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§ 1. INTRODUCTION

1.1. Summary. This paper contains some generalizations of the results
of Wittich ([10], [12] and [13]) on the behaviour of the solutions of Riccati
differential equations. Wittich considered Riccati equations with rational
and specially with polynomial coefficients. We merely assume that the
growth of a given solution is large compared to the growth of the coeffi-
cients. Such solutions to a certain extent take the role shared by tran-
scendental solutions among all solutions of the equations with rational
coefficients.

Foremost we are concentrating our attention on the following two types
of differential equations in the complex domain:

dw
(1.1) P y(2) = a,(z)w + ay(z)w?
and
du\" n-k _
(1.2) ((I—~ = > a(z)u’, where 1 =k =n.
L i=0

1.2. Notations. We suppose that the reader is familiar with the concepts
of the value distribution theory of Nevanlinna. Our notations will follow
those of Wittich [12] and Hayman [5].

Throughout this paper we assume that a,(z) == 0 in the equation (1.1)
and a@,,,(2) =0 in (1.2). We also assume all coefficients and solutions to
be meromorphic in the whole plane.

Important to our estimations are some classes S(r, w) and 8%r, w)
of real functions, whose members will be denoted with the same symbols.

Definition 1. If w = w(z) is a given transcendental meromorphic
Sfunction, then a real-valued function defined in the positive real axis belongs
to S(r,w), if

S(r, w)

(1.3) lim sup ,’—Z’—(r, ) =

L

outside of a possible exceptional set K with a finite linear measure: j dr < .
E
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A function S(r,w) specially belongs to S°(r, w) , if (1.3) is valid without
an exceptional set.

Let > aiz)w’ be a polynomial in w . The smallness of the growth
i=0

of the coefficients a;(z) compared to the growth of w = w(z) is defined
as follows:

Definition 2. A transcendental meromorphic function w = w(z) 1s
admissible (with respect to the coefficients a;(z)), if

If specially

then w = w(z) s said to be strongly admissible.
Remark. If w = w(z) is admissible, then trivially

T(r, ai(z)) = S(r, w)

for every function a;(z), 0 < i < s. A similar conclusion naturally holds,
if w(z) is strongly admissible.
1.3. Auxiliary results. Many considerations in this paper utilize the
following lemma which goes back to Valiron (Bieberbach [1], p. 99):
Lemma 1. Let R(w,z) be a rational function of the variables w and
z. If R(w,z) is of degree q in w and if w = w(z) is any transcendental
meromorphic function, then

T(r, R(w(z), 2)) = q T(r, w(z)) + O(log ) .

Equally important is the following lemma originating from Clunie
({2}, p- 20):

Lemma 2. Let P = P(z) = Pw,w,...,wP,z) and Q = Q(z) =
Qw, w', ..., w9, z) be polynomials in w and its derivatives. If w = w(z)
is an admissible function with respect to the coefficients of P and @, tf the
degree of @ counted with respect to the arguments w,w’, ..., w® s at
most n and if w(z)"P(z) = Q(z) after the substitution w = w(z), then

m(r, P(z)) = S(r, w).

Examining that proof of lemma 2 presented in [5], p. 68—69, we verify
Lemma 3. In the situation of lemma 2

'm(/"’ P(z)) = So(r: w),

if w= w(z) is strongly admissible and of finite order.
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dw
§ 2. THE EQUATION - — = a, + a;w + a,w?
2.1. Global solutions. The equations we consider in this paper are almost

all of the general form

dw\"
(2.1) (5) = R(w, z) ,
where R(w,z) is a rational function in w. The meromorphicity of all
coefficients and of the solutions we are treating is preassumed. If either
the solution w(z) or at least one of the coefficients of R(w,z) induce a
pole to the equation (2.1), then the equality of both sides is to be understood
in the formal sense.

2.2. The theorem of Malmquist. Malmquist proved that the equations
of type (1.1) with rational coefficients form a distinguished class among
the equations

dw
(2.2) —(i; = R(w, z) ,
where R(w,z) is rational in both variables ([7], p. 311). We generalize
this result by proving

Theorem 1. Let

)

=

o
2
)
S

S
&
D

=
-~
o.-r

IMe! T

be an irreducible rational function in w. If w = w(z) is an admissible
solution (with respect to the coefficients of P(w,z) and of Q(w,z)) of the

equation
(d u")” R
,dZ - (l(, "’) H
then R(w,z) isin w a polynomial whose degree is = 2 n.

Proof. Let us pick out a finite complex value x such that @(w, x) = 0

m(r, x) I 1 .
= 0. Substituting w = ~ 4 , e get a modified

and that lim

equation "% T(r, w)

Py
. L AT 24
(2.3) dz ) Q. (u,z) 1
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Since the new coefficients are obtained from the old ones by applying only
rational operations a finite number of times, u(z) is an admissible solution
of (2.3). Thus

i=0 i=0 a;
Py, 9o 1
2> T(r,a¥) + 2 Z T(r, b3) + O(log r) < 5 T(r, v),
i=0 i=0 )

if r is sufficiently large and outside of a possible exceptional set of finite
linear measure. Denoting now by N;(r, #) that counting function induced
by simple poles of u(z) we have

N, u) <= (Ny(r, w) + N(r, w)) .

l\oln—'

Since O(u, ©) = O(w, x) = d(u, ©) = o(w, x) = 0, then

1= 1 N(r, u) 1 L Ni(r, ) = (/ u)
=limsup ) = g s
_ 1 i Ny(r, u) 1
=2 P e e T2
Thus i N My 1  f ficient]
us nrllzup T — and so i\lp T(r, ) > — for a sufficiently
large p. Thus there exists a value », such that
Pa P I v _ S 1
=Z ag) g ( 3> féo‘\(rﬂ. b}) »~i;03 (ro. 7).-\/‘) << Ny(rg. u) .

This implies the existence of a point z;, where % has a simple pole and
where all the coefficients o} and 0 have finite, non-zero values. Util-
izing the Laurent expansion of wu(z) at z, we now get p =g, + 22,
thus

(2.4)

(du‘)n Pa('llr, 2) ,"i‘o )
dz 7 o

We further modify (2.4) to the form

5 du) s . ' Py, z)
5 (T) = dnew b e e = T



~1

Irro LaiNg, On the behaviour of the solutions

where the degree of the polynomial P; in % is at most ¢, — 1. Of course,
the admissibility of « is not destroyed. Let us suppose now that there

. : . m(r, u)
exists at least one non-zero coefficient of Py(u,z). Since lim T(r, u) =
. om(r, x) . . e ’
lim = 0, we immediately have
r— % T(T’ w)

m(r, u) = S(r, u) .

To estimate N(r, u) we proceed as follows. If wu(z) has a pole of order #£,
then

Po(u(z), z)

EACORE
has a zero of order =k at this point save that at least one coefficient of
P, has a pole or at least one coefficient of @, has a zero at the same time.
Thus

N(r,u) =N () —) + S(r, w) .

Since

d n 2n
F(z) = ( 1;(:)> —_ Z Ai(z)u(z),

i=0

a regular point of wu(z) can have a contribution to the number of the
poles of F(z) ounly if at least one of the coefficients A4;(z) has a pole at
that point. Hence

T(r, Fy = m(r, F) 4+ N(r, F) = m(r, F) + S(r, u)
[ du\™ 2n _
=m <7‘, (?I) -- ZOA; u') -+ S(r, w)
= O(m(r, w)) — S(r, w) = S(r. w) .

Since

1
No,u) =N (7‘, f) + S(r,u) = T(r, F) — S(r, u) = S(r, u),

we have a contradiction
T(r,u) = m(r,uw) + N(r, u) = S(r, u).

Hence Py(u,z) = 0 and the modified equation (2.5) is of the form

du\" o , ‘
(2.6) (72_) = A, )" + ... = A (=)u + 4,(2) .
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1

Utilizing the inverse substitution u = we see that the original

equation has the asserted form. The theorem follows.
Corollary 1. Let

N

kS

\N,
™M l[\/]-u

I
S

be an irreducible rational function in w. If w= w(z) is an admissible
solution (with respect to the coefficients of P(w,z) and of Q(w,z)) of the
equation
2.7 d R
( . ) dz - (w’ Z)?
then (2.7) reduces to the Riccati differential equation (1.1).

Corollary 2. Let w = w(z) be an admissible solution of the equation

(2.8) w_ i a;i(z)w' .

Then p < 2.

Remark. Every transcendental meromorphic solution is admissible, if
all coefficients of (2.1) are rational functions. In this case our corollary 1
generalizes the theorem of Malmquist. Theorem 1, on the other hand, is
a direct generalization of a theorem presented by Yosida ([14], p. 255).

2.3. Deficiencies of admissible solutions of (1.1). Admissible solutions
of a Riccati differential equation have deficiency properties, which to a
certain extent coincide with those of the transcendental solutions of Riccati
equations with polynomial coefficients (see e.g. Wittich [12], p. 78—80).
We first prove

Lemma 4. Let w = w(z) be an admissible function with respect to the
coefficients of P(w,z) = ay(z) + ay(2)w + ... + ap(z)uP. Then

N(r, Pw(z), 2)) = p N(r, w) + S0, w)
or, more definitely,
p N(r, w) — S(r, w) = N(r, P(w(z),2)) = p N(r,w) + S(r, w),

where the quantities S(r, w) are non-negative.
Proof. Let us denote by »(f,«) the multiplicity of f at a given «-
point. Considering a pole of P(w(z),z) we immediately have
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p
»(P, ) < py(w, ©) + > v(ai, ©
i=0
On the other hand, if a,wP is the only maximal term in P, then
»(P, ) = pv(w, ) — v(ay, 0) .

If the only maximal term is aw* with k # p or if there exist at least
two maximal terms, then we easily verify that

P
+ 2. 7(:, 0

r(w, ©) =

g[\m

i

Thus in any case
P 14
»(P, o) = py(w, ) — »(ap, 0 z (@i, o© Z »(az, O

Summation over all poles of P(w(z), z) and integration now gives
[ 1 P P, 1
PN w) = N o) —p 3 Niray—p 3 N(r o) = ¥ )
\ C p i—o0 i=0 Qi )
and
P
N(r, P) < pN(r,w) + > N(r, &) .
i=0
The assertion follows by admissibility of w(z) .
Corollary. In the situation of lemma 4
p N(r, w) — 8%, w) = N(r, P(w(z), 2)) = p N(r, w) + 8, ),

if w=w(z) is strongly admissible.

Theorem 2. If w = w(z) is an admissible solution of the equation (1.1),
then O(w, o) = 0.

Proof. Since w(ayw) = w' — ayw — ay, we have

m(r, w) < m(r, a,w) + m(7 -1—) + O(1) = S(r, w)
by lemma 2. Thus
T(r,w) = N(r,w) + S(r, w) .
From (1.1) we deduce by lemma 4
N(r,w') = N(r, w) + N(r, w) = 2 N(r, w) — S(r, w),
hence

N(r,w) = N(r, w) — S(r, w)
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T(r,w) = N(r, w) 4+ S(r, w) .
Since S(r, w) is non-negative, we have

N(r, w)
1 = lim sup - = lim sup (

T(r, w) =

Sr u\ o S, w)
e ) — lim inf

T

T(r, w) T(r,w)

r>o >

The theorem follows.
Corollary 1. If w = w(z) is an admissible solution of the equation (1.1),
then 6(w, co) = 0. Thus (1.1) does not admit an admissible integral solution.
By lemma 3 we also have
Corollary 2. If w = w(z) is a strongly admissible soluiion of finite order
of the equation (1.1), then also the Valiron deficiency vanishes: A(w, o) = 0.
Theorem 3. If w = w(z) is an admissible solution of the equation (1.1),
where the coefficients are supposed to be integral functions, then for every
x # oo we have

{ of#) + ayfe) - Pay(z) =
ay(z) + xay(2) 4 *Pay(z) =

Proof. Substituting w = x + o, e get

w = — ay, — (a4 + 2xa)u — (@, + xa; + o2ax)u? .

Now @, + o0y + o2ay = ¢ implies 0 = O(u, ©) = Ow, x) = d(w,x) = 0
by theorem 2.

If, on the other hand, a, + xu¢; + a%¢, == 0. then the equation (1.1)
has the special form

dw '

(2.9) PP (w —x) (b + aw) ,
where b = a; + aa,. The uniqueness theorem for the solution of the first
order differential equtions ([3], p. 34) implies that ~ is a Picard value of
w(z). The theorem follows.

Corollary. In the normal case, where o(w, x) = 0, we cven have A(w, x)
=0, if w=w(z) is strongly admissible and of finite order.

We will more closely consider the admissible solutions w = w(z) with
at least one deficient value.

The equation (2.9) has two distinct deticient values ~ and f if and
only if it has the form

dw

(2. == (1w — (s - ).
( 10) = == (. (?I ) ( ; )
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By theorem 2 and theorem 3 > @(w, w) = 2 in this case. Thus by Singh

w

and Gopalakrishna ([9], p. 129) it is possible to omit the assumption of
strong admissibility in corollary 2 to theorem 2 and in corollary to theorem 3.
We utilize the following notations in the sequel:

( 1)
N\r,—
w

D, = ]13 inf T(r, w)
and
)
Nir,—,
p R
e

Since @, + Z o(w, ) =< 2, we have the following trivial

F
Theorem 4. If w = w(z) is an admissible solution of (2.10), where the
coefficients are integral functions, then

G+ > d(w, ) = 2.

mF 0

Since for all meromorphic functions 26(w’, 0) = > d(w,w) ([12],

p. 22), we have a
Corollary. If w = w(z) is an admissible solution of (2.10) with integral
coefficients, then

ow',0) = 1.

In the special case of (2.10) we are easily able to reach a small improve-
ment to a result of Wittich who proved that any transcendental mero-
morphic solution of the equation (1.1) with rational coefficients has the
order 2, =1 ([12]. p. 76). Now we have

Theorem 5. If w = w(z) is an admissible solution of the equation (2.10)
with integral coefficients, then 2. s either @ positive integer or infinite.
Further w(z) s of reqgular growth, i.e.

Proof. The function

AR BN N

is an integral function with > (g, w) = (g, 0) = 1. Thus
g 2, o9 g

m = A
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1
N(r, —> + N(r, w)
w

0 =< K(f) = lim sup

r—> 0 T(’r’ w)
o]
-~ 1 - , w, li ZV(')", w)
= H,Iiiup T(r, w) + H,ri:oup T(r, w)

Since T(r,w) = T(r, g) + O(log r), the assertion is a direct consequence
of corollary 6.1 in [4], p. 298.

Remark. The order 1, can be any positive integer or infinite. For
example the equation w’ = 2"~ '(w — w?) has a solution w = e — 1)
of the order A, = ¢q with two deficient values: J(w, 0) = d(w, 1) = 1.
On the other hand, w = e"z/(e‘*’ — 1) with A, = oo satisfies the equation
w = ew — w?).

If now an admissible solution of (2.9) with integral coefficients has

d (b
exactly one deficient value «, then either A == 0, where 4 = 7 (a—>
or A =0 and (2.9) has the special form T

2.11 dw 2
(2.11) dz—az(w—a).
Actually, it is not known, whether there exists an admissible solution of
(2.11). We can assume a,(z) to be a transcendental integral function,
because all solutions of (2.11) are rational, if @,(z) is a polynomial. Taking

now a regular point z, we see that the solution w(z) hasthe representation

1
w(z) =x — — o
C + / ay(t) dt

for a conveniently selected C. Since T'(r, w) = T( r, / az(t)dt> + O(log r),

\
%

the admissibility of w(z) depends on whether there exists an integral

z

function a,(2) such that T'(r,a,) = S (r, / ag(t)dt> . If ay(2) is of finite

order or if > O(a,, w) > 0, this is not possii)le ([6], p. 98 and [9], p. 123),
70

but in general the question is open. If, however, an admissible solution of
(2.11) exists, then a theorem analogous to theorem 4 is valid:
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Theorem 6. If w = w(z) is an admissible solution of (2.11) with integral
coefficients, then @, + > d(w, w) = 1.

wF# ©

Proof. We immediately get

) = 35lg) + 5 tag) =5lng) -
ZV(%J <N r,g; -+ N 7',(70_—“)5 =N r,a—z = S(r, w),

thus @, = 0. The theorem follows.
Without any regard to the admissibility of w(z) we state that 2., =

Ay, = A, where A, = / a,(t)dt, since every meromorphic function has

the same order as its de;ivative. Thus we have

Theorem 7. If w = w(z) is a non-constant meromorphic solution of
the equation (2.11), then Aw = 2, .

If 4 =0, the equation we are considering has the general form (2.9),
where b/a, is not a constant. In this case the following analogies to theorem
4 have a somewhat weakened form. We first prove

Theorem 8. Ifw = w(z) is an admissible solution of (2.9) with integral
coefficients and with A == 0, then D, = 1.

Proof. The factor F = b -+ a,w in the equation (2.9) satisfies a Riccati
differential equation

— =y, + ¢, F -+ F?
= c
dz 0 L ?
where
’
— 2 42
c, = a 2xa
1 a2 1 2
Co = a4 .

Since ¢, = 0, we have by theorem 2
1
m<r, f) = S(r, F) = S(r, w).
Thus

T(r, w) = T(?’,ai (F — b)\) <T@, F)+T (r, ai> + T'(r, b) + O(1)

2 2

1
=m (7‘, f) + N (r, %) + S(r,w) =N <r, Fi> + 8(r, w)
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The assertion now follows, since S(r, w) is non-negative:

B, = I sy, T ) = S(r, ) o i S0 0)
e = lim sup T(r, w) =1 — lim in i’(r, ) =

r—>x0 r—> o

Corollary 1. If w = w(z) is a strongly admissible solution of (2.9) with
integral coefficients and with A ==0, then D, = 1.
Proof. This assertion is obtained at once, since

/1 1
Nir, &7) _ N (”’ Eﬂ") _ T b 4 agw) + 0() _ 8%, w)
Tr,w)y = Tr,w) — T(r, w) =1+ T(r,w) "’

Corollary 2. If w = w(z) is a strongly admissible solution of finite

order of (2.9) with integral coefficients and with A == 0, then @ = B, = 1.
Proof. Simce T(r,a;) = T(r,w), i =1,2, for a sufficiently large v,

1
then a,(z) and a,(2) are of finite order and we have m(?‘, f) = S%r, w)

by corollary 2 to theorem 2 as in the proof of the main theorem. Thus

1
Tr,w)y =N (7', E) + Sor, w)

and
T(r, w) — S%r, w) L SO(r, w)
T(r, w) = T msup T(r,w)

r—> o0

D, = lim inf

r—> o0

Corollary 1 now implies 1 =< @, < d, = 1.
By theorem 3 and its corollary we have
Corollary 3. If w = w(z) is a strongly admissible solution of finite
order of (2.9) with integral coefficients and with A == 0, then @, + > d(w, ®)
=& + 5 Aw, w) = 2. ©re
wF O

Corollary 4. If w = w(z) is a strongly admissible solution of finite
order of (2.9) with integral coefficients and with A == 0, then d(w’, 0) = L.
Proof. Since @, = 1 by corollary 2, we can utilize the double inequality

2 — O(w, ) — D,
2 — O(w, )

1
3 2 0w, ) = 0w, 0) =
wF 0
of Wittich ([12], p. 22—23) to have the assertion.
Remark 1. We specially note that the previous corollaries contain
those deficiency relations obtained by Wittich for transcendental solutions
of the equation (2.9) with polynomial coefficients ([12], p. 78—80).
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Remark 2. We are not aware whether it would be possible to omit the
additional assumptions, the strong admissibility and the finiteness of the
order, imposed upon the solutions in the corollaries.

2.4. Non-admissible solutions. We first state that there does not exist
any bound to the number of the deficient values for non-admissible solu-

tions. For example the equation w’ = e *w? has a solution w = —

z

-1
( / e dt) with ¢ + 1 deficient values for any integer ¢ ([5], p. 46).
\
We also state in this connection that w(z) is almost admissible for suffi-
ciently large values of ¢ in the sense that

T(r, e”‘q)> 1

ig?o (lim sup m =lim — = 0.

r—>o

Further, let g(z) be an integral function with infinitely many deficient
values. Then the equation

dw q'(z)
=~ g@p”

has solutions with infinitely many deficient values.

Examples of Riccati differential equations given in a paper of Rogai [8]
contain some special types of non-admissible solutions. We can verify that
the following lemmas presented in [8] retain their validity also in the com-
plex case.

Lemma 5. The equation (1.1) with a,(z) =0 has a solution of the form

(2.12) w = (Ce¥ — ay)la,
if and only if
a,(Ce* — ag) — aj(Ce® — ay) = ay(Ce — ay)? + Caje® .
Lemma 6. The equation (1.1) with a,(z) = 0 has a solution of the form

(213) w = C’e‘/a,
if and only if

Cae® — Caje’ = C%ane? + Caje* - ay; .
Lemma 7. The equation (1.1) has a solution of the form
(2.14) w = O, + Cye*
iof and only if
Coe = a,(Cy + Coe®)? + a,(C + Che®) + a .
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Other special cases presented in [8] have in general non-meromorphic
solutions in the complex case.

Theorem 9. If a solution w = w(z) of the equation (1.1) is of the type
(2.12), (2.13), or (2.14), then w(z) is non-admissible.

Proof. Suppose contrary to the assertion that w(z) were admissible.
We immediately see that the classes S(r,w) and S(r, e?) are identical.
Thus in the first case

2 T(r, &) — S(r, &) < T(r, ay(Ce* — ay)?)
= T(r, a,(Ce* —ay) — a (0" —ay) — Caje?)
— T(r, Oty —a} —a) + g, — ajay) < T(r, &) + S(r, &),
hence
2T(r, e") = T(r, &) + S(r, €7),

a contradiction.
In the second case we get a contradiction by

2T(r, e®) — S(r, &) < T(r, C2aye?) = T(r, Cae* — Caye* — Caje’ — aya3)
= T(r, Ce(a, — a; — ai) — aay) = T(r, €) + S(r, €)
and in the third case by
T(r,e) = T(r, Cye*) + O(1) = T'(r, ay(Cy + Coe")? + a,(C + Coe?) +ay) + O(1)
= 2T(r, O1+Che?*) — S(r, e) = 2T (r, &) — S(r, %) .

Theorem 10. If a meromorphic function w = w(z) s a solution of the
Riccati differential equation (1.1) and satisfies the condition

2
N(r, w) = O(3 T(r, a)) + O(log 7)
i=0
outside of a possible exceptional set of finite linear measure, then outside of

a possible exceptional set of the same kind

2

T, w) = Z (r, ) -+ O (log 7).
Proof. In the following proof all estimations are valid outside of a
a
possible exceptional set of finite linear measure. Substituting w = » — 2—;
2

we get the following modified equation:

u u’ 1 at

’

. 2 @, 1 ja,
wur = — + =————2a1———~3a.+~—-(— .
o @y 2a; 2a; tty 4 \a,

15~

Thus
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Mt\

T(r, B) = O(3 T(r, @) + Ollog 7
and so -
mr, ) = 2m(r,0) = i, w) + 003 T, @) + Oog 1)
< mir, ) 4 O3 T(r, ) + Ollog 1) + Ollog T, )
implying )
mir, w) < 0(% T(r, a)) + O(log 1) 4 O(log T(r, w)) .
Hence -

T(r, w))

m(r, w) = m(r, u) + 0(

"MN)
)

< O( Z T(r, a;)) + O(log r) - O(log T(r, ))
=0
and further

2
T(r, w) = m(r, w) + N(r, w) = Z T(r, a;)) -+ O(log r) + O(log T'(r, w))

II/\

O(3, (¢, ) + Ollog ) + Ollg Tr. w)

Tr, w) + O(S T, a2)) + Oflog 1)

i=0

IA
Lo |

for sufficiently large values of r. The theorem follows.

The estimations above are valid without any exceptional set, if all
functions used are of finite order. Thus we have

Corollary 1. If w = w(z) is a meromorphic solution of finite order of
the equatwn (1.1), whose coefficients are also of finite order and if N(r,w) =

O(Z T(r, a:)) + O(log r), then we have T(r,w) = Z T(r, @) 4+ O(log 7).
i=0

The following corollary 2 contains as a special case an earlier result
due to Wittich ([12], p. 76).

Corollary 2. If the equation (1.1) whose coefficients are of finite order,
has a meromorphic solution w = w(z) of finite order such that w(z) has a
finite number of poles, then

Joo = MAX (Ly s Agys Agy)-

ay? “tay?
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Remark. The previous main theorem does not imply any upper or
lower bound for é(w, o). For example the equation w’ = e™*w? has the

-1
solution w = — (/ e_’zdt> with no deficiency at z = oo: d(w, o) = 0.

0
On the other hand the equation w’ = — €* -+ w - e*w? has the solution

w=¢ with 6w, 0)=1.

n+k

dw\" )
§ 3. THE EQUATION (?1;> =goa,. w

3.1. Characterization by admissible solutions.
Theorem 11. Let w = w(z) be a meromorphic solution of the equation

(3.1) ZP: bi(z) (\5)‘ =

If w(z) vs admissible with respect to the coefficients of both sides of (3.1),
then q < 2 p.

Proof. Let us denote the left-hand side of (3.1) by P and the right-
hand side by @. We can assume that p << ¢q. Write (3.1) in the form

it p [(dw\ ¢! .
(aq w)w :i:zo b; (E _.':Zo a; w.
Then by lemma 2

m(r, w) = m(r, al> + m(r, ag w) + O(1) = S(r, w) .

Since by lemma 4
N, Q) = q N(r, w) — S(r, w)
{ N(r, P) = p N(r, w') + S(r, w) ,
we get
g T(r,w) = ¢ N(r,w) + S(r, w) = N(r, @) + S(r, w)
— N(r, P) + 8(r, w) = p N(r, ') + S(r, )
=2p N, w) + 8, w) = 2p T, w) + S(r, w) .

The theorem follows.
Corollary. Let w = w(z) be an admissible solution of the equation
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‘dw\p q
(3.2) (d—t> = z a(z)w' .

Then g =27p.
3.2. Deficiencies of admissible solutions.
Theorem 12. If w = w(z) is an admissible solution of the equation

/de n ni-k )
(3.3) (d_zf’—) = > az)w', where 1 <k =n,

=0

[

then 6w, ©) =0 and O(w, ©) =1 —
A np
admissible, then O(w, o0) =1 — —.
np
Proof. Writing (3.3) in the form

If w=w(z) s strongly

n+k—l(

'(ZPLU n ntk—1
w

@, W) = ((lzP — ZO @',

we get by lemma 2

m(r, w) = m(¢°, + m(r, a, ., w) + O(1) = S(r, w) .

e
Thus the first part of the assertion is established.
By lemma 4 we further have

ntk

(n + B)N(r, w) — S(r, w) = N(r, > a; )
=0

= N(r, )"y = n N(r,w) +np N(r,w),

hence
ET@r, w) — S(r, w) =k N@r,w) — S(r,w) = npN(r,w)
and
 Fnw O Sthw)
b 111}15;11) T(r, w) =k hflli“f T(r,w)
Thus
N, w) k
O(w, ©) =1 — lhiiup T ) =1-— s

Supposing now w(z) to be strongly admissible we have by corollary
to lemma 4

n-t+k
n N(r,w) +np Nr.w) = N(r, > a;w') = (n + k) N(r, w) 4+ S, w) ,

i=0
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thus
np N, w) <k N, w) + 8%, w) <k T(r,w) + S%r, w)
and
N(r, w) SO(r, w)
nphmsupT( ) = lim sup k—[—~1;(———)— =k
yielding
k
Ow, ©)=1-— —.
np

The theorem follows.
Corollary 1. If w = w(z) is an admissible solution of the equation (1.2),

k

then O(w, ©) =0 and Ow, ©)=1— ot If w=w() s strongly
admzissible or if k= mn, then Ow, o) =1 — i

Corollary 2. The equation (3.3) does mot admit an admissible integral
solution.

Theorem 13. If w = w(z) is an admissible solution of the equation
(1.2) with integral coefficients, then 6w, x) = O(w, ) =1 if and only if
x 7 oo 1s a root of multiplicity p = n of the equation

(3.4) ay(z) + xay(z) + ..ot a, ()= 0.
If o 1s aroot of multiplicity 0 = p << n of the equation (3.4), then S(w,x) = 0

and Ow,x) = i—) If additionally w = w(z) 1is strongly admissible or if
P

p =0, then Ow,«) = o

Proof. Substituting w = x 4+ o we get

j—_O
n+k j
— Z CP) xJ—P 4 n—P
j=0 p=0
n+k n+k ntk
= > ( Z (—1)" a; ()0 &I7P) w7 = > by, (2)u™"7F
p=0 j=p p=0
Thus we have for p =0,...,n—1

[ Don(2) = (—1)(ag(z) + aay(2) + . .. + 0" a, ., (2))
(3.5) ik (—1)"
] ban_,(2)

JG=1) - (—p+D P ai(z)

)=

!
j=r P
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where all functions b;(z) are integral functions. Since w = u(z) is an ad-
missible solution of the modified equation, we have by corollary 1 to theo-
rem 12

o(u, ) = 6w, x) =0
nP

Ou, ) = Ow,0) =1 — — = =

SRS

2

if the highest coefficient not vanishing identically is b,,_,(z) with0 =p <mn.
Considering the right-hand sides of the equations (3.5) we observe that the
functions p!(—1)"b,,_,(2) for p =1,...,n—1 are successive derivatives
of the polynomial ay(z) + axay(z)+ ...+ «"*a, .(2) in the polynomial
ring “M[«], where 97 is the field of meromorphic functions. Thus b,, ,(2)
is the highest coefficient not vanishing identically if and only if « is a
root of multiplicity 0 < p < n of the equation (3.4).

If p = 0 orif w(z) is strongly admissible, the inequality O(w,«) =
evidently changes to an equality.

To complete the proof we have only to consider the case where the
modified equation has a reduced form

n

du r
Zb z)u', where r < n .

This is the case if and only if « is a root of multiplicity p = n of the
equation (3.4). Supposing wu(z) has a pole of multiplicity »(u, 00) =1
at some point z we get

n(v(u, o) -+ 1) = v((uw')* er uw', ) < rv(u, ),

which implies a contradiction
1< m—r)viu, ©)+n=0.
Thus
{ O0(u, ©) = d(w,«) =1
Ou, ) = Ow,x) =1.

3.3. Equations of type (1.2) with constant coefficients. We first note
that in the case of constant coefficients any transcendental solution of
(1.2) is strongly admissible, thus the equality in theorem 12 and theorem
13 is valid. Let us first consider two specific examples.

Example 1. The Weierstrass elliptic function (z) satisfies the
equation



o
[89]
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(@)= =) (P =) (P — )
([5]. p. 44) or, equivalently,
(PP =—apy + (f + By + )P — (x + f + ) Y5,

The distinct complex numbers «, § and y are simple roots of the equation

— 3By 4 oo -+ By + 1) — (x + f 4+ 7) + 0 =
thus by theorem 12 and theorem 13

O, 0) =0(P, ) =0(L,B)=0(P,y) =1
O, w) =0 for v # 0, x, 8,y
(P, w) = 0 for all .

Example 2. Let us consider the inverse function w = w(z) of

w 1 1 1
——1 ——1 — =1
2=/(t—x)m t—p" =y d.
0
o, . . . .« . 1 l 1
where the positive integers m, n, p satisfy the condition — —— — — =1

m- np
and where «, f8, y are distinct complex numbers ([5], p. 45). The inverse

function can be continued over the whole plane as a one-valued mero-
morphic double-periodic function by Schwarz’s reflection principle. This
continued function w = w(z) is an admissible solution of the differential
equation

dw\™"? 2mnp .
(Ez‘) = (w — Q)P (1 — BT (1 — P = S
i=0
2mnp
The roots of the equation > xw' =0 are «,f and y with respective
i=0

multiplicities mnp — np, mnp — mp and mnp — mn. Thus by theorem 13

mnp — N 1

O(w, x) = e p:l_f

mnp m

, mnp — mp 1

@(?’,‘, /3) — ]‘ — = ]_ — =

mnp n

o mnp — mn . 1

(?l ’ /) - mnp - - P
Ow, ) = 0 for v =«x,p,y

O(w, ) = 0 forall w.
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Generally we have

Theorem 14. Let w = w(z) be an admissible solution of the equation
(1.2) with constant coefficients and let n -+ p be the highest multiplicity
appearing amonyg the distinct roots of the equation (3.4). Then

S O(w,5) = 2 — max (0, 7)

n
Proof. When applying theorem 13 and corollary 1 to theorem 12 in
this proof we naturally have the case of strong admissibility.

1°. p > 0. Since now all but one of the roots of (3.4) are of multiplicity
8 < m, we get

k ;
2, 0w, &) = Ow, ) + > Ow, “1—;+1+Z%

o

1o
|
|

k n+k—n—p , P
n n oo

2°, p = 0. If there exist two distinct roots of (3.4) with the multiplicity
n, then » =% and

> Ow, ~) = ZOu«:?.

x

If, on the other hand, there exists exactly one root of (3.4) with the highest
multiplicity, then all other roots have a multiplicity s; <7 and so

k k n-—-kLk—mn

Z Ow,x)y=1— — ~{ z -+ = 2.

< = N N n

~

3°. p < 0. Now all roots of (3.4) are at most of multiplicity » — 1,
hence

k Si g =K
20(10,“):1—E+Z ;zl_f_{_ — 9.

1% i

By Singh and Gopalakrishna ([9], p. 125) we get the following

Corollary. Let w = w(z) be an admissible solution of finite order of the
equation (1.2) with constant coefficients and let s, ..., s be the multiplic-
ities of the distinct roots xq, ..., , ox of the equation (3.4) 4 If max(s;, ..., s)
= n, then
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T(r,w") k

AT~ T

- N(r,w) &

M T w)
N(r, x;) s

M Trw) T

N, o)

E}II; Trw) — 1 for o #a;, .

§ 4. CONCLUDING REMARKS

4.1. Meromorphic coefficients. In many of the previous theorems we
have restricted our attention on the equations with integral coefficients.
It seems to be evident that most of the results retain their validity in the
general case of meromorphic coefficients, possibly in a somewhat weakened
form. We omit these considerations.

4.2. Admissible integral solutions. It is obvious that the concept
of the admissible solution is useful also for other types of differential
equations. As an example we consider here a theorem due to Wittich ([11],

p. 221).
Theorem 15. Let P(w,wy, ..., Ws, 2) be a polynomial in the variables
w, Wy, . . ., Ws with integral coefficients bi(z). If w = w(z) is an admissible

integral solution of the equation
(4.1) Pw, v, ..., w",2) = flw),

where f(w) s a transcendental integral function of w, then w(z) is a constant.
Proof. According to Clunie ([5], p. 54) we have
T(r, f(w(z))) m(r, f(i(2)))

lim 1nfm = lim inf m—)— = 0,

r—> 0 r—> x

since f(w) and w(z) are transcendental functions.
On the other hand, writing (4.1) in the form

Pw,w", ..., w™ 2) = Z bi(z) + wh - (wO)k - oo (w™)kn
k

ONS w® Ven L O\E
— bi(2) + w - ——) . u)kx v o | ——— R . wkn
; «z) W w Y, w
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we see that
m(r, P) = O(m(r, w))
outside of a possible exceptional set of finite linear measure. Thus
m(r, f(w(z)) = O(m(r, w(z) ) )

outside of a possible exceptional set, a contradiction. The theorem follows.

University of Joensuu
Finland
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