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An analytic function w = f(z) in the unit disk D of the z-plane is
called an inner function if |f(z)] <1 in D and if f(z) possesses radial
limits of modulus 1 at almost all points of |z] = 1. Such functions were
studied extensively by O. Frostman [4] and W. Seidel [6]. In particular,
at each point P on |z] = 1 the cluster set C(f, P) of an inner function
consists either of a single point of modulus 1 or else of the closed disk
lw| <1 (see [6, Theorem 6 and its corollary]).

Every bounded analytic function in D has a representation

) 1 [etd-2
() F(2) = ¢*B(z) exp <; / —— d#(t)> ,

(4 z

-

where & is a real constant, B(z) is a Blaschke product extended over the
zeros of f(z), and u(t) is a nonincreasing function (see [1, p. 40], for ex-
ample). The function x has a decomposition w = u, + p,, where u, is
singular and y, is absolutely continuous. The inner functions are those
bounded analytic functions for which u, is constant. Bounded analytic
functions that have no zeros and for which w, is constant are called outer
Sfunctions.

The following question arises naturally.: If f(z) is analytic and bounded
in D and if at each point P of [z] =1 the cluster set C(f, P) consists
either of a single point of modulus 1 or else of the closed disk |w]| <1,
must f(z) be an inner function? In case the answer is negative, do there
exist outer functions with this property? Questions such as these have been
raised by G. Csordas [2] and L. Rubel (private communication).

In our first theorem, we show that there exists a bounded analytic
function whose cluster set C(f, P) is the closed disk |w| <1 for every P,
but which has no radial limit of modulus 1; this answers the first question
of the preceding paragraph. In Theorem 2, we show that an appropriate
refinement of the simple construction in Theorem 1 leads to a function
with the same property and with the additional feature that the new func-
tion has a finite Dirichlet integral. In Theorem 3, we show that there exist
outer functions with both properties.

THEOREM 1. There exists an analytic function w == f(z) in D such
that |f(z)] << 1 in D, such that for each poinl P on |z| = 1 the cluster set
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C(f, P) is the closed disk |w| <1, and such that f(z) does not have a radial
limit of modulus 1 at any point P.

Proof. We shall construct a special domain ¢ in |w| <1, form the
universal covering surface (* over (, and show that each conformal
mapping of D onto G generates a function f with the required properties.

We create a domain G, by deleting from the disk |w| <1 a curve o
that spirals from the origin toward the circle |w| = 1. From G, we
obtain G by the deletion of a denumerable set FE, whose derived set
consists of the curve ¢ and the circle |w| = 1; we subject E, to the
additional requirement that if d is any disk whose center lies on ¢, then
each component of N G, contains points of E, Clearly, ¢ has infinite
connectivity, and its boundary consists of the set E,, the spiral o, and
the circle |w| = 1.

Let ¢ denote a conformal mapping of D onto G, and let f be the
composition of ¢ with the projection of G* onto G. Then f is analytic
in D, |fz)] <1, and f(z) assumes each value in ¢ infinitely often. From
the general theory of inverse functions (see [1, Chapter 6], for example)
it follows that each point of the set E, is the radial limit of f(z) on a set
that is dense on 2| = 1. From this it follows in turn that for each point
P on |z| =1, the set C(f, P) consists of the closed disk |w| < 1.

To show that no radial limit of f has modulus 1, we merely observe
that no path on the Riemann surface G7* converges to a single point
on |w| =1

In the statement of the following theorem, we call a point set a boundary
path in D if it consists of the values z = g(s), where g(s) denotes a
continuous function (0 <s < 1) such that Ig(s)l <1 for all s and
lim, ,lg(s)} = 1.

TaEOREM 2. There exists an analytic function w = f(z) in D such that

() 1fz) <1 in D,

(ii) for each point P on z| = 1, the cluster set C(f, P) consists of the
closed disk jw| <1,

(iii) for each boundary path % in D, the cluster set C,(f, P) either
contains no point of the circle lw! = 1 or else consists of the entire closed disk
lw| <1,

(iv) the Dirichlet integral of [ is finite,

(v) the set of Fatou values of f has two-dimensional meusure .

Proof. Let y denote a path in |w| <1 that begins at w; = 1/2

and passes exactly once through each of the points w,, w;, ..., where
| 2" (n odd),
W =
|1 — 2 (n even)
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(y cannot be a boundary path). We may assume that for each n the arc
v, from w, to w,,, issimple and rectifiable, and that no point of |w| <1
lies at a distance greater than 1/n from p,. Let y have the representation
w = w(s) (0 <s < o), where s denotes arc length on y. For each s,
let D, denote the disk |w — w(s)| << 1/8¢"; without loss of generality,
we may assume that each disk D, lies at a positive distance from the
circle |w| = 1. Obviously, the disks D, determine a simply connected
Riemann surface (; in the form of a ribbon that winds over the disk
lw| < 1. We divide the portion of the boundary of G; over the disk
lw| < 1 into arcs of diameter at most 1/2, and along each of these arcs
we attach to G, a Riemann surface that lies over @, (except for a short
section near the attachment; see the figure) and follows its contortions
indefinitely.

‘When the Riemann surface G, has been constructed, we divide the
portion of its boundary over the disk |w| <1 into ares of diameter at
most 27"; along a portion of each of these arcs we attach to ¢, a Riemann
surface that lies over the corresponding ribbon of @, (except for a short
portion) and follows it indefinitely; and we denote the Riemann surface
thus obtained by @,,;. The continuation of the process yields a simply
connected Riemann surface G*, and each conformal mapping of D onto
@* determines a function f with the first two of the properties listed in
the theorem. To see that condition (iii) is also satisfied, we merely observe
that if the projection of a path in G* has a limit point on the circle
lw| == 1, then the projection of path is dense on the unit disk.

To ensure that the functions f associated with G* satisfy condition
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(iv), we need only make certain that the total area of the Riemann surfaces
comprising G* is finite.

Finally, to make certain that almost all points in the disk |w] <1
are Fatou values of the functions f, it is simplest to abandon the rectifi-
ability of the ares y, that comprise the path y (naturally, this also re-
quires modifications in the definition of the disks D,). We can then choose
the path y and the supporting Riemann surface G, so that the projection
of the set B, of its accessible boundary points has measure at least 3m/4.
Whenever we attach a Riemann surface to G, we do it in such a way that
the set of accessible boundary points of G* contains a subset of B, whose
measure is at least /2. Similarly, we make certain that the projection
of the set of accessible boundary points of the Riemann surface @, has
measure at least (1 — 2™ 1)z, and that a set of measure at least (1 — 27")x
survives all later modifications. This completes the proof of Theorem 2.

In connection with condition (iv), we observe that if f is a univalent
map of the disk D onto G*, then at each point ¢ the radial cluster
set of f consists either of an interior point of the disk [w| <1 or else of
the closure of the disk. By a slight modification of the classical proof of
a theorem of Fejér (see [3] or [5, Section 13]), we see that at each point €',
the sequence of partial sums of the Taylor series of f either converges or
has each point in |w| <1 as a limit point.

THEOREM 3. There exists an outer function with the properties listed in
Theorem 2.

Proof. In the proof of Theorem 2, we can obviously construct the Rie-
mann surface G* so that the point w = 0 is the projection of no interior
point of G* and of no accessible boundary point of G*. Each of the as-
sociated functions f is then an outer function; for if in the decomposition
u = + py of the function g in (1) the component u; were not con-
stant, there would be at least one point f, such that u(f,) = — o, and
at the point ¢ the function f would have the radial limit 0.
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