —2° _(p—27—30"—p—49+73)
(p—3% " (p—3F—3p*—p—49+7%)

and (32). Consequently we have to assume (31) and (28). or, what is the same,
(31) and p < 3. Under these conditions we can assert (22).

Inequalities (18) and (22) yvield B — B** < 0, as desired.

Finally we notice that, since (17) gives no loss of generality, in order
to demonstrate that B = B** can only hold for f= f** it is sufficient
to show that B = B** with additional condition (17) can only hold for
f=f&*. To this end we observe first that if

(p — 2 + p? —10~4q+3<b
(p—32+p—p—4q+ 7%

7
T§)7

=1forg=%ip*—p

while
(p—22—3(p>—p— 49+ %)
(p—382—=3(p*—p—4¢+7% ~

<b=1for g=4(p*—p»+7%,
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then the expressions in the square brackets in (22) are negative. Conse-
quently (18) yields that B — B** can only vanish for a, = » 4 v = 0.
Hence we must seek the extremum functions in the subclass of S(b;)
with @, = 0. Here, by (17), we assume that @, — pa,a, + ga; > 0, i.e.
@y > 0. For such functions we apply the estimate (1) with x; = 2,d,,
a3 = m,d,, and choose z;, %, to be nonnegative. Then we get
Uy 4 Tylay? + 22 a2

= 3(1 — b)) + 221(1 — by)|ay]* + (1 — b)lay] ,

whence
B — B** = ay(1 — bi)|ay| — 2[x; — &i(1 — b)) — 3] las® .
Therefore, if we put #; = 1 and x, = 0, the last inequality becomes
B — B¥* = — 2b)la;?,

where equality is possible only for functions in S(b;) with ay =a; =0
and a; > 0. Now we apply a known result (cf. [15], pp. 13—14) that if
[ belongs to S(b;) and satisfies the conditions @, = a3 =0 and a, > 0,
then f=f¥* On the other hand, for any f**, —a <c¢ =< ax, we have

B = B**  as it can easily be verified by direct calculation. Thus the proof
is completed.

4. Conclusions

We begin with the applications announced in Section 1. Let
g(z) =By + Bz + ..., 2] = 1.
Hence, by the definition of ¢,

1 -+ 2a52 + 3az? 4+ 4a2® + . ..
1+ a2+ age® + ag® + ...

and, consequently,

= B, -+ Bjz ~ By - Bg* + ...

By, =1, B, = a,, B, = 2a, — a3, B; = 3a, — 3a,a, + a; .
Therefore, by Theorem 2,
1By =2(1 —0),2=b =1.
Next let
h(z) =Cy+Ciz+ ..., 2| =1.
Hence, by the definition of &,
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2a52 -+ 6ay® + 12a2° + . ..
1+ 2a,2 + 3az2® + 4a2® + . ..
and, consequently,
Cy =1, 0, = 2a,, C, = ba, — 4a3, C3 = 12a, — 18a,a; + 8a; .
Therefore, by Theorem 2,
Col =81 —b) L =b =1.

1+ = Cy+ Oz + Cp2 + C2* + . ..

Further we remark that in Theorems 1 and 2 the intervals for b, can
be improved if we do not restrict the parameters @; and @, in (1) to real
numbers. However in this case calculations are much more complicated.
Furthermore, one may try to generalize Theorems 1 and 2 by considering
complex p and q.

Finally we remark that the same method can be applied to analogous
functionals of higher orders. A counterpart of Theorem 2 for the functional
of the fifth order

9 ,
las — paya, — qai + raja, — say| . p, ¢, r, s real

is established in our forthcoming paper [5]. More generally, we introduce
an analogous n-th order functional as follows.
Let f be a function in S(b,). Define the coefficients A4, by the

relation

z) — f(z

log f—(—)—M = > Az 2] <1,z < 1.

2% m, k=0
Clearly, 4,, = A4,, for any (m, k). It is well known that the coefficients
A, play an important role in the Grunsky-Nehari inequalities (cf. [2].
[6], [8], and [9]). In particular (cf. [8], p. 4), we have

- _ 1,2 — L 1,3

Ay =log by, Ay = a5 — 505, Ayg = g — a3 + 305 ,
/ 2 b} : 3

Ay = a,, Ay = a3 — a3, A= ay — 20,03 — a; .

A polynomial of n — 1 variables a,.....a, 7 =2 is said to be
related to A, m + k=mn, if

(i) its coefficient at «, is 1,

(ii) each other of its coefficients is 0 if the corresponding coefficient
of A,,. m -+ k=mn, is 0.

It can casily be shown that if a polynomial is related to A,,. m + & = n,
then it is related to each A, m' -+ k" = n. The modulus of a poly-
nomial which is related to some A,,, m -+ k = n, calculated at the point
(g, . . ., a,) determined by some function f of S(by). is said to be an
n-th order Grunsky functional. The coefficients of this polynomial are called
the coefficients of the corresponding Grunsky functional.
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In view of the results obtained in [10], [11], and [8] it seems to the
authors natural to pose the following:
Conjecture. Suppose that n,n = 2, is an arbitrary integer and

(33) Blay, ...,a,;p,9,...)
18 an n-th order Grunsky functional with coefficients p, q, . . . In the Euclidean
(p, q, . . .)-space there is a neighbourhood D, of (0,0,...) such that if the
point (p,q,...) and a function f corresponding to (a, ..., a,) belong to
D, and 8(b;), respectively, then (33) does not exceed

B 2 byt
(34) i =Y

for by in some interval
bn(.p, 9) g bl § 17 0 < bn(pr Q) < L.

The estimate s sharp for every p,q, ..., and b,. All the extremal functions
are given by the formula

2

fn,c(z) = e*icP;l(bIPn(eicz)L P"(Z) = z/(1 - zn—l)n_l ’
=1, —a<ec=m.

The authors believe that the estimate of (33) by (34) can be established
with help of the method applied in [8], while the totality of the extremal
functions can be determined with help of the method applied in [15].
These methods, however, may fail in view of technical difficulties.
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