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INDRODUCTION

l. Let X be a normed linear space orrer the reals R with dimension
) 2, I a Banach space over R, and let A and B be open subsets of
X and I, respectively. Denote by L(X ; I) the Banach space of all
bourded linear maps -t from X lo Y , with the norm ll.tll : ip, lZrl .

Given a mapping -E' from AXB lo L(X ; Y) , consider the total di,f-

ferenti,al equat'i,on

a'@) - ?(r,y(r))

where g' denotes the X'rdchet derivative of the mapping y . The dif-
ferential equation (f) is said to be comytletely i,ntegrable in AxB, if it
has for each point (ro,Ao) of AxB a unique solution y inaneighbour-
hood of ro , satisfying the initial condition g(ri : yo.

2. If E is continuously differentiable and if "Fi and JIi denote the
partial derivatives of I , t};.e theorem of Xrobeni,us (Dieudonnd [2]) states
that the vanishing

R(*,y):-o
of the bilinear alternating mapping R(r , y) from X x X to I, given by

(3) R(r,g)hk: A {.Fi @,y)ltk + ?'r(r,U)lX(r,A)h)k}')

(h ,k e X), for all (r ,y) e AXB is a necessary and sufficient condition
for the complete integrabilit5,- of the totaldifferentialequation (1)in AxB .

The necessity of this condition is a direct consequence of the symmetry

g"(r)hk: Y"(x)lth

of the second derivative y" . Yariorts methods can be used to prove the
sufficiency (see e.g. Nevanlinna [8], Dieudonnd [2], Keller [4], Louhivaara

l5l, Tienari [11], Scriba [10], Penot [9]).
3. The complete integrability of (1) is studied in Nevanlinna [6, 7, 8]

when -F is continuous in r and linear io A , and in Båichli [1] when -F

is continuous and satisfies a Li,pschi,tz cond,i,ti,on

r) For a bilinear mapping D we donote by AD the alternating part of D , i.e.
ADtLtc: u2 (Dhk - Dkh) .
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in A x B . n'or a given initial value gto € B the differential equation ( I ) can
be integrated. in both these cases along sufficientiy short oriented piecewise
smooth paths 7 uL A. More precisely, if 7 is such a path with the total
length lrl small enough and, if arc length is chosen as a pa,rameter in a
representation s » l(s) of l, then the integral equation

(s)ds

llr{",y) I(*,y) il <Kia-il\ (K>0)

u(t)

or e quivalently, the initial l,alue problem

(4)

(5)

(6)

(7)

A' , i

,u' (t) . It (l(t) , u(t)) l' (t) , u(o) - Uo ,

has a continuous solution z on the closed interval l0,lll]. Iforeover, this
solution is uniquely determined b;r the integration path l and the initial
value yo, so that the equations

f (l ,Ai: Uo + f-r(l ,?/o) - u(1,)

define two operators ? and U of the pair (1, yo) rvith values in Y .

Suppose now (1) to be completely integrable in AxB and let y be
a solution of (I) with y(ri : yo. Then

T(t, yo) : y(r) : Uo * [ r@, y(z))d,22)

I
for each piecewise smooth path 7 from ro to e in the domain of y, since
u(t) : y(l(t)) isthe solution of (5). Thus 7(1, yo) depends for fixed Uo e B
only on the end points of /, or .'quir-alentlr-. L:(l ,yo): f (l ,Ao) - Uo

vanishes for closed paths l. Particularlv. tire condition: for each yoe B

(8) U(å,y):a
'w'henever ö : do is an oriented boundarv of strfficientlv small simplex
o C As), is necessary for the complete integrabilitl- of (1). In the cited
cases this ccndition is shown to be also sufficient. L-sing Goursat's idea to

ill

the integral J G(1(s)) l'(s)ds .

0

rnean here a non-d.egenerate triangle, i.e. if fis 7 fr1 and" frz

- fro and frz - fro are linearly independent. Area Å of such
Å - lD@, - tr, , trz - troJ'i rvhcre D is a nontrivial bilinear
vectors in the sr.rbspaeer of X generatecl b-r, trr - ta and

') { G@)ctz denotes
I

3) By a simplex \\,,e

are its vertices, then frL

simplex is defined by
alternating real form of
{t1z - tro.
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estimate the norm of U(d , g) t}cLe condition (S) is then reduced. to a local
integrability condition, equivalent to the X'robenius condition (3) when -E

is also differentiable.
4. In this paper we shall study the complete integrability of (1) under

more general assumptions. Denoting by ö -> fr t'he regular convergence of
ä to a point f of / in all two-dimensional planes E of X containing
#, otlr main result, which is derived by the above described method due

to 8,. Nevanlinna, can be stated as follows:
Supytose that X is continuous and, sati,sfies locally in AxB an Osgood,

condition

(e) ll?(* ,y) - x(r , !)ll < v(ly - 9l)

where V is a continuous anil, increasing functi,on on the sef R+ of nom'

negat'iae reals su,ch that

(qt )

A,nd

@2)

Tlt en th,e cond'it'ion

(10)

)a,
lim l 

-- 
3c

,--o* -l V(r)

r+0* v (r)

lim sup lu (ö 
' Y)\ 

== o
ö-+7,1y-ylsclöl löl'

for all (n , A) e AxB and, for al,l, C 2 0 , as necessary and, sufficient for
the com,plete integrabi,litg of the total, d,i,fferential' equation (l) i,n AXB .

fn particular, when q(r) : Kr in (9), v'e get the basic result of Bächli

[I] as a corollary. There &re some inaccuracies in [1] which are corrected

here (see p. 27).Other special c&ses a e obtained by choosing

I
q(r) - Kr log -

where log, denotes n, times iterated logarithm.
The theorem of Xrobeni,us follows as a corollary if n is sugtposeil, al,so

to be d,ifferentiable, but not mecessari'ly conti,nuouslg d'ffierenti,able.

The hypothesis (q2) , which is not generally included in the Osgood

condition, is added to show the sufficiency of the condition (f0) for the
complete integrability of (l). Actually, our proof fails if this hgrothesis is
replaced by

4) d: do is said to convorgo regularly to fr in E if *€o cE and if lö18//
remains bounded for läl --+ 0.

I
log, -r
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@2)',

&s we shall show by a counter-example (p. 27).
The domain of the solution of (1) is also estimated (Lemma 5 p. l2),

and finally we shall study the possibilrty to generalize further the hypo-
theses of the mapping .F' .

t, Preliminaries

X'or simplicity we shall suppose in this chapter that A and B are
the open balls

A-{n€xll"l <q},
and that the mapping I : AxB --> L(X; I) has the following properties:
Lo I i,s boutd,ed, and, continuous ,i,n AXB ,

2" n safi,sfdes ,i,n AXB the Osgood, cond,i,ti,on (9) where E is a bound,ed, con-
ti,nuous anil, 'i,nueasing function on R+ satisfAing the hypothesi,s (g t) .

1.1 We shall first set up some properties of the operators ? a,nd U
given by (Z) (p. q. PA denotes in the sequel the set of all oriented poly-
gonal paths if,, A, i.e. paths of the form I : fr,fin_t , . . frtfro from ro to
r, formed by the oriented line segments ufi _, from r,_, to ui, ,i,:
lr...r%,

Lemma 7. The operators T and, U are d,efined, in the set

(1.1)

(1 .2)

wVt ere

(1.3) ltl: supfllr@,a) ll l@,y)e AxB]
fn view of the definition (7) of the operators 7 and [/ this lemma

states that the continuous solution of the initial r.alue problern (6) (p. S)
exists and is unique on the interval [0, ll]l for fixed (l ,yo) e I4l. With
the hypotheses l" and 2o this is a lrell-knolrn result of the theory of the
ordinary differential equations (see Nevanlinna [8], p. t5B). By this theory
rve get also

Lemma 2. If lL a,%d lz are paths
lrl, i,s defi,ned (i.e. the final point of lL

tlten

w -{u,or€ PAxBi

,f PA such that tlr,e product path
agrees with the initial point of lr) ,

(r1) T (lrlr, y) _ T Qr, T (lr, y)),
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both s'ides be'ing defi,ned, wheneaer o??,e side ,is.

Iurthermore,

$2) f (l-,,7(l ,y)) - y

fo, all (l , y) in the domain ,f T , l-L being the ,inuerse path ,f I .

The hypotheses given for V ensure that the integral equation

(1.1) u(t ,r) - r + I v@(s, r))ds

hasauniquesolution o in R+XR+. Sinceoisfor r>0 alsotheso-
lution of the integral equation

o(r,r)

(1.5) [*:,,! v@)

we see that u is increasing in its both arguments. Moreover a(t, 0) : 0 .

In the proof of our main theorem we shall also need the following inequality,
which will be proved in the last section (p. 3I):

LemmaS. Iorall (l ,g)eW, j:L,2
(1.6) lT(l , yr) - r(1, , a) I 1a(lll ,ln - yzD .

1.2. For the sake of completeness n'e shall prove the following result
(cf. Bächli [1] Prop. 2):

Lemma 4. Gi,aen a point (no,Ao) of AxB, the i,ni,ti,al,ualueprobl,em

(1.7) g'(r) : I(r ,y(r)) , A@d : Ao

has a soluti,on in an oyten star-shaped, neighbourhood, V of ro i,f anil only i,f

(8) U(å ,s) : s

whenetser ö i,s a path of the form tozxro ,in V . If a solution eri,sts, it 'is

uniquely determi,ned, by

(1.8) y(r) : T(rxs, Ao)

where rro d,enotes the oriented, l,,i,ne segment from ro to r .

Proof. Suppose first that the initial value problem (1.7) has a solution
y in V. Thentherestrictionof y toanypolygonalpath I of 7 starting
from no defines a continuous solution of the initial value problem (6)
(p. 8). By the hypotheses lo and 2'this solution is unique (see Nevanlinna
[8] p. f a7), so that by the definition (7) of T and U we get the represen-
tat'ion (1.8) for the solution y , and

11
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U(ö , Uo) : T(ö , Uo\ - Ao: A@o) - Uo: 0

for each ö : frozfifro irl V .

Conversely, suppose that U(ö,yo) exists and vanishes whenever
ö : frozfrfro is in 7 . To show that (I.8) defines the soiution of the initial
value problem (1.7), choose an arbitrary point r from V , ar'd such a
neighbonrhood .I[ of r that for each z € .l[ the path rrzruo lies in V .

By the hypothesis T(rozrro,Ao):Aoi U(rozrno,go): yo for all z e N .

Since nno is a subpath of tdzfrfro: (rrz)(zr)(mo), then T(r*o,y) is
defined by J,emma 2.By the arbitrary choice of r from 7 it follows
lhat T(zro,yo) is defined for all ze N . Applying Lemma 2 arrd writing
for convenience T(l)g instead of T(l, gt) , we have

g(z) : T(zro , Ui : T(zro) T(rozrxr)Yo

: T(zrd T(roz) T(zr) T(mo)Ao: T(zr) a@)

forall zeN, sothat

a@) - v(r) -

Thus y is continuous at fr
, /vr

PfaLr,

U(zr , y(r)) F (* , aT))d€

by the boundedness of ? alld, for all z e h- ,

y(z) - y(r): X(x,g(r)) (z - r) * lz - rl(z - *)
where the expression

lr
(" - r) : t - ^ t I <t<t,a(€)) - I(r,y(r)))d,€t"-*tl

tends to 0 as z --> fi by the continuit;r of -F and y . This shorvs the
X'rdchet-differentiability of y at r e V, the derivative being

Y'(r) : F(r , Y(r)) .

The initial condition y(rd: gro is by (I.8) obviouslv satisfied, u.hencethe
lemma is proved.

As an application of this result we shall pror:e

Lemma 5. Supgtose that the total d,ifferenticil equation (l) i,s completelg

i,ntegrable i,n AxB . Then for a g'i,uen (ruo,yo) e AxB the solution g of
(l) whi,ch sati,sfies the ini,ti,al cond,'i,tion g(rd : yo i,s d,eJined, and, agrees

with the mappi,ng

y(r) : T(xro , Uo)

:{

(I.8)

'in, the domu'in of thi,s ma,pping, part'icularly 'in the ball
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(1.9)

(1. 10)

I{(ro,Uo): {r. r, lr - rol ( min L- Wol ,{i@]\
Proof . Let 7 denote the domain of the mapping (t.8). By Lemma l,

N(ro,Ao) is contained in V and by Lemma 4 (1.8) is the necessa,ry

expression of the solution g of (I) wilh. g(ro) - Ao. This solution is de-

fined by the hypothesis in a neighbourhood of ro, and we have to show
that 7 is contained in this neighbourhood.

Choose fr e V . The complete integrability of (1) implies that, for
each point z of the line segment frrr, the initial value problem

y'(r) - F(x , y(r)) , y(z) ....= T (zro , Uo)

has a uniquely determined solution in a ball N, C A with center z .

The segment frro is compact,, whence we can select a finite open covering

{trr}l:o of frxo such that zo: no and zn: #. Since

d, : inf {lr - zl I r e frrs, z e X -Ö r,,}

is positive as a distance between two disjoint "1".;; 
subsets of X , one

of which is compact, we get the ball

Ära:{reXl lr-ni<d}
such that the line segment trxo is contained in

Let il be the solution of (1.10) $-ith z - zn :
It suffices to shou. that iYa C V and that

1f zi, for all fr € -l[a

(1.11) il@) : T(mo , yo)

for all r e Na, since by (t.8) and (1.I1) we then have

s'(n) : y'(fr) : n@ , r(fr)) : I(fr , s(r)) .

If. r - ro and d - ro are liuearlydependent, then (1.11)holdstrivially
by Lemma 2. For the rest, perforrn a triangulation of the simplex with
vertices frs 2 fl and fi as follorvs: Choose for each i:\,...,n points

xi e frxs n -Ifd n Å',d-1 and ui € xxo n -1r,, n IlI,d-1

and join eadn ui to z;-1 , z; ärtd xi bY line segments (see X'igure 1).

Lemma 2 and Lemma 4 impl;. that, for each i:0,.. .,%,

n,

U
j:0

fr

T (uzi , Ai) : T (uuz; , Ai) whenever LL , 'u , 7{ zr, and

Applyirg this and Lemma 2, and denoting m -
:-- f(Dy, wo get for each. i- I ,... )YL

'l,(,n*L and f (l , y)



Ann. Acad. Sci. Fennicre A. r. 495

Figure 1.

so that

(1. 12)

r (u ; +'ld Y' 

_ I' ri,,,I',":,? l, ; r,:':- ;ä:;,- #. ; _1) y ;_r,

, ?L . By Lemma I Yv'e also have

which by the notations fr :'ttrn+L and y*: T(z^rr)yo can be written as

(I.13) y(r) : T(u,ap,)y".

From (1.13) we finally get by repeated application of (1.12)

y(r) : T (u.^1p^)y n : T (1t n+tttnz,-r)y,-t

: T(uoa1u^tln-t?n-z)Un-z: r r .

: T(u"q1u, . . . ttrzo)yo : ?Qt,apo)yo

: T(rrr)yo: T(mo , yo) ,

as desired.
Remark. Lemma 4, lhe first part of Lemma 5, aird their ploofs remain

unchanged, if ,4 and B are open subsets of -f and I, respectively.

2. The main theorem

2.1. Theorem. Let I be a bound,ed, and conti,nuous mappi,nq from
AXB') to L(X ; Y) satisfy'i,ng an Osgood, corudition

5) A and B are the balls given by (1.1) (p. 10),

L+
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(e)

fo, all (r,A),@
creas'ing function

(rt)

and

@2)

Tlten ttce

(1)

'is completely 'integrable 'in

(10)

r->0..i- V\r )

total differential equat'ion

liP(r ,a) - ?(* , a)ll I e(ly - ill)

, y) e AxB , uhere V 'is a, boundeC, continllolls and, in,-

oyt, R+ such that

lim
s-+0* I dr

v(r)

A x B if and only ,f

ö-+i,jf -f-, <Ciö1 iä;'

for all (n,y)eAxB and, for al,l C > 0.
To show that the complete integrability of (1) implies the condition

(10), choose an arbitrary point (fr,y) of AxB and a simplex o con-
taining the point fr . If ro denotes the initial point of ä : äo and if go

is suclr a point of B that ',Ao-y:, <C]äi forfixed C>0, then,for läl
small enough, å is contained in the ball Ä-(ro, yo) given by (1.9) (p. tB).
Thus U(å , Ai : 0 by Lemma 4 and Lemma 5, which implies particularly
that the condition (10) hotds.

2.2. To prove the su,ffi,ci,ency of the cond,i,tion (I0), let (rs , Ad be a
point of AXB and let öo: ror2orroro be an orientedboundaryof asimplex
oo in the trall

. I g' ,Yrill

(The radius r of this ball is so cirosen that the terms appearing in the
following construction are defined.)

By Lemma 4 it suffices to sho'r' that U(öo,yr):0, which will be
done in tlro steps.

Denote by r, the midpoint of the line segment rlrl andset (see Figure 2)

lo: ttfro, lr: fitfrå*r*, ,

12- rrxoxf;xl , altd ls : frofrr

Denoting
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«
lL\\\-J

\UN
Figure 2.

(2-2) 4: T(lo , ao) and zi+L: T(li , zi)

for j : | ,2 , and applying Lemma 2 u'e get

U(öo,Ao) : T(ör,Ao) - yo: T(lrlrlrlo,Ao) - ao- T(lr,zr) - go.

l,s: firr1 is the inverse path of lo : rrzo , whence the property (72) of
7 implies that

Thus

Uo- T(lr,T(lo,Ail) - T(lr,zt).

whence 
z

(2.3) lU(äo,Uo)l<2lf1r,zi+r)-?(lr,z)1.
j:1

An application of the inequality (1.6) (p. tl) to the right hand side of
(2.3) gives 

z

lU(do, Ail <) r(i61, lzi+1 - zi ),
j:1

which by

zi+t - zi : T(li ' zi) - zi : UQi ' zi) ' i : | 
' 

2

can be rewritten as
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lU(äo , ail < ) r(|,rt , lU Qi , z)) .

j:1

Denote by a@t,Ut) that of the terms U(\,2), j:1,2, which
has greater norm (choose U(il,A): U(h,21) if the norms are equal).
Because llrl : lr, - rol and o is increasing rn its s€cond argument (see

p. 1l), it follows from the above inequality that

(2.4) lU(äo , Ao)l < 2 a(lr, - nol , lU(å, , A)D ,

where (\ , Ur) is one of the pairs

(h, zr) : (rrr[rorr , T(rrrr , Ao)) , (lz , zz) : (rr*orf,q, T(xrr[ry Uo)) ,

denoted in the sequel by

(il , Ar) : (rrrlrlr, , T(w, , Uo)) .

Apply now the above procedure to the pair (är, gtr) insteadof (ä0, yo),
and so on. At the n:lh step the initial pair being

(öo-1 , !^-t) : (r*tr?^-rfrro-rro-t , T(w,-t , U,-z)) ,

write r. : + (fr:_t * r'"_r), and let

(2.5) (ö. , U) : @^rz*xr^r. , T(w* , U,-t))

denote that of the elements

(r^rrn-rrn_.pn , T(rnrn-1 , A"-r)) , (x*r,-p2n-rr, , T(x*rf,-fi.-r , Ao-L))

for which the operator U has greater norm; choosing the first one if the
norms are equal.

The same reasoning as in the derivation of the inequality (2.a) yields
the inequality

(2.6) l[l(ä"-r , u"-il I 2 a(lr" - n^-Ll , lu(å" , u)D .

By (2.5) and Lemma 2 we have

y^ : T(w^, U^-r) : ?(w* . . . w^+r, An)

for nL: 1 12,,,, ; n:0, I,. .. rffi - l, so that

(2.7) g* - U^: U(w^ . . . u)n+t,U^) .

X'rom (5), (7) and (I.3) (pp. 8 and I0) it follows that
, lrl

lu(t ,y),:ll r(t(s) , u(s))t' 1spsl < zr 121

for all (l , y) e I( . By tt 
" 

o*forr" 

construction
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l**...r"*r1 46ld"l
for nL:1,2,...; n:0,1,...,ffi- I (cf. Bächli tt] p.9). n'rom
(2.7) it follows then that

(2.8) ly* - g"l < BMIö"|

for these values of ffi,fr. But lö"1 + 0 as n--> @, so that the
sequence (Uif:o is by (2.8) a Cauchy sequence in the Banach space Y ,

whence U : lim gr, exists.
4+Q

X'rom (2.8) it follows further that

lil - YÅ : :*lv* - v"l < 6Mlö"1

for each n:0 ,l , . . . . By the choice (2.1) of the ball V(ro,Ao) we
I

have ldol < +r S tOtuI k' - lao), so that

lill < lyrl + lg - yol < lyol + inr\ol I Q' ,

whence yeB.
Let 6n denote the simplex whose oriented bouldary is d,, n :

0, 1, . . . . By the previous construction

onCon-t for n: I ,2 r...,
and the iatersection of these simplexes is a well determined point f of A .

From our construction it follows further that, if /, denotes the area of
oo the sequence (lö"121/)::o is bounded. Thus ö, conrrerges regularly
to f as m-->@.

By Lemma 2 one verifies that each value of the operator ? (or U)
in the above construction can be lrritten in the forn T(l , yi (or tl(l , yoD ,

where I is a path of P.4 whose length is by the construction less than
l0ldol and hence less than h@'- lyo). Thus (t,yo) belongs to the
set W where T and U are defined by Lemma I. This justifies the con-
struction. Summarizing its results we get

Lemma 6. Let (ro,Ao) be a point of AXB, anil, let ös: ror\riro be
an oriented, bound,ary of a simpler i,n the ball,

{
(2.L) V(*o , Ao)- {" 

e Xt lr - nott

Th,en tlte abaae construction, yi,elds
point (fr , y) ,f A X B , suclt, tltat ä,,

conta'in'ing do a,n d that

I

L-

a, Seque%ce

conaerges

tn.t Q - lrril|
',ffy', , +O II )l .

((ö, , U)f,:o in W ancl a
regularly to fr ,ira the p.l,une

each n =-0,1)
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Iurthermore, for al,l, n €N : {1,2,. . . }

(2.6) lll(d"-r ,g^-i I 12a(r" - r^-tl ,lu(ö",u) l) ,

where a is the solution of the 'i,ntegral equation (t.+) (p. Il) and, ro ilenotes

the ini,tial point of ö" .

2.3. By the condition (I0) we have now

ri* lu(?:'rY")l : o.
n+ 6 lÖ"1"

Denote

(2.9) r^: lU(ö" , U)l

for n:0,1,.... Noting that by orr construction the sequence

(2"1d"12)Lo is bounded, we then get

(2.10) Iim 2" to: 0 ,

and the inequality (2.6) can be rewritten as

(2.1I) fo-t<2a(lu"- n*-tl,r,)

for all z € N . Our construction implies further that

(2.12) lo : snp {21'1*, - *^-r.1}
n€N

is a finite positive constant. Since the solution o of the integral equation
(f.a) is increasing also in its first argument we get by (2.11) and (2.12)

(2.13) rn-t12u(to2-"12,r*)
forall n:L,2,....

To prove that U(ås,yr):0 r!-e now make a counter-hSlothesis:
ro: lU(do, 9ro) I ) 0. Since o(1,0) :0, it folloli's then from (2.13)

that rn) 0 for all z € N. From (1.5) (p. 1I) and (2.13) we conclud.e

ftrrther that 
i,o_r

(2.t4) { !!- 1to2-^tz
,J E@) =

for n : | ,2 , .. . . By the hypothesis (g2)o) there exist posit'ive numbers
a and å such that

19

,(:\
v(r)

6) This is the only tirne r,rrhen the hypothesis (VZ) is used.
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which gives after z repeated application

o(12-"\(2.15) 
d 12-"tza^ for 0<r< b,a,o:2-"".

The condition (2.f0) implies that there exists a natural number no such
that

E,:2oro{b for nlrvs,
whence for each n ) no

En_ :r en-I *rn-t

f o' 
.2-ot2 an I fuh:z-ntz "" ['#J q@)

eD en fn

By the inequality (2.14) this gives

en-l

fdr
J ,altoao'

etu

so that
uro €i- I
f d,r -1 f rlr :

J ,a-:*.,J r@''Y]"i:etu Ei

for each n)%0. Since by (2.10) €n:2or,,--->0 as n--> co, we thus
have

"no "nof d,r f il,r @

:Y! ,@:.'f-,- ! m<hl,a';'
But this contradicts with the hypothesis (qt) , since the series ) o;

:1r-* converges. Thus ro: lU(do ,Uo)l:0, rvhence U(öo,yo):0.
This completes the proof of our theorem.

3. Corollaries

X'rom now on we shall suppose 24. and B to be open subsets of X
and I , respectively.

3.1. Since a continuous mapping between normed linear spaces is
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locally bounded, we get a,s &II immediate con§equence of the previous

theorem
Corollary 1. Let n : AxB --> L(X ; Yl be a conti,nuous m'appi'ng

which sati,sfi,es the Osgood, cond,i'ti,on (9) locallg i,n AxB, that 'i,s,for each

(us , ao) e AxB there eri,st olten ball,s w c a and, N'c B with centers

fro and Uo, reqtectiael,g, anil a cont'inuous and, i,ncreasi'ng functi'on g on

R+ satislying the conrl,it'i,ons (El) and, (92) , such that the inequality (9)

hotd,s for all, (r ,y) , (r ,y) e -lfxfi'.
Ihen the total iti,fferential equati,oru (l) is completely i,ntegrablei'n AxB

if and, onl,y i,f

(10)

(3. 1)'

lim
r+0 *

tim sup lu (ö 
' Y)l 

- o
d->r, ly-yl<cläl läi2

for al,l, (n , y) e AXB anil for al,l C > 0 .

The regular convergence takes place in planes, whence it suffices that
the hypotheses of the above corollary hold for the restrictions of -F to
(E n {XB for all two-dimensional planes E intersecting A .

3.2. An important special case of the theorem is obtained when x
satisfies a Lipschitz condition (+) (p. 8). In this case we choose

(3.I )

Since

V?):Kr (K>0)

r
K=

2

K,
jx

this function g has properties (gt) and (q2) (p. t5)' Thus we get by
Corollary I

Corollary 2. (ct. Bächli [1] Prop. 3) Let n be a, continuous mappi'ng

from AxB to L(X; Y) satisfyi,ng thelipschitzcond,i,ti,onlocallgi,n AxB .

Then the totat d,ifferential equation (l) i,s completely i,ntegrabl,e in AxB i'f
and, onlg i,f the cond,ition (10) hold,s for all (fr ,Y) eAxB and,forall, C > 0 .

X'or the function (3.1) the solution o of the integral equation (t'4)
(p. ll) is

a(t,r)- rexp(Kt)

When this expression is used, the last part in the proof of the theorem,

where the conditions

lim2"Fn-0
n-> @

(2.10)

a,ncl
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(2.13)

were shown to impl;r that ro : lU (öo , Uo)
fn fact by (3.1)' and (2.L3) we have

rn-l < 2 u(to 2"lz , Tn) ,

I
1 log ; + log 2 1og, _,

c)
,L,t)...

(see pp. l9-20), is trivial.

-1- 10g

n-1

l_-o

<2o nr"n(#\) ro, 
"u,"r, 

?L: | ,2 , . . . ,

whence lim 2" r, : 0 implies that, r, : Q .

w" ,iåi" other special cases by defining for given natural number
n and positive number 1{

V"(r) : Krlog - . . .log^ - fot 0 < r ( ö, : (exp,1)-1

where log, and oxpz denote the n-fold iterated. logarithm and expo-
nential fulction, respectively. Defining moreover

V"(0) :0 and E"@) : q"(b") for r ) b,,
we get a continuous and increasing functiorr gn: R+ -+ R+ . Since

bu

tim f +: Iim I I *nu" a: a(r): rns, I
.*o* j v"(r) ;-;"d) d "'\"' "'ön r

when å is small enough, the integral i e-diverEes." J 9"(r) 
*'""s"''

Furtherm

,)
lr
['o* ;

ore,

pn0

log,-, (,r*

conclude that

P,,(r) 2

r<bn, from

lfhus pn satisfies the
Corotrlary 3. Let P

sati,sfy'itt g a co?xd,ition

I
lost) 

?'

v,hich rve easilrr

v
rim "$)
r+6i- 't'"O

hypotheses (p t )
be a, contin uous

I
2

and (v2) (p.
??x&pp,ing front

;)

I5), end
AxB to

we have
L(X ;7')
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Zö

(3.2) llT(r,y) - F(r,y) ll < Kly - rlrog 
ty _ yl.. .log, 

ta _ a,

(lf > 0 , n € N) l,ocally in AxB . Then the compilete i,ntegrabili,ty of (L) i,s

equi,aal,ent to the aalid,i,ty of the cond,iti,oz (I0) for each (fr , A) e AxB and,

foreach C>0.
3.3. The theorem of Frobenius. As a consequence of Corollary 2 we

get
Corollary 4. (n'robenius's theorem) Sqtgtose that E i,s a d,ifferenti,able

mappi,ng from AxB to L(X ; Y) such that
(a) the partial d,er'iuatiae I', is l,ocally bound,ed' in AxB .

Then the cond,iti,on

(3.3) A {,r.,i @,ilhk+ r;(fr,ilw@,g)h)k}:o

for all, (fr,A)eAxB and, for all, h,keX 'i,s necessary and,suffi,cientfor
the complete i,ntegrabili,ty of the total d,i,fferentia,l, equation (L) i,n AxB .

Proof. The local boundedness of X', implies by the mean value theorem
that .E satisfies the Lipschitz condition locally in AxB. Therefore it suf-

fices to verify that the condition (3.3) is equivalent to the condition (10)'

Let (fr,y) be a point of A x B, and let h,ke X,(r,y)e AxB
be so chosen that tl(ö,y) is defined for ö: r(r * k)(r * h)r. If we

denote for each z € ä by d(z) the subpath of ä from r to z and

u(z) : r@@) ,y) : y ! U(ö(z) ,s) ,

we have

(3.4)

The differentiability hypothesis implies that

+ F;(n , y) (tr,(z) - a) + | u(z) [ ( u(r) )
v'here

u(ö,y): { ?@,u(z))d*.

arrd ( e(z))-->0 in L(X,'Y) as le(z)l : lz-fr\*lu(z)-Al-0. Since

I ,<r,y)clz: o and since
ä

rl
J urtr,y) (: - i)d,z:; flr@,y)hlc - F'r(r,y)kh): A Il@,a)hk,
d

we get by (3.4) and (3.4)'
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Moreover,

I ,^r,s) (u(z) - il)dz: [ ,;rr,0) @@) - y)dz * [ ,;@,g) @ - y)dz

ddd

: I ,; (r , y) (u(z) - y)d" .

6

By the choice of the mapping zc we have

u(") - s: U(ö(z),rr:,{ xg,ut(€))d,€

: ?(r,a) @ - 4 + I (r(§, z(§)) - F(fr ,g))d€ .

d(,)

(z) y) dz - A f ;@ , I/) LF (* , y)h)k

)[ I (r( t,1L(,')) _ F(.r,r)),/='l dz.

å(,) l

us be re\\,ritten as

A g|(n , ilhk + F;@ , y) lF (fr , y)h1k\

löl'(( ö ,y ), * ( ä, y)z)

u

g

;h

il) Q x)ldz: A r;@ , y) lILfr , y)h]

Noting also that

{ ';(n 'Y)w@ '

we then have

{ 
?;(* 'Y) (t

+ f Fr(fi ,1'lt
The formula (3.4)" can tl
(3.5) U(ö ,y) -

+
where

(3.5)' (ö,u)r-# Ib@)i(,@))dz
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and

(3.5)" ( ö, a)z: * f r;@ ,y)
[äl' !

The proof is complete if

(3.5)"' lim sup l(ö,A)t*(ö
ä+; lY-yl<cldl

since the equation (3.5) implies then the equivalence of the conditions

(3.3) and (10). To show this convergence note first, that for each z € ö

le(z)l : l(z,u(z)) - (fr,il)l: lz - frl -l lu(z) - 9l

< lz - *l * 1a - Yl + lu(z) - al

< rör + ta - yt *l I tg ,u(gall.
'dG)

As differentiable mapping .E' is locally bounded, so that ll?(r,y)ll< M
where M:llV(fr,il]]+1, in a neighbourhood of (u,A). Ilence,

if d is close enough to f in the sense of regular convergence, and if
lg-91<CIäl forfixed C>0, then

lu(z) l< löi + C'töi + M\öL

forall zeö, rvhence

(3.6) lim rAr sup{ lu(r)l I z € ä ,lY - Y,;löl
X'rom (3.5)' and (3.5)" we conclud"e that

t
(3.6)' l(ö,y )'l < ry sup{ le(z)l ll(u(r)) ll}

and

(3.6)" l(ö,g)r1 < lr;@,9)lisup ll?(z,u(z)) - ?(fr ,g)ll.

Noting lhak I is continuousat (f ,y), andthat e(z): (z,u(z)) - (fr 'y) '
we get by (3.6), (3.6)' and (3.6)"

tim sup l(ö,y)r* ( ö,A)rl : 0
d+; lY-il<cldl

for all C > 0, thus completing the proof of the corollary.

Remark 1. The hypotheses of the above corollary are valid particularly
when 7 is continuously differentiable in AXB. Ontheotherhand,the

I vG , u(€)) - r@ ,a))rå] d,z .

,)(r)
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differentiability of .E can be replaced by the differentiability of -["s
restriction to (E n A)xB for each two-dimensional plane E of x Lhat
intersects a (cf. p. 2l). Moreover, the hypothesis (a) of this corollary can
be replaced by

(b) Each (ro,Ai e AXB has such a,conuenneighbourhood, I{XN, thatfor
all (*,A), @,9 * z) eN X ff', z * 0, and, for all r€(0, lzl)?).

(9)' ll?i@,g { re)ell I v'(r) , e: zlizl

where g i,s a continuous function on R+ which satisfies the cond,itiotts
(qt) ancl (g2) (p. 15) anil, which has non-negatiue d,eriuatiue p, (r) for0<r< diam try''7).

To see this, denote f(r): I(r,y I re) for 0<-r ( lzl. Then (9),
is equivalent to ll/'(r)ll 3p'(r), whence by the mean value theorem (Dieu-
donne [2] p. t53)

llflzD - /(0)ll < v(lzD - v(0)
so that,

ll?(*,A * z) - n@,y)ll .i q(1,"),) .

Thus the hypotheses of Corollary I are valid for -t''.
Remark 2. The results (3.5) and (3.5)"', which rvere derived in the proof

of corollary 4 (pp. 24-25) without use of the integrability condition (8.3)
or (10), show that the bilinear and alternating mapping R(r,il from
XxX to I given by

(3) R(fr , y)llk -
satisfies the condition

A {FiW , ilt k + ?;@ , y) lr(il, , y)tt)k}

(3.5) U(ö,A): R(fr,y)hk + läir( ö ,y>, ö: r(r * k) (r * h)r

where lim sup l( ö,y)l:0 forall C> 0.
d+i.lv-i <Cl,ll

Conversely, if the previous differentiability hypotheses are replaced by
the continuity of 7, and the Osgood condition (9), (pt) (p. t5), and if
there exists some bilinear mapping R(n , y) from X x X to 7 satisfying
the condition (3.5), then it can be proved to be ruriquely cletermined and
alternating. This giyes us a Z(XXX; I)-valued operator -8, rvhichwe
call a curaature form of 7. Moreover, b;r this definitionthe eri,stence and
aani,shi,ng of the curuature form of n in Ax B is eqtLiuctlent to the i,ntegrabi,tity
cond,'itioru (10), thus yielding the obvious reformrrlations of the theorem
(p. l+) and the corollaries l, 2 and 3.

Remark 3. The 'generalized operator' 1 introduced in Bächli [1] p. t9
7) except, possibly on a d.enumerable subset.
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carr be given by (3.5) with A:9 and .B - A, where <ö,9>->0 as

ö-->fr in the sense that läl+0 for ä: öo where o denotes a simplex
containing fr. The existence and vanishing of -d is equivalent to

u(ö , y)

llT-1r*=-:o'
But it is not obvious that this implies generally the condition

-. U(ö.,A^)

]g pr, :'
whenever ((ö. , y^Df:o is a sequence constructed by Gor:rsat's method
(see section 2.2). However, this implication is used in [l] for example
to prove the sufficiency of the integrability conditions given in the sum-

mary (section 12) of []. Besides, A(n , g) is proved to bo alternating
by means of an argument U(ö , il) : - U6-t, 7) , which is not generally
valid. Replacing this argument by U(ö 'g): - U(ö-t,y), where

g:T(ö,y), the mapping R(fr,il can be proved alternating by the
method rrsed in Bächli [].

4. On the hypotheses

4,1. A counter-examle. fn pror,ing the theorem (p. 14) the hypothesis
(92) was used in section 2.3 to show that the counter-hylothesis ro ) 0

leads, because of the conditions

(2.10)

and

(2. r 3)

lx 2n rn: o

n
,

rn_r < 2 u(tol ,Tn), rL: I ,2,

to a contradiction with the hypothesis (p t) . From this proof (p. 20)

we see thaf @\ can be rveakened to the form:
The seri,es I a. where

a": 2it'P @
o(r<ä E(r)

conaerges for b small enough.

On the other hand, we shall now shorv by a couater-example that this
proof fails if the hSlpothesis (92) is replaced by

r+o* v v)@2)',
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More precisely, we shall construct a borurded and increasing frurctions)
g : R+ -> R+ u,ith

io,(qt) lim / ^:"o
"-r* j q\r)

and

_ q (rl2) r(q2)" lim -f - 2-t,
,-o+ I \r)

and a sequence (r")Lo of positiue numbers, with

(2.10) lim2" t,: 0

and

(2.13)' tr^-r:o12-i-',r^1, n:1,2,...,
where a is the solution of the integral equation

(1.4) u(t, r) - r + t v@(r, r))r/, .

In the construction of p rve shall use the square root to get the property
(g2)" and suitable 'jumps' to ensure the property (E1) (see X'igure 3):

Let ro be a positive number. Set

(4.1) ?(0) : 0 and cp(r) : ro for r ) ro.

Choose the numbers r, €(0 , $ ro) and r, €(0 , ] rr) so that

*," ä",
fdrfd,r(4.2) J .- : )-3t2 and / -j:- : 2-z ,

and define 
'' Y ror : ! ror

(4.I)' V?) : {70, fo, r, < r --ro.

Proceeding recursively, set

(4.3) flo:0 artd. n,*r: nr* 2äu+r 1o, i:0 ,1 ,...,
and choose for each d € N the numbers

8) A continuous counter-examplo function g is easily obtained from the one
constructecl here. on the ot'her hand, the conti.nuity fil,pothesis of g is not needed
in the proof of the n-. ain theorem.
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Figure 3.

, ?bt +t

by

(4.2)'

Lu
2'n-L

t _L::?-;-,
/,,{w

X'inally we define

(4.1)' V(r):f ,"J forr,,*, .--r(.r^..

The equations (4.1), (4.I)'and (4.1)" define a bounded and increasing

function g on R+ . Since

'ni 'ni

f d' 
- f d'_ 

-q_ ^/qJ EU)- J \/r r
l'ni ä'"i "',

for each d € N , then the integral 
{ hd.iverges, 

whence v satis-

I

I l,'2
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fies the condition (gl) . The use of the square root in the previous con-
struction implies firrther that

- 
a blL\(q2)" lim T; :2-7t2 .

r+o* E\r)

As the solution u of the rntegral equation (l.a) is also the solution of
?(r' r)

f d,a(1.5) J ,1o,,:r,
it follows from (4.1)', (4.1)",1+.21 u:na (4.2)'tlnai,for the sequence (r,)åo
constructed above,

(2.t8)' tr.-,,:up-t-',r,), %:t,2,....
ft remains to show Lhat, e, - 2oro+ 0 as n -> @ .

By the above equations (f .5) and (2.L3)' we have

(4.4) 2r^ < 2a(2-|-' , r^) : r,-r
for all m € N , so that the sequence (e,)Lo is decreasing. Thus it suffices
to show that the sub-sequence (€,,),1, converges to zero. The substitu-
tion r : )-'6,s, in (4.2)' gives

2-ntz 
'i-d,o 

n

{T,!. t/i- " -

rvhich implies that for any i € N

\/ ,*, - \/;: +\/T,, ni * | 1n 1n,+, .

Adding sidewise these %i+t - nr: !lrl2\"t+l equations u-e obtain

! €ni ! ,nr*r: ä! r.i - L ) .ni,

so that

€,r*, : är^r,i : I,..1,....
This implies that €,i * as d -+ co , 'which ends the proof.

Remark. The above counter-example shows that the additional lrypo-
thesis (g2) cannot be dropped out from our proof of the theorem (p. la)
or even be replaced by the weaker condition (g2)' . Hotvever, the question
whether the need of (g2) is caused. only by Goursat's method used in the
proof remains open.
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4.2. X'inatly we shall study whether the theorem (p. 14) can be proved

if -E is a bounded and continuous mapping from AxBs) fo L(X; Y)

satisfying the following condition:
(X'l) .Eor all (r,g), (x,A) e AxB

(4.5) ll?(r , a) - I(x , y)ll < G(r ,ly - yl)

where G 'is a bound,eil and, continuous functi,on from A X R+ äo R+ such

that G(n , r) 'i,s 'increas'i,ng 'i,n r for fired' u e A and that for each ori,ented,

l,,i,ne segment I i,n A the integral equat'ion

t

u(t , r) r- r l- f G(/(s) , ?,(§ , r))d,s

has for r : 0 u(t, 0) - A as ilr,e only soluti,on.

These hypotheses ensure that for each path l, of PA the mappings

f(t,a): I(l(t),a)l'(t) and q(t,r): G(l(t) 'r)
satisfy the hypotheses of Bompiani's uniqueness theorem (Waiter [f2]).
Ilence, for each (l ,Ao) € IIr (p.10) the sequence (tr,^)i:, of the successir''e

approximations defined by
t

%*+t(t) --:- Uo -r- f ? Q(s) , un(s)) t' (s)ds , %r(t) : Uo

converges uniformly on l0 , Irl] to a unique solution tz of the integral
equation (S) (p. 8). Thus the result of Lemma I (p. 10) is valid. Also lemmas

2, 4 and 5, and. hence the necessity part of the theorem, are true for this -E' .

Now we shall ytroae Lemma 3 with the help of above hlaotheses.
Let t, be an oriented line segment in A and let y, and gt, be points of
B such that (t,Ui)€\y, j:1,2. Define the sequence ("i)3:, by
(a.7) with Ao : Ai , j : L ,2 , and let (a^)?:r. denote the sequence of
successive approximations given by

"'a.+r(t): lYt- yrl + J G(I(s), u,(s))ds , ts1(t): lyr- grl'

It can be shown (Edwards år, ,n* the sequence (u,)[1 converges on

i0 , lrll uniformly to the minimal solution tr of the integral equation
(a.6) with r : lyr - Azl . Moreover, it is elementary to verify by induction
that

e) A and B are the balls given by (I.l) (p. l0).
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l"!"(t)-ul?)l<a"(t)
for all z€N and ,€[0,lrl]. As n-->@ this implies that, for
0<r<lrl

lur(t) - %z(t)l < a(t,lAt- Azl)

where z, isthesolutionof (5)with Ua:Ui, j:1,2. tr'or f : l/i this
inequality is equivalent to the inequality

(r.6) lT(l ,ur) - r(l ,a) I 1u(it) ,la, - azl)

which was asserted in Lemma 3.

Using successive approximations one can verify that the minimal
solution o(t,r) of (a.6) is increasingin r forfixed I and t.Thusalsolem-
ma 6 (p. 18) is valid for the given -8 . The last step in the proof of the
theorem was to verify that the following condit'ion holds:

(I"2) If (r,)?:, is a sequence i,n A such that the sequence (2"1'l*,, - r,-rt,)?:r,
is bound,ed,, then the cond,it,ions

lim 2"T*-0 and, tn-t12u(t1r^-frn-r] ,r") , ,,€N

are sati,sfied, onlg for rn : Q t 7L : 0,1,2,....
Hence, if we suyrytose that (X'2) is valid for the minimal solutions z of the
integral equation (a.6) rvith l, : nnna-1, then also the sufficiency part
of the theorem is true for I .

The hypothesis (Fl) is par-ticularly valid when G(r ,r): p(r) where
g is a bounded, continuous and increasing function on R+ satisfying the
condition (qt). In this case t'he integral equation (4.6) equals to the
integral equation (1.4), which has, as we sarv in p. I1, a uniqrre solution a

on R+XR+. If we add the hgrothesis (V2) for g, then the proof in
section 2.3 shows that also the condition (tr'2) is valid. Thus the Osgood
condition (9), (El), (q2) is a special case of the hypotheses (FI), (tr'2),
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