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INDRODUCTION

1. Let X be a normed linear space over the reals R with dimension
> 2, Y a Banach space over R, and let 4 and B be open subsets of
X and Y, respectively. Denote by L(X ; Y) the Banach space of all

bounded linear maps L from X to Y, with the norm [|L|| =sup |Lx]|.
x| <1

Given a mapping F from AXB to L(X ;Y), consider the total dif-
ferential equation

(1) y'(x) = F(z, y(x))

where ' denotes the Fréchet derivative of the mapping y. The dif-
ferential equation (1) is said to be completely integrable in AX B, ifit
has for each point (%, ¥y,) of AXDB a unique solution y in aneighbour-
hood of z,, satisfying the initial condition y(z,) = y, .

2. If F is continuously differentiable and if F; and F, denote the
partial derivatives of F, the theorem of Frobenius (Dieudonné [2]) states
that the vanishing

(2) R(x,y) =0
of the bilinear alternating mapping R(x ,y) from XXX to Y, given by
(3) R, y)hk = A {Fy (@, )k + Fy(x, y) [Flx, y)hlk })

(h,k€X), for all (x,y)€ AXB is a necessary and sufficient condition
for the complete integrability of the total differential equation (1)in AX B .
The necessity of this condition is a direct consequence of the symmetry

y'(@)hk = o (@)kh

of the second derivative %”. Various methods can be used to prove the
sufficiency (see e.g. Nevanlinna [8], Dieudonné [2], Keller [4], Louhivaara
[5], Tienari [11], Scriba [10], Penot [9]).

3. The complete integrability of (1) is studied in Nevanlinna [6, 7, 8]
when F is continuous in x and linear in u, and in Béchli [1] when F
is continuous and satisfies a Lipschitz condition

1) For a bilinear mapping D we denote by AD the alternating part of D, i.e.
ADhk = 1/2 (Dhk — Dkh) .
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(4) F,y) — F@,y) || <Ky —1y| (K > 0)

in AXB. For a given initial value y, € B the differential equation (1) can
be integrated in both these cases along sufficiently short oriented piecewise
smooth paths 7 in A. More precisely, if 7 is such a path with the total
length || small enough and, if arc length is chosen as a parameter in a
representation s+>1(s) of I, then the integral equation

5) ult) = g+ [ ) a6l (s

or equivalently, the initial value problem

(6) w'(t) = F(@) , u®)) I' (1), w(0) =1, ,

has a continuous solution « on the closed interval [0,!l|]]. Moreover, this
solution is uniquely determined by the integration path [ and the initial
value y,, so that the equations

(M) T, y) =y + Ull,yo) = u(l)

define two operators 7' and U of the pair (1,7, with values in Y.
Suppose now (1) to be completely integrable in 4 X B and let y be
a solution of (1) with y(z,) =y, Then

ﬂhw=mm=%+wame)

for each piecewise smooth path [ from x, to a in the domainof y, since
u(t) = y(I()) is the solution of (5). Thus 7'(!, y,) depends for fixed y, € B
only on the end points of [, or equivalently, U(l,y,) =TI,y — ¥
vanishes for closed paths [. Particularly, the condition: for each y,€B

(8) U, yy) = 0

whenever 6 = do is an oriented boundary of sufficiently small simplex
o c A43%), is necessary for the complete integrability of (1). In the cited
cases this cenditicn is shown to be also sufficient. Using Goursat’s idea to

i
2) ] G(z)dz denotes the integral J G(l(s)) U(s)ds .
i 0

3) By a simplex we mean here a non-degenerate triangle, i.e. if 2,,2; and x,
are its vertices, then x; — z, and x, — 2, are linearly independent. Area 4 of such
simplex is defined by 4 = :D(:v1 — @, — @) where D is a nontrivial bilinear
alternating real form of vectors in the subspace of X generated by a; — 2, and
Ty — Tge
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estimate the norm of U(d,%,) the condition (8) is then reduced to a local
integrability condition, equivalent to the Frobenius condition (3) when F
is also differentiable.

4. In this paper we shall study the complete integrability of (1) under
more general assumptions. Denoting by 6 — & the regular convergence of
6 to a point & of A in all two-dimensional planes E of X containing
#4, our main result, which is derived by the above described method due
to R. Nevanlinna, can be stated as follows:

Suppose that F is continuous and satisfies locally in A XB an Osgood
condition

(9) |1F@,y) — Fl, 9l <g¢ly—7g)
where @ is a continuous and increasing function on the set R* of non-
negative reals such that

1
dr
(p1) lim [— =
s—>0T ¢(T)
and
(72) fim 702 912
r>0+ (77 (7’)
Then the condition
Ue,
(10) lin_l sup [—(lé?@ =0
8%, |y—5|<Clo| ‘

for all (& ,7y) € AXB and for all C > 0, is necessary and sufficient for
the complete integrability of the total differential equation (1) in AXDB .

In particular, when ¢(r) = Kr in (9), we get the basic result of Bachli
[1] as a corollary. There are some inaccuracies in [1] which are corrected
here (see p. 27). Other special cases are obtained by choosing

1 1
¢(r) = Kr log PEEE logn;
where log, denotes n times iterated logarithm.

The theorem of Frobenius follows as a corollary if F is supposed also
to be differentiable, but not mecessarily continuously differentiable.

The hypothesis (p2), which is not generally included in the Osgood
condition, is added to show the sufficiency of the condition (10) for the
complete integrability of (1). Actually, our proof fails if this hypothesis is
replaced by

%) § = do is said to converge regularly to & in E if & €c c E and if |§]?/4
remains bounded for || — 0.
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((p2)! ].E @ (7‘/2) S 2—1/2 ,
>0t @ (7‘)
as we shall show by a counter-example (p. 27).
The domain of the solution of (1) is also estimated (Lemma 5 p. 12),
and finally we shall study the possibility to generalize further the hypo-
theses of the mapping F .

1. Preliminaries

For simplicity we shall suppose in this chapter that 4 and B are
the open balls

(1.1) Ad={zeX|le|<e}, B={yeY|ly <}

and that the mapping F:AXB-—>L(X;Y) has the following properties:

1° F s bounded and continuous in AXDB,

2° F satisfies in AXB the Osgood condition (9) where ¢ is a bounded con-
tinwous and increasing fumction on Rt satisfying the hypothesis (¢ 1) .

1.1 We shall first set up some properties of the operators 7' and U
given by (7) (p. 8). PA denotes in the sequel the set of all oriented poly-
gonal paths in 4, ie. paths of the form ! = @, ,...»2, from x, to
xn, formed by the oriented line segments xx _, from x,_; to a, =
1,...,n.

Lemma 1. The operators T and U are defined in the set

o' — |y
(1.2) W = {(l ,Y) € PAXB| |l < Wi }
where
(1.3) M =sup {[|[F(z,y) || | (x,y) € AXB}.

In view of the definition (7) of the operators 7 and U this lemma
states that the continuous solution of the initial value problem (6) (p. 8)
exists and is unique on the interval [0, []] for fixed (I,y,) € W. With
the hypotheses 1° and 2° this is a well-known result of the theory of the
ordinary differential equations (see Nevanlinna [8], p. 153). By this theory
we get also

Lemma 2. If I, and 1, are paths of PA such that the product path
bLl, is defined (i.e. the final point of I, agrees with the initial point of 1),
then

(T1) Tl ,y) =T, Tl ,y),
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both sides being defined whenever one side is.
Furthermore,

(T2) T, T, y) =y

for all (I,y) in the domain of T, I-* being the inverse path of 1.
The hypotheses given for ¢ ensure that the integral equation

(1.4) ot ,r)=r+ /gv(v(s , 7))ds

has a unique solution » in Rt X R*. Since v is for r > 0 also the so-
lution of the integral equation
v(t,r)
(1.5) do
' pla)

3

we see that v is increasing in its both arguments. Moreover »(t,0) =0 .
In the proof of our main theorem we shall also need the following inequality,
which will be proved in the last section (p. 31):

Lemma 3. For all (I,y)€EW, j=1,2

(1.6) 1T, 3) — T, ye) | <ol 5 s — wal) -

1.2. For the sake of completeness we shall prove the following result
(cf. Béchli [1] Prop. 2):

Lemma 4. Given a point (xy,vy,) of AXB, the initial value problem

(1.7) y'(@) = Flx,y), Y(®o) = Yo
has a solution in an open star-shaped neighbourhood V of x, if and only if
(8) U@0,) =0

whenever 0 1is a path of the form zgzaxy in V. If a solution exists, it is
uniquely determined by

(1.8) y(x) = T(xx, , yp)

where xx, denotes the oriented line segment from z, to x .

Proof. Suppose first that the initial value problem (1.7) has a solution
y in V. Then the restriction of y to any polygonal path 7 of V starting
from a, defines a continuous solution of the initial value problem (6)
(p- 8). By the hypotheses 1° and 2° this solution is unique (see Nevanlinna
[8] p. 147), so that by the definition (7) of 7' and U we get the represen-
tation (1.8) for the solution y, and
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Ud,90) = T(5, %) — Yo = y&) — Yo =0

for each. 6 = zpax, in V.

Conversely, suppose that U(d,y, exists and vanishes whenever
6 = xpax, is in V. To show that (1.8) defines the solution of the initial
value problem (1.7), choose an arbitrary point « from ¥V, and such a
neighbourhood N of x that for each z € N the path xpax, liesin V.
By the hypothesis T(xgzxxy , ¥y) = yo + Ulxgzxx, , yy) = 4, for all z € N .
Since zx, is a subpath of wxgprr, = (vep)(zx)(xx,), then T'(xxg,y,) is
defined by Lemma 2. By the arbitrary choice of 2 from V it follows
that T'(zx,,y,) is defined for all z € N . Applying Lemma 2 and writing
for convenience T'(l)y instead of T'(l,y), we have

Y(@2) = T(2xy , yo) = T'(22o) T(x220)Y,s
= T'(zxy) T'(xgz) T(22) T'(xao)yo = T'(2x) y()
for all 2z € N, so that

y(2) — y() = Ul , y(z)) = f P&, y(&)s .

Thus y is continuous at x by the boundedness of F and, for all z€ NV,
z2#E 0,
Y@z) —y@) = Fle,y@) z —2) + |z — [z —a)

Where the expression

tends to 0 as z—>a by the continuity of F and y. This shows the
Fréchet-differentiability of y at x € V', the derivative being

y'(x) = Fl,y)).

The initial condition y(x,) = ¥, is by (1.8) obviously satisfied, whence the
lemma is proved.

As an application of this result we shall prove

Lemma 5. Suppose that the total differential equation (1) is completely
integrable in AXB . Then for a given (x,,vy,) € AXB the solution y of
(1) which satisfies the initial condition y(x,) =y, 1is defined and agrees
with the mapping

(1.8) y(x) = T'(awy , yo)
in the domain of this mapping, particularly in the ball
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(1.9) Ny, o) — {x € X| |z — 2| < min |o — |z, LM—L”—"I” .

Proof. Let V denote the domain of the mapping (1.8). By Lemma 1,
N(zy,y,) is contained in ¥ and by Lemma 4 (1.8) is the necessary
expression of the solution y of (1) with y(v,) = y,. This solution is de-
fined by the hypothesis in a neighbourhood of #,, and we have to show
that V is contained in this neighbourhood.

Choose % € V. The complete integrability of (1) implies that, for
each point z of the line segment &z, , the initial value problem

(1.10) y'(@) = Flx,y@), y@) =T, )

has a uniquely determined solution in a ball N.c A with center z.
The segment &z, is compact, whence we can select a finite open covering
{N.}_, of &x, such that z, =x, and z, =& . Since
d=inf{lx —z| |z €Fr,, 2€ X — U N}
i=0
is positive as a distance between two disjoint closed subsets of X, one
of which is compact, we get the ball

Ne={zx€X| x—z|<d}
such that the line segment xa, is contained in U N, forall x € Ng.
i=0
Let 7 be the solution of (1.10) with z =2, =& .
Tt suffices to show that Nec V and that

(1.11) §(x) = T(axy , yo)
for all x € Ny, since by (1.8) and (1.11) we then have
Y'(@) =y @) =F@,§@) =F@,yd).

If x — 2, and ¥ — z, are linearly dependent, then (1.11) holds trivially
by Lemma 2. For the rest, perform a triangulation of the simplex with
vertices x,, « and & as follows: Choose for each ¢ =1,...,n points

@ €ETv, N N, NN, _; and w; €axyN N, NN, _,

and join each u; to zi—y, 2z and a; by line segments (see Figure 1).

Lemma 2 and Lemma 4 imply that, for each ¢ =0,...,n,
T(uz , y:) = T(uvz ,y;) whenever u,v €N, and yi = T(2x,, y,)

Applying this and Lemma 2, and denoting x = .4y and 7'(7,y)
= T(l)yy, we get foreach i =1,...,n
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Figure 1.

T (wiprz:)yi = T (wigqwizi)y = T (Wi 1wy
= T(wiprwixizia)yisy = T (Uia%izina )i
so that
(1.12) T(uirr2i)yi = T (Wis1tizig)Yio1
for all i=1,...,n. By Lemma 4 we also have

F@) = T(xzn) T (2a20)Yo 5
which by the notations # = u.1; and y. = T'(2.2)y, can be written as
(1.13) 7(@) = T(niizn)y -
From (1.13) we finally get by repeated application of (1.12)
J(@) = T(Untrza)yn = T (Unt1llnZn1)Yn—

l

(
(ilrn+1‘?lnun—ljn—i)y""2 R
(Unt1Un « . UZ0)Yo = T (U170 Yo

T
T
T(xo)yo = T(xxy , Yo) »

as desired.
Remark. Lemma 4, the first part of Lemma 35, and their proofs remain
unchanged, if 4 and B are open subsets of X and Y, respectively.

2. The main theorem

2.1. Theorem. Let F be a bounded and continuous mapping from
AXBS) to L(X ;Y) satisfying an Osgood condition

5) A and B are the balls given by (1.1) (p. 10).
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(9) [F@,y) — F@, 9l <oy —7)

for all (x,y),(x,y) €EAXB, where ¢ is a bounded, continuous and in-
creasing function on R* such that

1

dr

(p1) lim — =
>0 . ‘P(r)
and
— ¢ (r]2)
2 lim 2712,
(¢2) )
Then the total differential equation
(1) y'(x) = Fx, y@)
is completely integrable in A X B if and only if
U, y)
(10) 1in_1’ sup % =0
8%, |y =¥ <C|d| 171

for all (&,9) € AXB and for all C > 0.

To show that the complete integrability of (1) implies the condition
(10), choose an arbitrary point (Z,7) of AXB and a simplex o con-
taining the point & . If a, denotes the initial point of 6 = do and if y,
is such a point of B that y, — y < C 0| forfixed C > 0, then,for |J|
small enough, o is contained in the ball N(x,, y,) given by (1.9) (p. 13).
Thus U(d,%,) = 0 by Lemma 4 and Lemma 5, which implies particularly
that the condition (10) holds.

2.2. To prove the sufficiency of the condition (10), let (x,,y,) be a
point of A X B and let 0, = xysrsx, be an oriented boundary of a simplex
0, in the ball

S o . . o' — Yol
(2.1) V(xg,yy) = {( €EX v —ux,) <r=min [0 — |z, s 100I ” .

(The radius r of this ball is so chosen that the terms appearing in the
following construction are defined.)
By Lemma 4 it suffices to show that U(d,,¥y,) = 0, which will be
done in two steps.
Denote by ; the midpoint of the line segment ajx; and set (see Figure 2)
ly = 22y, 1} = @502,

s 2 .
l, = xwgrgr, , and ; = agr, .

Denoting
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@

Figure 2.

(2:2) a="T0,y) and zn=T(0,z)
for j=1,2, and applying Lemma 2 we get
U(do» %) = T(% %) — 4o = Tlslklhly » o) — %o = Tl5, 23) — Yo-

Iy = x4z, is the inverse path of I, = zx,, whence the property (7'2) of
T implies that

Yo=TUs, Ty, %) = T3, 7).

Thus

Uy yo) = Tly, 23) — Tl > 1)
whence
(2.3) (U (0, Yo)l SjéIT(ls s 2+1) — Tlls, %))

An application of the inequality (1.6) (p. 11) to the right hand side of
(2.3) gives

2
UG o)l < 3,0l s 1z — 7).,
=
which by

in—24="T(0,%)—z=Ul,%), j=1,2

can be rewritten as
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] (0’y0)1<z o(lls) 5 UG, 2)]) -

Denote by U(d;,y;) that of the terms U(lj,2), j= 1,2, which
has greater norm (choose U(d;,y;) = U(ly,#,) if the norms are equal).

Because |l;] = |#; — 25| and v is increasing in its second argument (see
p- 11), it follows from the above inequality that
(2.4) U8 5 Yo)| < 2 0(|wy — x|, |U(61, 91)l)

where (0, , ;) is one of the pairs
(> 21) = (@@arery, T(@i2g , %)) 5 (la s 22) = (@yxo@ory , T(@a20%y » %)) »
denoted in the sequel by
(01, 9) = (@izizy , T(wy, %)) -

Apply now the above procedure to the pair (d;,y,) instead of (&, %) ,
and so on. At the n:th step the initial pair being

(On=1 > Yn1) = @na®h_12p 1%y, T(Wamy s Yn2))
write @, = % (@_, + 22_,), and let
(2.5) (0n > Yn) = (@n2723@n , T'(Wn , Yn1))
denote that of the elements
(x"xr];—lxn—lxn s T(Xn¥n— , Yn—1)) (ann—lxi_ﬂn > T(x"xrlz—lxn—l s Yn-1))

for which the operator U has greater norm; choosing the first one if the
norms are equal.

The same reasoning as in the derivation of the inequality (2.4) yields
the inequality

(2.6) U (01, Yna)| < 20(12n — Tna| , [U (b, yn)]) -
By (2.5) and Lemma 2 we have
Ym = T(Wm s Ym—) = T(Wm . . . Wnt1 5 Yn)
for m=1,2,...;n=0,1,...,m —1, so that
(2.7) Ym — Yn = UWm . . . Wag1 , Yn) -

From (5), (7) and (1.3) (pp. 8 and 10) it follows that
il

1—}[F w(s) U (s)ds| < I |l

for all (I,y) € W. By the above construction
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(- . - W] < 6]6]

for m=1,2,...;2=0,1,...,m—1 (cf Bichli [1] p. 9). From
(2.7) it follows then that

(2.8) Ym — Yn| < 6M 04|

for these values of m,n. But [d.]—0 as n— oo, so that the

sequence (y),—, is by (2.8) a Cauchy sequence in the Banach space Y ,
whence % = lim y, exists.

n—oo

From (2.8) it follows further that

17 — ynl = lim |ym — ya| < 61|04

—> 00

for each n=10,1,.... By the choice (2.1) of the ball V(z,,y,) we

1
have |6, < 4r < Toil (" — |yol) , so that

Tl =< 190l + 17 — yol =< Iyl + 6M 16| < o',

whence 7 €B.
Let o0, denote the simplex whose oriented boundary is 6,, = =
0,1,.... By the previous construction

Opn C Opy for m=1,2,...,

and the intersection of these simplexes is a well determined point & of A .
From our construction it follows further that, if A, denotes the area of
0 the sequence (|0.2/4.)7 ., is bounded. Thus 0, converges regularly
to & as n— .

By Lemma 2 one verifies that each value of the operator T (or U)
in the above construction can be written in the form 7'(1, y,) (or U(l, 4,)) ,
where [ is a path of PA whose length is by the construction less than
10/0y] and hence less than g (o’ — |y,)). Thus (I, 4y, belongs to the
set W where 7' and U are defined by Lemma 1. This justifies the con-
struction. Summarizing its results we get

Lemma 6. Let (x,,%,) be a point of AXB, and let 0§, = xixir, be
an oriented boundary of a simplex in the ball

’ 1 |
(2.1) Vix, , yo) = {x € X| v — | < min o — |z, , W” .
Then the above construction yields a sequence ((0n, yn)2_y in W and a
point (Z,%) of AXB, such that 6, converges reqularly to & in the plane
containing 6, and that

[Yn — §| < 6M|5,| for each n=0,1,....
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Furthermore, for all n €N ={1,2,...}
(2.6) [U(0n-1 5 Yn—1) | < 20(|2n — Zna| 5 [U(0n, Yn) [)

where v is the solution of the integral equation (1.4) (p. 11) and 2. denotes
the initial point of 0n .
2.3. By the condition (10) we have now

U0 5 y)|
e
Denote
(2.9) Ta = [U(0n ; yn)l
for n=0,1,.... Noting that by our construction the sequence
(2"0,2)2_, is bounded, we then get
(2.10) Iim2"yr, =0,

and the inequality (2.6) can be rewritten as
(2.11) Tom1 < 2 0(|¥n — Tu—i|, n)
for all » € N. Our construction implies further that

(2.12) t, = sup {2"2@, — 20| }

n€EN
is a finite positive constant. Since the solution v of the integral equation
(1.4) is increasing also in its first argument we get by (2.11) and (2.12)

(2.13) a1 < 20t 2772, 1)

forall n=1,2,....

To prove that U(d,,%,) = 0 we now make a counter-hypothesis:
ro = |U(8,4y) | > 0. Since u(t,0)=0, it follows then from (2.13)
that 7, > 0 for all » € N. From (1.5) (p. 11) and (2.13) we conclude
further that

=

"Tn-1
dx
(214) f <t 2——n/2
Jopl) T 0
for n =1,2,.... By the hypothesis (¢2)%) there exist positive numbers

¢ and b such that

r
r\y
_ M 9% for 0<r<b,
@(r)

6) This is the only time when the hypothesis (¢2) is used.
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which gives after n repeated application
g(r2™")
¢(r)

The condition (2.10) implies that there exists a natural number =, such
that

(2.15) <2"aq, for 0 <r<b,a,=2"".

& =2"1, < b for n>mny,

whence for each »n > n,

[_ P f dr B a,.f Q"doc.
@(x)

By the inequality (2.14) this gives

tn—1

/' dr ,
— < {yQn ,
pr) ~°

20

f dr
— << 2‘
i= no-}—l i= n°+l

for each n > n,. Since by (2.10) & = 2"7,—>0 as n— o, we thus
have

so that

én

B
gy

Y /‘ dr / dr - o
1 - a; .
- o) =02,

n—>oo

But this contradicts with the hypothesis (¢l), since the series Za,
= Z 27" converges. Thus 7y = |U(dy, ) | = 0, whence U(d,,%,) =0.

ThlS completes the proof of our theorem.

3. Corollaries

From now on we shall suppose 4 and B to be open subsets of X
and Y , respectively.
3.1. Since a continuous mapping between normed linear spaces is
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locally bounded, we get as an immediate consequence of the previous
theorem

Corollary 1. Let F:AxXB — L(X;Y) be a continuous mapping
which satisfies the Osgood condition (9) locally in AXB, that is, for each
(o, Yo) € AXB there ewist open balls Nc A and N'C B with centers
x, and vy,, respectively, and a continuous and increasing Sfunction @ on
R+ satisfying the conditions (pl) and (¢2), such that the inequality (9)
holds for all (z,y), (x,y) ENXN'.

Then the total differential equation (1) is completely integrable in A X B
if and only if

U@,y

(10) lim sup W:O

0% |y =5 <C[9|
for all (&,y) € AXB and for all C > 0.

The regular convergence takes place in planes, whence it suffices that
the hypotheses of the above corollary hold for the restrictions of F to
(EN A)xB for all two-dimensional planes E intersecting 4 .

3.2. An important special case of the theorem is obtained when F
satisfies a Lipschitz condition (4) (p. 8). In this case we choose

(3.1) g(r) = Kr (K> 0).
Since
,
1 .
li fdr d I i 1 9%
jﬁr Kr = 0T K T2

&

this function ¢ has properties (pl) and (¢2) (p. 15). Thus we get by
Corollary 1
Corollary 2. (cf. Bichli [1] Prop. 3) Let F be a continuous mapping
from AXB to L(X;Y) satisfying the Lipschitz condition locally in AXB .
Then the total differential equation (1) is completely integrable in AXB if
and only if the condition (10) holds for all (Z,7) € AXB and forall ¢ > 0.
For the function (3.1) the solution v of the integral equation (1.4)
(p- 11) is
(3.1)° v(t,r) = rexp(Ki).

When this expression is used, the last part in the proof of the theorem,
where the conditions

(2.10) lim 2", = 0

n—>o
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(2.13) Pa1 <2027 1), m=1,2,...
were shown to imply that 7y = |U(dy, ) | = 0 (see pp. 19—20), is trivial.
In fact by (3.1)" and (2.13) we have

ro < 2rpexp(Kt, 271%) < ... < 2, exp(Kto.zl 27

i

Kt,
SZ"rnexp(—_—())foreaeh n=1,2,...,
Vva2-—1

whence lim 2" r, = 0 implies that 7, = 0.

n—>o

We obtain other special cases by defining for given natural number
n and positive number K

1 1
@n(r) = Kr log P . log, - for 0 <r <b,= (expsl)?

where log, and exp, denote the n-fold iterated logarithm and expo-
nential function, respectively. Defining moreover
Pa(0) = 0 and qu(r) = @.(b,) for r >b,,

we get a continuous and increasing function ¢,: R+ — R*. Since

a

b
y /‘ dr , f dx b " —1 1
im =lim | — where « = «(r) = log, —
0T . q”( ) aﬁxa(b) o2 r
1
. . dr
when & is small enough, the integral / diverges.
a(r)
0
Furthermore,
r 1 r
Pn\g 1 log PRy log 2 log,_, |log Pl log 2
eulr) 2

1 ' 1
log > log, , <10g ;)

for 0 <7 << b, from which we easily conclude that

()
lim

0+ @alr)

Thus @, satisfies the hypotheses (¢l1) and (¢2) (p. 15), and we have

Corollary 3. Let F be a continuous mapping from Ax B to L(X ; Y)
satisfying a condition

Lo <

O] =
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1 1

3.2 Fx,y) —Fx,y) || <Kly — g|log—— ...log, -
(3.2) ||F(x,y) (@,9) |l ly — ¥l CRT—T e —
(K> 0,n€N) locally in AXDB . Then the complete integrability of (1) is
equivalent to the validity of the condition (10) for each (% ,¥) € AXB and
for each C' > 0.

3.3. The theorem of Frobenius. As a consequence of Corollary 2 we
get

Corollary 4. (Frobenius’s theorem) Suppose that F is a differentiable
mapping from AXB to L(X ;Y) such that
(a) the partial derivative F, is locally bounded in AXB .

Then the condition

(3.3) A {Fy (&, g)hk 4 Fy(@ , §) [F(Z , )hlk} = 0

for all (Z,%) € AXB and for all I,k € X is necessary and sufficient for
the complete integrability of the total differential equation (1) in AXB.

Proof. The local boundedness of F; implies by the mean value theorem
that F satisfies the Lipschitz condition locally in 4 X B. Therefore it suf-
fices to verify that the condition (3.3) is equivalent to the condition (10).

Let (£,%) be a point of 4 X B, andlet h,k€X, (v,y) €EAXB
be so chosen that U(d,%) is defined for § = x(x + k)(x + h)x . If we
denote for each z € § by §(z) the subpath of 6 from x to z and

u(z) =Tk, y) =y + UOR),y) .

we have

(3.4) U@, y) = f Pz, u(z))d .
L]

The differentiability hypothesis implies that
(3.4) F(z,u@z) = F(@&@, 9 + Fi(F,7) (z — )
+ Fy(E, ) (wz) — §) + e@) | (e2) D
where
e(z) = (z,u(z) — (T,9) EXXY

and (&) >—>0 in L(X ;Y) as |e(z)] = |z — &| + |u(z) — | — 0. Since
f F(&, )z = 0 and since

b
!, - -— P 1 !, - —_ 1, - — !, - —_
[ FiG.5) ¢ — 1z = 5 [FiE, Gk — Fi@, ] = A FL@, ik,
bl

we get by (3.4) and (3.4)
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B4 UG,y = AFGE, Ik + [ Fi@,5) () — 5

+ [ 1) 1ol > de
P
Moreover,

foy(u()—ydz foy(u(z)—ydz—l—fF (,9) (y — §)dz

—fF(xy )z

By the choice of the mapping « we have

wE) —y = UG y) = [ FE, u(@)s
8(z)

— F(@E,J) = o) + [ (F(E, u®) - F@, 7).
4(=)
Noting also that
[ F@ .5 FG, 9 ¢ — o)z = N Fy@ ) [FE, e
)

we then have

/Fx 7) () — §)dz = A Fy&, ) [F@&, phlk

+ fF {f (F(£, (@) — F(&, §)de| dz .
4(2)

The formula (3.4)" can thus be rewritten as
(3.5) UG ,y) = A{Fi@, Phk + Fy@, §) [FE, Prik}
1P, y01 +<0,420)

where

1
(3.5 oun= 15 [ 1@ [Cee) )
b}
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and

” 1 ’, - — -
B3 8= g [ FE D) | [ (P u@) — @, 9| &
B 3(2)
The proof is complete if

(3.5)" lim  sup [{0,yD>+<8,y)] =0 forall C> 0,

0% |y—y|<Clo|

since the equation (3.5) implies then the equivalence of the conditions
(3.3) and (10). To show this convergence note first that for each z € 9

le(@)] = | (2, u() — (&,9) | = |z — & + [u(z) — 7|
<l|z— &+ ly — gl + lulz) — ¥l

<15+ ly— 7 +IfF§ WS
3(2)

As differentiable mapping F is locally bounded, so that [[F(z,y)| < M
where M = ||F(&,7)| + 1, in a neighbourhood of (Z,%). Hence,
if 6 is close enough to # in the sense of regular convergence, and if
ly — 7| < C|8] for fixed C > 0, then

e(z) | < 10) + Clo] + M|

for all z € 6, whence

(3.6) hm]élsup{le R)||z€d,ly—y <Cl|} <1 +C+ M.
d—~>%

From (3.5)" and (3.5)" we conclude that

1
(3.6)' O,y Sf&ﬁg%){ e(2)] 1] Celz) > 10}
and
(3.6)" 18, ypal < | Fa(@, 7)1 sup |F(z, u(z) — F(&, §)il -

Noting that F is continuous at (&,%), and that e(z) = (z, u(z)) — (¥,9),
we get by (3.6), (3.6)" and (3.6)"

lim sup [<6ay>1+<63y>2120
% |y-31=Clo]
for all € > 0, thus completing the proof of the corollary.
Remark 1. The hypotheses of the above corollary are valid particularly
when F is continuously differentiable in A X B . On the other hand, the
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differentiability of F can be replaced by the differentiability of F’s
restriction to (EN A)XB for each two-dimensional plane E of X that
intersects A (cf. p. 21). Moreover, the hypothesis (a) of this corollary can
be replaced by

(b) Each (xo,y,) € AXB has such a convex neighbourhood N X N' that for
all (x,y), (x,y+2) EN X N',2#£0, and for all r€(0, |z])7).

) 1P,y + re)el] < ¢'(r), e=z/k]

where @ is a continuous function on R+ which satisfies the conditions

(1) and (¢2) (p. 15) and which has non-negative derivative ¢ (r) for

0 <r< diam N7,

To see this, denote f(r) = F(z,y + re) for 0 <r < |z|. Then (9)
is equivalent to [|f'(r)]| < ¢'(r), whence by the mean value theorem (Dieu-
donne [2] p. 153)

If(=D) — fO) < ¢ () — ¢(0)
so that

P,y +2) — Fle,y) < q¢(z) .

Thus the hypotheses of Corollary 1 are valid for F.

Remark 2. The results (3.5) and (3.5)"”, which were derived in the proof
of Corollary 4 (pp. 24—25) without use of the integrability condition (3.3)
or (10), show that the bilinear and alternating mapping R(%,7) from
XXX to Y given by
(3) R(@E , j)hk = N\ AF((Z , §)hk + Fy(& , §) [F(& , g)hlk}
satisfies the condition
(3.5)  U(d,y) = R(@,phk + [07<d,y>, d =@+ k) (= + k)
where lim  sup [{ 6,y > =0 forall C > 0.

627, y=5 = CJo|

Conversely, if the previous differentiability hypotheses are replaced by
the continuity of F and the Osgood condition (9), (¢l) (p. 15), and if
there exists some bilinear mapping R(Z,#) from XXX to Y satisfying
the condition (3.5), then it can be proved to be uniquely determined and
alternating. This gives us a L(XX X ; Y)-valued operator R, which we
call a curvature form of F . Moreover, by this definition the existence and
vanishing of the curvature form of F in AXB is equivalent to the integrability
condition (10), thus yielding the obvious reformulations of the theorem
(p. 14) and the corollaries 1, 2 and 3.

Remark 3. The ’generalized operator’ A introduced in Biichli [1] p. 19

7) except possibly on a denumerable subset.
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can be given by (3.5) with y =% and R =4, where {J,%)—0 as

8 — & in the sense that |6 — 0 for 6 = do where ¢ denotes a simplex

containing &. The existence and vanishing of A4 is equivalent to
U@,7)

lim—W_=0.

0>%
But it is not obvious that this implies generally the condition

U(an i yn)
|04/

n—>w

whenever ((6, ,¥.))>o is a sequence constructed by Goursat’s method
(see section 2.2). However, this implication is used in [1] for example
to prove the sufficiency of the integrability conditions given in the sum-
mary (section 12) of [1]. Besides, A(Z,#) is proved to be alternating
by means of an argument U(6, %) = — U(671, 7), which is not generally
valid. Replacing this argument by U(d,%) = — U(6,y), where
y=T(,¥), the mapping R(Z,7) can be proved alternating by the
method used in Béchli [1].

4, On the hypotheses

4.1. A counter-examle. In proving the theorem (p. 14) the hypothesis
(p2) was used in section 2.3 to show that the counter-hypothesis 7, > 0
leads, because of the conditions

(2.10) lim 2% 7, = 0
and
(2.13) Faig <2062 % ,1), n=1,2,...,

to a contradiction with the hypothesis (¢ 1). From this proof (p. 20)
we see that (p2) can be weakened to the form:
The series > a, where
g

a, = = 8up
0<r<<b (;D(T)

converges for b small enough.
On the other hand, we shall now show by a counter-example that this
proof fails if the hypothesis (¢2) is replaced by

. @ (r/2)
r—>0+ 2 (7‘)

1
9"z

IA

(@2)’
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More precisely, we shall construct a bounded and increasing functiond)
¢ : Rt — R+ with

1

) i dr
im - — @
(pl) ot )
and
_— r[2
(72’ AU

m
r—>0+ (p (T)

and a sequence (r,)2, of positive numbers, with

(2.10) lim2*r, =0
and
(2.13)’ 1y =022 ,r), n=1,2,...,

where v is the solution of the integral equation

(1.4) vt ,r) =1r -+ f p(v(s, r))ds .

In the construction of ¢ we shall use the square root to get the property
(p2)" and suitable ‘jumps’ to ensure the property (¢l) (see Figure 3):
Let 7, be a positive number. Set

(4.1) ¢(0) =0 and ¢@r)=r, for r>r,.
Choose the numbers 7, €(0,% 7)) and r, €0,%r) so that
in N

(4.2) f dr 3 ang /‘ dr -

. — = an — = 272

. vV rgr h \/ror

and define
(4.1) q(r) = V/r—or for ry, <r <.

Proceeding recursively, set
1. .
(4.3) ng =0 and n, ., =n, + 22" for i =0,1,...

and choose for each ¢ € N the numbers
8) A continuous counter-example function ¢ is easily obtained from the one
constructed here. On the other hand, the continuity hypothesis of ¢ is not needed
in the proof of the main theorem.
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4 1,’2

Vg

reo

Figure 3.
rm€0,3r_), n=nm-+1,...,0,
by
%
(4.2)’ f — 972!
vrr
Finally we define
(4.1)" @(r) =14/ P for Pagoqg T =T

The equations (4.1), (4.1)" and (4.1)" define a bounded and increasing

function ¢ on R*. Since

dr .
f—a~ ————Q_VQ
1r 1r ,\(/ 7’
3"y z'n;

1

dr
for each 7 €N, then the integral f % diverges, whence
0

@ satis-
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fies the condition (¢1). The use of the square root in the previous con-
struction implies further that
= ¢ (7'/ 2 2_1/2 .

2)" lim
(92) T

As the solution v of the integral equation (1.4) is also the solution of

v(t,7)
(1.5) oo t
' plo)
it follows from (4.1)", (4.1)", (4.2) and (4.2)" that, for the sequence (7,)>>,
constructed above,

n

—-=1

(2.13) Lo, =022 ,r), n=1,2,....
It remains to show that &, = 27, —0 as n— «©.

By the above equations (1.5) and (2.13)" we have

It

(4.4) 2r, <202 2 ,r)=r

for all n €N, so that the sequence (e,)_, is decreasing. Thus it suffices
to show that the sub-sequence (e,)72; converges to zero. The substitu-
tion 7 = 27"« in (4.2)" gives

fn—1

9-n2 f dx n_q
—_— — = 2
Vo) Vs

no

which implies that for any ¢ € N

S 14
\/en_l—\/ gn:Z\/'rni, n+1<n<n.,, .
. . . /2Vne L . .
Adding sidewise these n,.; — n, = 20371 equations we obtain
— —_— 1 Vo O%ni+l — %[_ /
4 &n; \/6"i+1 =zV oy = 2\ &y

so that

— 1 p— P
sni*1~4eni,z—_l,_,.

This implies that e, — 0 as ¢— oo, which ends the proof.

Remark. The above counter-example shows that the additional hypo-
thesis (¢2) cannot be dropped out from our proof of the theorem (p. 14)
or even be replaced by the weaker condition (¢2)’. However, the question
whether the need of (¢2) is caused only by Goursat’s method used in the
proof remains open.
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4.2. Finally we shall study whether the theorem (p. 14) can be proved
if F is a bounded and continuous mapping from AXB%) to L(X; Y)
satisfying the following condition:
(¥1) For all (x,y), (x,7) € AXB

(4.5) [F,y) — F, )l <G,y —7)

where G is a bounded and continuous function from AXR*T to Rt such
that G(x ,r) is increasing in r for fixed x € A and that for each oriented
line segment 1 in A the integral equation

(4.6) ot 1) =1 & f Gl(s) , v(s , ))ds

has for r =0 o(t,0) =0 as the only solution.
These hypotheses ensure that for each path 1 of PA the mappings

Jt,y)=FUt),y) ') and q(t,r) = GUEH),7)

satisfy the hypotheses of Bompiani’s uniqueness theorem (Walter [12]).
Hence, for each (I, y,) € W (p.10) the sequence (u,);_; of the successive
approximations defined by

(4.7) %Hmzyr%fFW@W$D7@%>%WE%

converges uniformly on [0, [I]] to a unique solution u of the integral
equation (5) (p. 8). Thus the result of Lemma 1 (p. 10)is valid. Also lemmas
2, 4 and 5, and hence the necessity part of the theorem, are true for this F .

Now we shall prove Lemma 3 with the help of above hypotheses.
Let I be an oriented line segment in A andlet y; and y, be points of
B such that (I,y) €W, j=1,2. Define the sequence ()2, by
(4.7) with gy, =19;, j=1,2, and let (v,)7; denote the sequence of
successive approximations given by

t

vun®) = gy — al + [ GUO) s v (6)ds s ()= 2 — el

It can be shown (Edwards [3]) that the sequence (v,),_; converges on
[0,]]]] uniformly to the minimal solution v of the integral equation
(4.6) with r = |y; — 9| . Moreover, it is elementary to verify by induction
that

%) A and B are the balls given by (1.1) (p. 10).
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[un(t) — un()] < v,(t)

for all n€N and ¢t€[0,]l]]. As n-— oo this implies that, for
0<t <l

[y (t) — ua()] < v(t, [y1 — ¥al)

where u; is the solution of (5) with y; =y;, j=1,2. For t = |/| this
inequality is equivalent to the inequality

(1.6) T, y) — T, y) | <o,y — ¥a)
which was asserted in Lemma 3.

Using successive approximations one can verify that the minimal
solution (¢, r) of (4.6) is increasing in r forfixed [ and ¢.Thus also Lem-
ma 6 (p. 18) is valid for the given F . The last step in the proof of the
theorem was to verify that the following condition holds:

o0

(F2) If (x,)2, is a sequence in A such that the sequence (2"*x, — @, )2,

n=0

18 bounded, then the conditions

lim 27, =0 and r,_; <2v(x, —x, 1 ,7,), n €N

n—»oo

are satisfied only for v, =0, n=0,1,2,....

Hence, if we suppose that (F2) is valid for the minimal solutions v of the
integral equation (4.6) with | = x.x.—, then also the sufficiency part
of the theorem is true for F .

The hypothesis (F1) is particularly valid when G(z,r) = @(r) where
@ is a bounded, continuous and increasing function on R* satisfying the
condition (pl). In this case the integral equation (4.6) equals to the
integral equation (1.4), which has, as we saw in p. 11, a unique solution v
on RtXR*. If we add the hypothesis (¢2) for ¢, then the proofin
section 2.3 shows that also the condition (¥2) is valid. Thus the Osgood
condition (9), (1), (p2) is a special case of the hypotheses (F1), (F2).

University of Oulu
Oulu, Finland



References

[1] BicuL1, G.: Uber die Integrierbarkeit von Systemen particller, nichtlinearer
Differentialgleichungen erster Ordnung. — Comment. Math. Helv. 36,
1962.

[2] DiEUDONNE, J.: Foundations of modern analysis. — Pure Appl. Math. 10, Acade-
mic Press, New York, London, 1960.

[3] Epwagrps, R. E.: Functional analysis. — Holt, Rinehart and Winston, New
York, 1965.

[4] KerLLEr, H. H.: Ueber dic Differentialgleichung erster Ordnung in normierten
linearen Rdumen. — Rend. Circ. Mat. Palermo II 8, 1959.

[5] Lounivaara, I. S.: Ueber die Differentialgleichung erster Ordnung in normier-
ten linearen Rdumen. — Rend. Circ. Mat. Palermo IT 10, 1961.

[6] NEVANTINNA, R.: Sur les équations aux dérivées partielles du premier ordre.
— C.R.Acad. Sci. Paris 247, 1958.

[7] NEvANLINNA, R.: Application d’un principe de E. Goursat dans la théorie des
équations aux dérivées partielles du premier ordre. — C.R. Acad.Sci.
Paris 247, 1958.

[8] NEvaxtinNa, F. und R.: Absolute Analysis. — Grundlehren Math. Wiss. 102,
Springer-Verlag, Berlin, Gottingen, Heidelberg, 1959.

[9] PExotT, J. P.: Sur le théoremé de Frobénius. — Travail subventionné par le
Conseil National de Recherches du Canada, N° A 7204, 1968 —1969
(manuscript).

[10] ScriBa, C. H.: Der Eulersche Transformator. — Math. Nachr. 33, Nr. 3/4
Berlin, 1967.

[11] TreNxarI, M.: Uber die Loésung von particllen Differentialgleichungen erster
Ordnung nach der Methode der sukzessiven Approximationen. — Ann.
Acad. Sci. Fenn. A. 1. 380, 1965.

[12] WaLTER, W.: Uber sukzessive Approximation bei Volterra-Integralgleichungen
in mehreren Verdnderlichen. — Ann. Acad. Sci. Fenn. A. 1. 345, 1965.

Printed November 1971



	IMG_20151118_0001
	IMG_20151118_0002
	IMG_20151118_0003
	IMG_20151118_0004
	IMG_20151118_0005
	IMG_20151118_0006
	IMG_20151118_0007
	IMG_20151118_0008
	IMG_20151118_0009
	IMG_20151118_0010
	IMG_20151118_0011
	IMG_20151118_0012
	IMG_20151118_0013
	IMG_20151118_0014
	IMG_20151118_0015
	IMG_20151118_0016
	IMG_20151118_0017
	IMG_20151118_0018
	IMG_20151118_0019
	IMG_20151118_0020
	IMG_20151118_0021
	IMG_20151118_0022
	IMG_20151118_0023
	IMG_20151118_0024
	IMG_20151118_0025
	IMG_20151118_0026
	IMG_20151118_0027
	IMG_20151118_0028
	IMG_20151118_0029
	IMG_20151118_0030
	IMG_20151118_0031

