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1. Introduection
Let S(b;) be the class of all regular analytic functions in the unit disk,
which are univalent, satisfy the boundedness condition
(1) f) <1 in [z <1

and have the Taylor series

@

(2) fe)=2b,2, 0<b =1.
y=1

We denote

(3) a, = b,[b,, v=12,...

and wish to study the coefficient problem for this class.

We use an argument which is closely related to the classical area prin-
ciple. Let I be the image of the circle |z| = r under the conformal map-
ping w = f(z). This curve separates the origin from the unit periphery
lw| =1 and we denote the ring domain bounded by I, and |w| =1 by
D,. If g'(w) is regular analytic in D, and has an integral with single-
valued real part, we may apply to it the Green’s identity in the form

(4) 0= [ = [Refgywie
D, oD,

By an appropriate choice of g'(w) and use of Fourier relations one may
then obtain useful estimations for the @, In [8] the function g(w) was
built up from the Faber polynomials of the function f(z) and generalized
Grunsky-Nehari inequalities were obtained. In accordance with the methods
used in [2], [10] we will now apply a new function g(w). This leads us to
a different formalism for deriving coefficient inequalities which involve
the power matrix of a function (2) instead of its Grunsky coefficients.
We define the Taylor (resp. Laurent) series

(5) JE" = cm 2F forn £0
k=n

and use the notation
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(6) logf = Z.O o 2*

The double infinite triangular matrix ((c.)) is, of course, closely related
to the coefficient schemes which occur in the Grunsky inequalities. But
it is surprising to see how elegant inequalities can be formulated and proved
in terms of this power matrix. This matrix has already been studied by
various authors and has many useful properties [3], [6], [8], [9].

2. The basic inequalities

Our new choice is the test function
N
(7 gw) = xolog w + > wpw”, &, = real,
n::o‘\
which satisfies all requirements made for g(w) to justify the identity (4).
Next we use the definitions (5) and (6) to transplant g(w) into the unit

disk where it has the Laurent development

® U] = mplogz + 33 mcad,
We simplify the notation by introducing the new vector
(9) Z]zc,.c,,k, k=—N,

and by writing

(8) g = wologz + 3
We express now the inequality (4) in the form

(9 L=1

with
1

(10) I = 5 ¢ Re g} dgtw)
|w]=1

and
1

(1) 1,5 [ Re gty dgtv)
Fr
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The first integral is immediately evaluated by use of the orthonormality
relations

1 1 e dw 5
(12) 2 i Wy TR
Jw]=1
We obtains, because of @ = w™ on (w| =1,
1 X ol dw
(13) Il=—.f]§ > (@ w” + Far) (2 + > Tmmas™) ‘:anxnlz
2% n——'N m——N w
|wl=1 n#0 m#0Q

Similarly, we can use the orthonormality relations corresponding to (12)
to evaluate the integral (11). The Laurent series (8’) converges absolutely
and uniformly on |2| = r and we have here Z = r%2"1. Hence

1
(14) L= %[2% log r + Z Y2 G 1278)] [ + Z l@/:z‘] -
k=—N I=—N
[x]—r

= a[2z} log v + 2z Re{yo} + > U Pr?].
122N
Therefore (4) and (9) lead to the inequality
N N
(15) 225 log 1 + 22y Re{yp} + D UpiPr—2 = 3 nlaaf?.
I=—N n=-—-N

The result simplifies if we let » — 1. We obtain

N

(16) 2%y Re{y,} + Z liy? = z n[xnIZ
l=—N
This is a remarkable property of the linear transformation (9) of the quite
arbitrary complex vector {z.}.
We state the following weakened version of (16) as
Theorem. For all functions of the class S(b;) we have the inequality

~ N

(17) 2o Re{yo} 7‘; Z\?;JI § Z

and equality holds if and only if y, =0 for » > N. The numbers y;
are defined by the linear transformation (9) of the vector {3}, which is
quite arbitrary except for the restriction z, = real.

3. Lowner’s differential equation and the power matrix

We have been led in a natural way to introduce the linear transformation
(9) of an arbitrary complex (2N-1)-vector {z.} by means of the power
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matrix of a function of the class S(b;). It is very instructive to discuss
this result from the point of view of the Lowner theory.
Let

(18) [z 1) =c' > at)?
y=1

be a solution of Lowner’s differential equation

af 14 xz 8f

(19) at 1 — A2 34

with the initial condition

(20) fz,0) =2

For given value ¢, f(z,t) belongs always to the class S(e™’). The main

subclass of the Lowner functions consists of mappings of the unit disk onto

the unit disk slit along an arc which grows with increasing values of ¢.
Observe now that

(21) flz, 0" = Z Cnk ( nso0,
and
(22) log 1) ) 2

define the variable power matrix

(23) Ct) = ((cu (1) ) -

Since we have for every differentiable function F(f) the same differential
equation

04 0 7 1%z 0 7
(24) = Pl 0] = — 27— = FIf(z 1)
we can derive the identities
" (25) Z Cnte ( — (12> %2 > ke (1) 2F
k=n o=1 k=n
if n %0 and
(26) >l )2 = — (L2 302 (1 3 bea (629
o o=1 k=1

Here - denotes differentiation with respect to t. Comparison of coeffici-
ents yields then for n # 0
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(27) bult) = — B o () — 23, (k= Q)engy ()
o=
and for £ >0
(28) corc(t) =—kecy(t) —2 z %k — Q)Co(k—g) () — 2.

o=1
The sums in the preceding formulas are finite since c¢mm =0 if 7 > m.
Finally, we have

(29) Coolt) = — 1.
We define now the variable vector
N
(30) Yr(t) = 2, @n Cuk (£)
n=—N

whose significance has become evident by our results in Section 2. We use
(27), (28) and (29) to obtain

(31) () = — k(t) gk—g/yk_g() for k<0,
(32) ilt) = 2 ey, () — 2,
(33)  gx(t) = — kyw(t) — 2 Z Q)%Yy_, () — 2 wgn® for k> 0.

We define, of course, y_,({) =0 for » > N.
Next, we form the expression

N N N
(34) Dkipin=— > P2 — 22 k(k — 0)%° Gr Yy ,— 20 > kn* Fn .
BEON B=CN ok =1

Let I =%k — p and write (34) as

N N N - —_
(85) 2 kGege=— 2 Kl =23 kg £ — 220 2(t) — @ (o + %) 5
- - Tkt
where we introduce the notation
N
(36) 2(t) = > k= *p
k=—N

and use the identity (32). We add to the expression (35) its conjugate com-
plex value and obtain

(37) % EZ Elyu(t) |2 + 2 2 Re {y,()}] = — 2[|2(t) 2 + 2w Re {£} + 7]

— — 2a(t) + ot
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We have thus proved the following:
Theorem. The functional

N
(38) S() = 220 Re {yo(0)} + 2, 175 ly(®)[?
is monotonously decreasing with the parameter value ¢, except in the case
N
(39) Ty + > kxFyu(t) =0.
k=—-N

Observe that the matrix C(f) has for ¢ = 0 the values
{ Cnk = Onk for n #£0,

40
( ) COk = O.

Hence we find
(407) ye(t) = a2 for k #0, y,(t) =0.

Thus the inequality (16) is obtained as a consequence of our more general
result in the case of slit mappings and hence holds for the most general
function of class S(b,).

Dr. G. Goodman has pointed out that the close relation between the
Loéwner differential equation and Julia’s variational formula [4] allows the
following generalization:

Theorem. Let f(z) and f*(z) be univalent in |z| << 1 and normalized
by the conditions f(0) = f*(0) =0, f'(0) > 0, f*'(0) > 0. Associate with
each the functional

N N
(41) S = 22y Re {y,} +l_zlif3/l|2: S8* = 2z, Re {?/Sk} + zlfrf?/z*lz s

l=—

respectively. If f(z) maps the unit disk onto the domain D, f*(z) maps
onto D* and if Dc D¥*, then

(42) S < 8*,

The functional 8 is therefore for fixed vector {wx.} domainmonotonic.
Let us verify that in the case (39) we have by (32)

(43) Gult) = — b ya(t) — #(200 + 2 S I~ )
— —ky(t), if k>N,

Since we suppose yx(0) =z = 0 for k> N, we see that in this case we
have yi(t) =0 for k> N and the equivalence of the inequalities (16)
and (17) is ensured. Thus, the study of the differential system (31), (32),
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(33’) with the condition (39) for x» leads to the characterization of the
extremum functions for which equality holds in (17).

We can use the identity (37) to obtain finer estimates. For example,
put in formula (33) £ = N to have

2N
(44) yn(t) = — Nyx — 2 21%9 (N —oyn_, — P
P

2N
= - Z\T Yn — QZNZ %\—N(N - Q)yN—o —2 xO%N
o=1 )
- N -
=—Nyy— 2" >lyw™ + 22" yy e~V — 2 x1"
A

N

= Nyy— 2% (2 + Zl\lr yie') .

Using the notation (35) we arrive at
d — Nt Nt N
(45) e (] € = — 2%y + 2(0)

and using (37) and (38), we can write this result as

ii [6-—;\} y (t)] Z e2Nt_ . 2S/(t)
[dt N i

t

(46)

We integrate between = 0 and ¢ = t;
'0

weld L
(47) SO =800 = [ ¥ G )

0

12

dt .

On the other hand, we apply the Schwarz inequality to

d _ f _
0 0
to find
t t, v 1 : "
(49)  lyslt)e™ — axP = f 2™ f e”"g [yy e~ | dt
0 0 ¢
‘0

< =™ e—zm.,f i | [ m] gzdt
< et —Tyn e .
= N Ed YN 1

Observe that e~ = b,(t); hence we can combine (47) and (49) to obtain
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-

N N N .
(50) > laf— 3 UpP — 20 Re g} = 1w By — wal?
- %Y1

I=—N I=—N

Theorem. Define the functional

N N
(31) T(t) = 2w, Re {yo} + Z}\ljyn‘l T bryx — @y

We have the inequality
(52) (1) < T(0) ,

which sharpens the estimate (17).

4. Bilinear form of the basic inequality

The inequality (17) is of elegant structure but is somewhat difficult to
apply since the Hermitian forms on both sides are indefinite. It is therefore
convenient to transform it into another set of inequalities which can be
handled with greater ease. Let us write (17) as

N N
(53) [z + lyol? +Zl Wyl + e P) = oo — %ol +,le(lx'}2 + )

Suppose now that we have 2N -+ 2 complex numbers H;(l =0,
1,...,2N -+ 1) which stand to 2N 4+ 2 other complex numbers K;
(l=0,1,...,2N + 1) in the relation

2N+1 2N+1

(54) > HiP =2 KR
=0 1=0
We can use the Schwarz inequality and (54) to have
2N+1 2N+1 2N+1 2N+1
(53) | > HEP =3 HPY |KP= (D KPP
=0 1=0 1=0 1=0
and to infer
2N+1 2N+1
(56) | > H K| =3 K2,
=0 =0

We use now the following values for H; and K

{ Hy = 2y, H = \/Z—yb H2N—l+1 = \/Zx—z’ -H2I\’+1 =Y >
Ky =2y — 9o, Kt = /T Y1, Kon_1;1 = /T 2, Koy = 0.

The inequality (53) coincides then with (54) and the consequent inequa-
lity (56) can be retranslated into

(57)
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N
(58) [2o(%o — Yo) + 121 Wy_p + 2_2)|

N
= 2o — %ol -}—IZ Wy_P + |aP) .

‘We rearrange to arrive at the
Theorem. The bilinear version of the basic inequality is

N
(59) Re {z, +xz Wy_ap + 2_)}
=1

N
= Iyl + 2 Uy + )
1=1

If x, or Re{y,} vanish, we have the simpler version

N N
(59") Re {D Uy_m +x_)} = > Uy
=1

=1

2 2.

5. Comparison with the Grunsky-Nehari inequalities

We have now to study the relation of our new estimates (17) and (59)
to the well-known inequalities of Grunsky and Nehari [1], [5] which were
somewhat sharpened by us [8]. Their derivation was also based on Green’s
formula and the area principle, but the choice of the test functions g(w)
was different. The basic tool in this alternative approach is the concept
of the Faber polynomial which can bz defined by the generating function

(60) — log (1 — ¢ f(2)) i 1; F(¢

1’

i

y=

where f(z) is any analytic function defined near the origin. One can easily
see that F,(f) is a polynomial of degree » in ¢ with the property that

(1 1
(61) r, (%> =+

has the principal part 1/2*. To define the coefficients 7,, in the develop-
ment (61) let us introduce further the series developments

\%E!

~L
71&_’) ~

0

0

fe) —f() =
(62) log"TC— nz= mn 2 C®
and
{63) —log (1 — i Bun 2™ 0"
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It is clear that ((4Amn)) is a symmetric matrix while ((Bm.)) is hermitian.
We can combine (62) with (61) and write

[

2

f(f)) < C) 2 .
(64) log -+ log (1 ) =log|1 - —}'—Mz:OAm,.z &,
that is,

*

f)

This leads by comparison of coefficients to

ocl wlc" ©
(649 log@—Z;F"( )C"=—Z—:+2Amnzw-
n=1

n=ln z m,n=0

1 1 ©
(65) F n(m> == —mzon Apn 2
and
(66) logf?z) = §Am0 2" .

Similarly, we can apply the same argument to (63) and find

1 _ 0
(67) . f(z)) = ZOB,M .

Suppose now we choose as test function g(w) the aggregate

N
§(w) = %y 1Og w + Z [E(F((w) — &F, <l>} s
(68) A w

x, = real.
The advantage of this choice lies in the fact that we have
(69) Re{g(w)} =0 on |w/=1.

Hence, in the integration over 0D, we have only to consider the boundary
curve I, defined in Section 1. However, we have seen that in a more
general choice of ¢(w) the integration over the circle |w| =1 can be
carried out easily and does not create any difficulty. By means of (65),
(66) and (67), we can express

N w
(70) J(f()) = ologz — > &z + 3 Cn2m
=1 m=0
with

N
(71) Cm = Aoy + 2, UAm&t + Buifi) .
I=1
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A simple use of the Fourier relations for the powers of z on [z| =7
and passage to the limit r = 1 leads from (4) to the estimate

N

© N
(72) SUGR=SIUORE=S
=1

=1 =1 1

o~

&2 — 22,Re {C,}.

Let us choose z, and the & such that x,Re {C,} = 0. The method of
bilinearization used in Section 4 yields then

N N
(73) Re{> 1601} =< > 1|&af?
I=1 =1
and the use of (71) and the substitution £ = 1& give
N _ N ]tllg
(74) Re {3 (Amitmh + Buitwh)} = > -
Al

m,l=1 =1

the Grunsky-Nehari inequalities in generalized form.

This analysis shows that the Grunsky-Nehari inequalities must be a
special case of our inequalities because they have been obtained by a parti-
cular choice of a function of w composed of one logarithm term and a
rational function with N-th order poles at zero and infinity. However,
while we can admit 2N complex parameters and one real parameter z,,
the Grunsky-Nehari inequalities deal only with N complex parameters.

To characterize the subclass of functions ¢ (w) defined by (68) within
the general class of functions g¢(w) defined by (8), we have to study the
solution between the power matrix ((c.)) and the matrices ((4.x)) and
((Bnr)). We introduce for this purpose the additional matrix ((P.x)) by
the equation

(75) Fult) = S Pt
k=1

for the n-th Faber polynomial. ((P.x)) is an infinite triangular matrix.
From (5) and (65), we have

1 n e}

76 F.l—)= Pucu?
(76) (f(z)) k; 1;.1: ko

1 <]

== —>ndnz

Z =0
Hence,
(77) > Puk Ci = Oui, I=1,

=1

and
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Pnkc—kl:_nAln, lgO.

\%E)

(77°)

k=1

It

Similarly, we obtain from (5) and (67)

(78) Fu(f(z)) = > ZPnkCu2'=Zanzl
k=1I1=k =1
whence
(78") > Pucu=n B
k=1

Finally, comparison of (6) with (66) leads to
(79) Co = Ay .

Now we can express transforms C, of the vector =z, & defined by (71)
as follows:

N N
(80) Con = Co%y + Z Zk Ckm — Z Tk C—ktm
k=1 k=1
with
N
(81) &= > Pubi, k=1,2,...,N.
=1
Thus, given the vector z,, & (I =1,..., N), let us associate with it the
vector g, z1, - (I =1,...,N), where x; is defined by (81) and
(82) X = — 1.
With this notation we can write (80) in the form
N
(83) Cn = Z Lk Ckm -
k=—N

We see that for this special z-vector the numbers C, coincide with the
transforms y. defined by (9). But observe that the index m is supposed
to be positive. On the other hand, a comparison of the development (8’)
of g(w) with the development (70) of ¢ (w) leads to the solutions

(84) Y-k = — &, k=1,2,...,N.
Finally, we easily verify the equation
(85) Co = Yo-

Thus, with this choice of parameters . we can express the inequality
(17) in the form
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ie.,

N N

20y Re {Co} + D lly| = D llmf2=0,
I=—N l=—N

N N
(86) 2 2 Re {Co} + D 112 < D 1|&2.
=1 i=1

This is precisely the inequality (72).

It is then evident that the bilinear form (74) is a particular case of (59)

if o) — — 2.
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