ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

492

NOTE ON THE DISTRIBUTION OF
IRREGULAR PRIMES

BY

TAUNO METSANKYLA

HELSINKI 1971
SUOMALAINEN TIEDEAKATEMTIA

doi:10.5186/aasfm.1971.492


koskenoj
Typewritten text
doi:10.5186/aasfm.1971.492


Copyright © 1971 by
Academia Scientiarum Fennica

Communicated 15 January 1971 by K. A. INKERI

KESKUSKIRJAPAINO
HELSINKI 1971



Note on the distribution of irregular primes

1. Introduction. A prime p is said to be irregular if it divides the nu-
merator of at least one of the Bernoulli numbers B,, B,,...,B,_,
(in the even suffix notation). The simplest proof for the known fact that
the number of irregular primes is infinite was given by CARLITZ [1]. JENSEN
[2] proved the stronger result that there is an infinity of irregular primes
= — 1 (mod 4), and MONTGOMERY [3] generalized this as follows: for
every integer 7' > 2, there are infinitely many irregular primes ==1
(mod T). This result also contains the proposition asserted by SLAvUT-

SKII [5], namely, that the number of irregular primes = — 1 (mod 3) is
infinite.
SrAvUTSKIT remarked that some of the known irregular primes = — 1

(mod 3) are = 1 (mod 4). According to MONTGOMERY, the first 216 irregular
primes, grouped modulo 12, split into groups of 49, 66, 43, and 58 primes.
More generally, as noted in [3], numerical results indicate that there is no
deficiency of irregular primes in the residue class 1 (mod 7T), if 7' > 2.
In this note we shall show that there are infinitely many irregular
primes = + 5 (mod 12), so that the following theorem holds true:

Theorem 1. A¢ least one of the residue classes 1 (mod 3) and 1 (mod 4)
contains an infinite number of irregular primes.

In addition, using ideas from [3], we shall generalize this result by
proving

Theorem 2. For every integer T >4, T £ 6, there are infinitely
many srregular primes = 4+ 1 (mod 7).

We also wish to mention the connexion between the questions about
the distribution of irregular primes and the number of regular primes.
This number has been conjectured to be infinite ([4], cf. also [7]). The con-
jecture is proved if, for some integer 7', there exists a residue class (mod
T) prime to T containing only a finite number of irregular primes. How-
ever, in view of our present knowledge about irregular primes, the existence
of such a residue class seems improbable.
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2. Preliminary results. Write the Bernoulli numbers in the form
sz = N2k/D2k

(in lowest terms) with D,, > 0. Then, by the known Staudt-Clausen
theorem, D,, is the product of those distinct primes [ for which 7 — 1
divides 2k . Furthermore, by setting

Spt) = 1% 4 2% o (t— 1)
we can state that N, is connected with D, by the congruences
(1 t Ny, == Dy Sg(t) (mod ¢2),
valid for each positive integer ¢ [6, p. 260].
Those prime divisors of N,, which divide the numerator of N,/k
are called proper. As is known (see, e.g., [3]), every prime which is a proper
divisor of some N, is irregular.

To be able to use (1), we shall need some information about S,,(¢) .
If P denotes an arbitrary odd prime, we have [3, p. 555]

(2) Syu(P) = PJ6 (mod P?) for k=1 (mod P(P —1)).

Moreover, assuming that k£ > 1 the following congruences can be easily
established:

(3) S5(8) = — 12 (mod 32) for k=1 (mod 4),
(4) Sy(9) = — 3 (mod 27) for k=1 (mod 9),
(5) 8,(12) = — 10 (mod 24) .

3. Proof of theorem 1. Let us suppose that there exists only a finite
set of irregular primes = -+ 5 (mod 12), say, p;,...,ps. Put

Ad=@ —1...(p.—1)
and consider B,, with a prime ¢ =1 (mod 124) .
It is seen that D, = 6. Hence, by (1),
(6) 12N,, = 68,,(12) (mod 122) ,

which combined with (5) yields

N,, = — 5 (mod 12).

29 —
From this congruence it follows that N, must contain a prime factor
p == 4 1 (mod 12). Since p s ¢, we conclude that p is a proper divisor
of N,, and thus irregular. By our assumption, p then appears in the
above set of primes.
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Now, because N, contains a prime p; (1 < i <s) as a factor, the
congruence

B, /g =0 (mod p:)

holds true. On the other hand, by virtue of ¢ =1 (mod p:; — 1), the so-
called Kummer’s congruence gives us

qu/q = B,/1 = 1/6 (mod pj),

and we have a contradiction.

4. Proof of theorem 2. It is sufficient to prove, that the number of
irregular primes == 4 1 (mod ¢{) is infinite for ¢t = 8, 9, 12, and P (an
arbitrary prime > 3). Indeed, every integer T' >4, T #+ 6, is divisible
by at least one of these numbers ¢ .

For t = 12, the proof was carried out above. The case =9 can be
treated analogously by choosing ¢ =1 (mod 184), whereupon (6) is re-
placed by

9 N,, = 6 8,(9) (mod 92)

which gives, by (4), the congruence

Nyy=—2 (mod 9).

The remaining cases are more complicated. In the first place, let P
be a prime > 3 and suppose, contrary to our assertion, that p,,...,Ps
are the irregular primes == 4 1 (mod P).

We put
(7) M=6PP —1)(p—1)...(p — 1) =P'M,,

where M, is not divisible by P, and choose a prime I satisfying
(8) l=—1 (mod2M,), I =3 (mod P" .

Then ! = -+ 1 (mod P), and we can find a factor n of 3 (I — 1) such
that D,,, the denominator of B,,, is of the form 6al’ where a = + 1
(mod P) and I’ (=2n + 1) is a prime = £ 1 (mod P) . (See [3], proof
of theorem 3.1, where 7 is denoted by u'.)

Note that I is chosen such that (3 (! — 1), M) = 1. Consequently,
(n, M) =1 and the congruence

(9) ng =1 (mod I'M)

is solvable for ¢. Moreover, one can assume ¢ to be a prime satisfying
simultaneously with (9) also
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(10) 2djg = — 1 (mod 1)) G=1,...,7),
where d,,...,d, are the divisors of » and 1,,...,I, are distinct
primes > I'M .

Consider B,, with @ = ng =1 (mod I’M). Then (10) assures us that
D,y has no other prime factors than those of D,,, that is,

(11) Dyy = D,,=6al’, @ =+ 1 (mod P).
Applying this with (2) to the congruence

(12) P Ny = Dyy Syp(P) (mod P?)

we get

(13) Ny= 41 (mod P).

To eliminate the improper divisors of N,,, we must write Q = Q,Q,
with (@;,@,) =1 and @, containing exactly those primes of @ that
divide D,,. Then @, divides N,, (see, e.g., [6, p. 261]) and thus the
numerator of N,y/Q equals N,/@,. Now, because @ =1 (mod 6'),
none of the prime factors 2, 3, and ' of D,, appears in @, so that,
by (11), @, = £1 (mod P), and we have @, = --Q = 4+ 1 (mod P).
Together with (13) this yields

Nyo/Q, = + I (mod P) .

Hence N,, contains a proper prime factor == 4 1 (mod P) and the proof
can be finished similarly as in the above cases.

As for the case ¢ = 8, one has to modify slightly the preceding proof.
In fact, the formulas (7), (8), and (12) are replaced by

(7) M=24(p, —1)...(ps— 1) = 2"M, (M, odd),
(8) l=—1 (mod M), =3 (mod 24,

the last of which then gives, by (3), the crucial congruence

Nyy= 41 (mod 8).
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