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Abstract

Some finiteness properties of formal series over several non-commutative variables
are investigated. Some unsolvability results for those properties are proved. A
simple example of a context sensitive language over a single letter alphabet which
is not probabilistic is exhibited.

Introduction *

An interesting connection between some classical results in analysis
dating back to Cauchy and Jacobi and some quite new theories such as
System Theory, Automata Theory and Computability has been established
in the past few years. The classical results are concerned with a special type
on infinite matrices, called Hankel matrices, connected with the Routh-
Hurwitz problem (see Cantmacher (1959)), with formal series expansion of
rational and alg braic functions (see Hurwitz (1889)) and approximations
of formal series by an expansion of a rational function — Pade’ approxi-
mation (see Frobenius (1881)). The formal approach has been rejuvenated
recently by Schutzenberger (1961) followed by several others (e.g. Shamir
(1967)), Nivat (1968), Flies (1969) who introduced noncommutative vari-
ables and studied formal series in connection with the theory of formal
languages and automata. Kalman and Ho and others (see Kalman Arbib
and Falb (1969)) have applied a generalized form of Hankel matrices to
System Theory and solved the realization problem of input-output linear
maps. Nasu and Honda, emerging from probabilistic automata theory, have
established an interesting finiteness property of a formal series genera-
ted by a probablistic automaton, a property which was used by them to
prove some undecidebility theorems (see Nasu and Honda (1969)). Finally
Carlyle and Paz (1970) have found a connection between a generalized
form of Hankel matrices and formal series which are generated by pseudo-
probabilistic automata.

The first three sections of this paper are concerned with four finiteness
properties of formal series over several noncommutative variables. Those

1) Presented at the Symposium on Probabilistic Automata held at the University
of Turku in May, 1970. Research supported in part by Grant 68—1408 at the Uni-
versity of California, Los Angeles.
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properties are related to both classical results and modern ones as mentioned
above. While the four properties above where known to be equivalent when
a single variable is involved, it is shown that this is no longer true over
several noncommutative variables, and the relationship between these
properties is investigated in general.

In the next two sections some nonsolvability results connected to the
properties described in the first sections are proved, including some open
problems left over by Nasu and Honda (1969).

The last section deals with formal languages over a single letter alphabet
defined by formal series satisfying finiteness conditions as described in the
first sections. A simple example of a context sensitive language which is
not probabilistic is presented and it is shown that the problem whether an
arbitrary probabilistic language over a single letter alphabet is regular or
context-free is not solvable.

A. Word-funetions

Let X =(x,y)> be a finite alphabet (for the sake of simplicity we
shall assume that X contains at most two elements unless otherwise
stated), let X* be the free semigroup over X (the set of all »words», or
finite sequences of »symbols» or elements, from X including the empty
word to be denoted by A ) andlet f be a function f:X* — 4 where 4
stands for some division ring (in particular 4 may be equal to R — the
set of real numbers which is a field). Such functions will be called »word-
functionsy.

Consider the following properties of a given word-function:

(I) For every word ve X* there exists an integer n <<n,, where
1,y is a fixed integer which does not depend on v, and elements C,—,, ...,
Cye A such that for any two words u,weX* the following equation
holds true

(1) fluvrw) = Co_yf (wow) + Co_of (wvr—2w) . . . + C,f(uw)

where 9" is the word vwv...v and wv is the catenation of the words «
— e’

and v (e if u=wa,..., %, v=9;,...,9 then w=2a...29,

“ e yJ) .

(II) There exists an integer = ,n X n matrices A(x), A(y) over A4,
and n-dimensional vectors over 4,z and 7,z a row vector and % a col-
umn vector such that for any w =2, ... 2 ¢ X*

) fw) = wd(zy) . .. Alwy = zA(w)y
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(ITI) Let A(f) be the infinite matrix A(f) = || ay(fl)) with ay(f) =
fluw) where wuyu, . .. is a fixed preassigned lexicographical ennumera-
tion of the elements of X*

(3) A(f) is of finite rank

(IV) There exists two polynomials P(v,y) and @Q(z,y) with coeffi-
cients in 4 and (noncommutative) variables in X such that:

@ Q@.y) Sfew) =P@.y) o S0 Q.9 = Ple,y)
where the product in the left-hand side is defined in the ordinary way.

The following theorems are either known or can be easily derived from
known theorems.

Theorem 1. If X contains a single letter then the four properties (I),
(II), (IIT), (IV) are equivalent for a given word-function.

Proof. That (I) is equivalent to (II) follows as a particular case from a
more general theorem proved by Ho (see Kalman Arbib and Falb (1969)).
That (I) is equivalent to (III) and (IV) is a classical result which can be
found in many books, e.g. Gantmacher (1959) pp. 243 —247.

Theorem 2. For the general case (X contains two or more letters),
the properties (II) and (ITI) are equivalent and both of them imply pro-
perty (I) for a given word function f.

Proof. That (IT) is equivalent to (III) follows as a particular case from
a more general theorem proved by Carlyle and Paz (1970). That (IT) implies
(I) has been proved by Nasu and Honda (1968).

B. Some negative results

Theorem 3. If in property (I) » = 3 for every rel™® and X contains
two (or more) noncommutative letters (variables) then (I) does not imply
(I11).

Proof. We shall show how to construct a word function f such that f
satisfies (I) but it does not satisfv (III). Let X = (0, 1) and consider
the following infinite sequence

U — 0110100110010110 . . . = wy25 . . -

constructed as follows: for a; =0 or a; =1 let & = 1—a;. The first
letter in the sequence is 0. If the first 2% leters (for £ =0,1,2,...) in
the sequence have already been fixed and are equal to @y, . . .z, then the
next 2¢ letters are &, ... T, . Let v, w denote finite subsequences of U
of the form v = @ity . . . Vipm, W = Ajje1 . . . L1n . It is known that the
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infinite sequence U , constructed as above, contains no finite subsequence v
such that » = www = w? (see Morse and Hedlund (1938)). Consider now
the following two sequences of words over X* .

Up = AUy =Xy, Uy = Ty Xy, « . . Ui = By Tq . . . T
Vo= A, Uy =Ty, Vg =gy, ...V = Tipy...Ts
and construct a word function f,f:X* R as follows: f will satisfy

a relation of the form (1) with » >3 and in addition the following de-
terminants

if(uovo) oo S (ugi) i
E | =N

] flwvg) ... flwwy)|

will all have nonzero value for i =1,2,3,4,... We prove by induction
that the construction of such a function is possible. For ¢ = 1 we have

_ [ fw)
[fe) Sl

and the values of f appearing in this determinant can be choosen at will
and in a way such that A; s 0 without affecting the relation (1) to be
satisfied by f; for the arguments of f in the entries of /\; are words of
length <2 (the »lengthy of a word w = ;... , to be denoted |w| is

VAS}

the number of letters in it, i.e. |w! = k). Assume now that all the values
of f have been choosen for words w with |w! < 2i such that f satisfies
the relation (1) for such words and ;== 0. .., has the form
} VAV S (i)
DNit1 = | :

» . i
(i) - o f (Ui vi)

By construction wip,vi4 = 2,2, . . . 2310 wich is an initial subsequence of
U of length 2i + 2 so that, by the property of U mentioned above,
the value f(uipiviy) does not depend on any other values f(w) already
fixed — although f is required to satisfy a relation of the form (1). But,
by induction, A; = 0 and therefore, one can choose values f(w) for all
w with |w] <20 + 2 not yet fixed by the relation (1) including f(u:112:1,)
so that Ay 4 0. It follows that a function f satizfving a relation of the
form (1) can be constructed such that A(f) has infinite rank, for the
determinants /\; are subdeterminants of A\( ffori=1,2,....

Theorem 4. If X contains two or more variables then (IV) does not
imply (I) in general and therefore (IV) does not imply (I1I) or (II) either
(for (IIT) implies (I) by Theorem 2).
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Proof. Let A be the set of real numbers and let X = {x,y} where x
and y are commutative variables over A . Consider the word function f
defined as follows:

1 if w=a™y™ m=0,1,.

f(w) ={

0 otherwise.

Then

1

lyl y

Thus f(w) satisfies (IV). But f(w) cannot satisfy (I). To prove this, assume
that

(wy—l)i

i—o%

furv) = Cocy f(u 1) + Coes f(w=20) . .. Cof(v)
then if # = 2 and » = " we must have that
Fary™) = Coma fla™ 1) + oo + Cof(y)

which is impossible for f(2"y") = 1 while f@—yy=0for i=1,..., n.

Remark: Note that the variables in the example of Theorem 4 are com-
mutative. For noncommutative variables Theorem 4 is no longer true.
For noncommutative variables (IV) implies (II) (and therefore also III
and (I)). This follows, as a particular case, from a Theorem of Schutzen-
berger (1961).

Example: Let A be the set of real numbers and let X = {z, y} where
» and y are noncommutative variables over A . Consider the word function
f defined as follows:

f(w)—[1 if w=(ey)"m=0,1...

N l 0 otherwise

then

(wy —1) > (xy)~ =y
1=0
Dut this function f(w) satisfies also (IT) as follows: Let A(x) = (5) A(y) =
Yz = (10);7 = (). It is easily verified that f(w) = zd (). Note
that this function reduces to the function in Theorem 4 when the variables

r and y are commutative.
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C. Two particular cases

The previous two theorems show that the range of Theorem 2 cannot be
extended to the range of Theorem 1 in general. The purpose of the next
two theorems is to show that the range of Theorem 2 can be extended
slightly, provided that some additional restrictions are imposed on the
specified conditions (I), (IT), (ITI).

Theorem 5. If the function f: X* — A is such that the Variables X
are commutative and A4 is a division ring then property (I) implies the
property (III) and therefore, by Theorem 2, properties (I), (II) and (III)
are equivalent.

Proof. Let f be a word function over a two letter alphabet X = {«, y}
satistiying the conditions of the theorem and satisfying a relation of the
form

Q J70) = Co ™) + ...+ C fla)

where the constants n, 0. ... C; depend on w only and #n <#,, for
some fixed integer 7, not depending on w . Let # be any column in / (f)
such that

7 = (flugw) , flugw) . . . fluw) . .. )T

where w,u, ... is the lexicographic enumeration of the words in X* cor-
responding to nonzero rows and |w| > 2n,—1 . Then either w = w'a™ or
w = w"y™ for the variables are assumed to be commutative. Thus either
n=(va") i=1,2,... or n=(~vly)"i=1,2,... where 2 = uac
and v, = w;e” and in both cases the column 7 1s a linear combination of
of previous columns in  A(f) , because of the relation (5).

Theorem 6. Let f be a word function f:X* —+ A such that ¥ —
<@,y > and [ satisfies the property (1) with n, <2 then f satisfies
(11I).

Proof. Let f(w;) be the leading term of the ¢—th column of A(f).
As wugu, , ... Is a lexicographic ordering of the words in X%, 4 > j implies
that  |wi| = (wjl . If || >4 then w; is representable in one of the
forms wu] or wy! or wi(xy)u; or wl(yx)u, . This follows from the
fact that any word of length 4 which is not equal to (vy)? or (yx)? must
have a subword of the form a2 or a subword of the form y* (this can be
checked by straight forward inspection). It follows from the above obser-
vation and from the conditions of the theorem that any column in A(f)
whose leading term is f(u;) with |w;] > 4 is a linear combination of two
columns with leading terms f(u;) with |u;] < lu;] and this concludes
the proof.
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D. Solvability problems

This and the following section assume besic knowledge of Automata
Theory and Recursive Functions Theory.

Let f,,f, be word functions over the same alphabet X and define the
following operations on them:

fa(w) = (fy V fo)(u) = max(fy(u) , fy(u))
filw) = (fy A fo)(w) = min(fy(u) , fo(w))

Nasu and Honda (1969) considered the following problem: Is it recur-
sively solvable to ascertain for arbitrary word functions f; and f, satis-
fying the property (II) whether f, V fo and f; Af, satisfy that same
property?

A negative answer to the above question was given by the above authors
using an example as follows: A set of languages {L} (L is a set of words
L c X% and two sets of word functions {f;}{f,} over an alphabet with
two letters are given such that:

(1) It is recursively unsolvable for an arbitrary element L in {L} to

ascertain whether L = @ (0 is the empty set of words).

(2) L = @ implies that f, \/ f, satisfies the property (II) where fie{f;}
foelfs} and fif, are determined by L.

(3) L = O implies that f; \V f, does not satisfy the property (I), fifs
are as in (2). As (IT) implies (I) we have that

(4) L + O if and only if f, V f, satisfies (II) and therfore it is recur-
sively unsolvable to ascertain for arbitrary f; V fy, fielfi} . fielfe}
whether f, V f, satisfies (I) (a similar argument do for f; A\ f;) .
This is Theorem 24 in Nasu and Honda (1969). There are however
some additional consequences to be drawn from the above example
and our work here. Those consequences are given in the following
corollaries.

Corollary 1. For two arbitrary functions f; and f, which satisfy both
property (I) or (III), it is recursively unsolvable to decide whether f; V' f,
and f; A\ f, satisfy (I) or (ITI), respectively. provided that the alphabet X
contains two or more letters.

Proof: (2) and (3) above imply not only (4) but also that:

(5) L = @ if and only if f; V f, satisfy (I) (this following from the
fact that (II) implies (I) and if f; and f, satisfy (II) they also
satisfy (I)). The statement regarding property (III) follows from
Theorem 2.

Remark: As properties (I) and (II) are not equivalent (Theorem 2 and

Theorem 3 here) Corollary 1 is not equivalent to the theorem of Nasu and
Honda cited above.
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Corollary 2. It is recursively unsolvable to decide for an arbitrary word
function f whether f satisfies property (I) or property (II) or property
(ILI) provided the alphabet X contains two or more letters.

Proof. Unsolvability of property (II follows from the theorem of Nasu
and Honda. Unsolvability of (I) follows from Corollary 1 above and un-
solvability of (III) follows from Theorem 2 and from the unsolvability
of (II).

In the above cited paper of Nasu and Honda (1969) they considered the
nonsolvability problems for functions over alphabeta containing at least
two letters, leaving the single-letter case open. We shall prove here that
the nonsolvability results proved by them are valid also for the single
etter case using an example suggested by them and introduced first by
this author (Paz, 1966).

E. Unsolvabhility for single letter alphabets

We introduce first the following three functions over a single letter
alphabet 2 = {o}.

(1)  f(6*) = ald(0)]y, k=1 22, ... with 0%
0 511

7= (001);7 = 0);A<o>= AR

1/ 11 1

N E 4 2

Thus, f satisfies the condition (II) by its definition.

The following property of f can be proved using an argument similar
to the one used in Paz (1966, p. 31):

For any integer n there are integers ¢, I; and &, such that:

k1 nt 4 k> _mi - +
nf((7 G ) - 11" f((f o ) :\,:—l‘i
4
gy < — ;¢ =1,2 p=0.1.2,.... n—1
11 %
4
(2) Let g be the function ¢(¢") = — for 2 =1.2.... The function

11
g satisfies the condition (II) triviallx.

(3) Let {Z} be the family of Turing machines. For every Ze{Z} define
the word function %, as follows: %,{¢"; = 1 if Z is still moving
after n steps, beginning from blank tape and %,(¢") = 0 otherwise.
Then hy is recursive and total assuming one of the two following

forms:
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Either hy(o") =1 for n=1.2....
or hy(o") =0 for n > n,

(if Z halts after n, steps).

Although it is undecidable to ascertain for arbitrary %, which of the
two forms is the actual form of h, still in both cases %, satisfies the con-
dition (II) for any Z as one verifies easily.

Proposition 1. For arbitrary %, as above the functions fh, and gh,
satisfy the condition (1I).

Proof. Tt was proved in Paz (1966) that the class of functions satisfying
the condition (II) with the additional restriction that the matrices A(c) be
stochastic is closed under multiplication. The preof can be extended readily
so as to remove the above additional restriction.

Proposition 2. The function f V g does not satisfy the condition (1I).

Proof: By Theorem 1 it suffices to show that f V g = F does not satisfy
condition (1). Assume the contrary, then there is some integer n such that
for any integer ¢ the function F satisfies a relation of the form

F(d*e™) = > Cu_ F(c*a"7)) L =0,1,...
i=1
Evaluating this relation first for ¢ and Z; as in the remark after the
definition of the function f one finds that:

\
\
!

— < max 'ﬁ , (Gl:lgnt)) — _F<O-k](7m) —

11
& 0. F(ggn— \: C U 0 4+
= > O F(cMc" ™) = 3 Cu_y max|f(ghigh=y  —] =
i1 ic1 v 1
4 n
- > O,
=
A 4
or Choy > —
% T

On the other hand, evaluating the relation for ¢ and %, one finds in the

same way that len_l = 1—41 which is a contradiction.

Theorem 7. It is recursively unsolvable to determine for arbitrary word
functions f,g satisfying both the condition (II) and over a single-letter
alphabet X = {o} whether fV g or f/.g satisfy the condition (II).

Proof: We shall prove the Theorem for f '/ g . the proof of the other
statement being similar.

Consider the functions fh, and gk, for arbitrary /%, as exhibited at
the beginning of this section. Both of them satisfy the condition (II) (Pro-
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position 1). But the function fh, V gh, = (f V g)h, does not satisfy this
condition if and only if k(¢") =1 for all » (for if f(¢") =0 for »n > n,,
which is the only alternative, then (f V g)h, will assume only finitely
many nonzero values), which is undecidable by the choice of the set {A,} .

Corollary 3. It is recursively unsolvable to determine for an arbitrary
given word function over a single letter alphabet whether this function
satisfies either of the conditions (I), (II), (ILI) or (IV).

Proof: Property (II) is undecidable for the function exhibited in Theo-
rem 7 and the other properties are equivalent to property (II) by Theorem 1.

F. Languages over a single letter alphabet

Given a word function f we define the languages:
L(f) = {x : zeX* , f(z) # 0}
L(f, 7) = {xraeX*, f(x) > 7}

where /4 is a real number.

Languages of the first form have been introduced by Shutzenberger
(1961) and languages of the second form have been introduced by Rabin
(1963). Let us assume now that the word function f in the definition of
the languages above satisfies the property (II). The following properties
are well known or easily proved for this case:

(1) There are nonregular languages which can be represented in the

form L(f) (Turakainen, 1968).

(2) Every language representable in the form L(f) is representable also
in the form L(f, 2) (f in both cases satisfies (II)) but the converse
is not true.

For the first part see Turakainen (1968). For the second part consider
the language L = {x"y":n=1,2,...}. It has been proved by Tura-
kainen (1969) that it can be represented in the form L(f, 2) with f satis-
fying (IT). That it cannot be represented in the form L(f) can be proved
using an argument identical to the argument used in the proof of Theorem 4:
If L(fy={xy":n=1,2,...}={w:f(w)==0} then f cannot satisfy
property (I), but f is assumed to satisfy property II which implies pro-
perty (I).

(3) The cardinality of the set of languages representable in the form
L(f ., 2) with f satisfying property (II) is equal to the cardinality
of the continuum (Rabin (1963)) which is also the cardinality of
the set of all languages (2 being finite, 2* is countable and the
set of all subsets of X* has the cardinality of the continuum).
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The following problem is now natural. Are there languages not represent-
able in the form L(f, ) with f satisfying (II)? Bukharaev (1965) has
given an example of such a language over a single letter alphabet. Unfortu-
nately, he did not prove his example (which is quite complicated, being
defined on the basis of four arbitrary primitive recursive functions). We
have not been able to prove Bukharaev’s result, not have we succeded in
establishing contact with him (directly or indirectly) anrd, to the best of
our knowledge nobody else in the west knows how to prove that result (see,
e.g. Salomaa who needed that results in order to establish some relation
between time variant events and events defined as above). Note that, when
looking for a language as above, one must take into consideration that
there may be different word functions defining the same language; in
addition, if a single letter alphabet is assumed then, the required language
if existent must be at least context sensitive, for context free languages
over a single letter alphabet are regular and therefore also representable
in the form L(f, 2) with f satisfying (II) (see Paz (1966)).

We show now an example of a nonrepresentable language over a single
letter alphabet.

Let X = {a} and let A\ = {a,b}. Let wu,... be alexicographical
enummeration of all nonempty words over /\ and let U be the infinite
sequence of letters from /\ resulting from the concatenation of the Words
Uy . . . in their given order. Let U(i) denote the i-th letter in U and
define the language L, = {2*: U(k) = a}. L is not representable in the
form L(f, ) with f satisfying property (II).

Proof: Assume L, = L(f,7) for some f satisfying property (II).
As property (II) implies property (I) (Theorem 2 here) there are constants
C,...C.; such that

(6) @) = Cyf (@) + Oy f (@) = ... + Cou f (2571)
Let e ...€n,0,...0n be two wordsin /* defined as follows: & =5
if and only if C;> 0, = a otherwize, & =a.d = [\ — & . By the

construction of U there are integers &y and £k, such that:

Ulky) .. . U(ky —n) =&y ... ¢n

Uky) ... Ulky =m) = 6y ... 0n

It follows from the definitions that:

Ci>0=>Uk+i))=Db,Ulky,+1t)=0a

= flah ) < 4, flah) > 4.
C;<0=Ulk,+1)=0a,Uly+1)=0b

= f(ah+) > 2, fla™t) < 1.
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Uk, + n) =a, Ulky + n) = b = fla"t) > 4, f@) < 4.

Evaluating the formula (6) first for £k = k; and then for k = k, we have

n—1

n—1
PRI = 2 O < 2 G

and

n—1

i zf(xk“’") ="§ Cif (+) > 2 Z C;

which is a contradiction.

Remark: It is easily seen that the language L, is context-sensitive for
the sequence U can be generated by a linear bounded automation, and,
as remarked above, no single letter and simpler language can satisfy the
required properties. On the other hand by constructing the sequence U
in a more complex way (but still containing as finite subsequences all
words in /\*) one can construct languages not representable in the form
L(f,2) with f satisfying (IT), but not context-sensitive either. This
remark is due to S. Greibach.

We conclude this work with the following:

Theorem 8. It is recursively unsolvable to determine for an arbitrary
word function f satisfying condition (II) and over a single letter alphabet,
and an arbitrary number 1,0 << 1 << 1, whether the language L(f, 1)
is regular or whether L(f, Z) is context-free.

Proof: Consider the function fh, as in Proposition 1. fh, = f if &,
assumes only the value 1 for every argument and fi, has only finitely
many values otherwise. It was proved in Paz (1966) that L(f, 4/11) is
not regular. It follows that L(fkh, 4/11) is not regular if and only if A,
assumes only the value 1 which is recursively unsolvable for arbitrary &, .
The second satement of the theorem follows from the fact that regular and
single-letter larguages are context-free.

Remark 1. Usirg the functions A, and 1—Ah, one can prove also that
it is recursively unsolvable to decide for an arbitrary word function f satis-
fving (I1) and over a single letter alphabet, and arbitrary number 1 whether
the larguage L(f, 2) is empty or whether it is equal to X* .

Remark 2. Note that the theorems 7 and 8 are existential. The func-
tions %, , on which their proofs are based, are shown to satisfy (II) but
their representation in the form (2) is not explicit. One may still ask there-
fore whether the theorems can be improved by showirg how to construct
the functions &, explicitely in the form (2), for any given Z or else by
finding a subset of the set {Z} for which this is possible and such that
the halting problem from blank tape is still unsolvable for it. This remark
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is specially noteworthy with regard to Theorem 8, for the problem con-
sidered in that Theorem is decidable in many cases, provided that the
function is given explicitely in the form (2), as follows from the papers of
Paz (1966) and Turakainen (1968).

Acknowledgements. The author is indebted to M. O. Rabin for several
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