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Let §(br) be the class of
which are univalent,, satisfy

tf@t

and have the Taylor series

l. Introduetion

all regular analytic functions in the unit disk,
the boundedness condition

(1)

(2)

We denote

(3)

@

!:L

&r:brlbr, y-L,2,

and wish to study the coefficient problem for this class.
We use an argument rvhich is closely related to the classical area prin-

ciple. Let .i-, be t'he image of the circle lzl : r under the conformal map-
pirrg w : f(z). This curve separates the origin from the unit periphery
lwl: t and we denote the ring domain bounded by fl, and lrzrl : I by
D,. Tf g'(w) is regular anal5ztic in D. and has an integral with single-
valued real part, we may upply to it the Green's identity in the form

By an appropriate choice of g'(w) and use of Fourier relations one may
then obtain useful estimations for the au. In [8] the function g(w) was
built up from the X'aber poll.nomials of the function /(z) and generalized.
Grunsky-Nehari inequalities were obtained. fn accordance rvith the methods
used in [2], [10] we will now apply a new function g(rc). This lead.s us to
a different formalism for deriving coefficient inequalities rrhich involve
the power matrix of a function (2) instead of its Grunsky coefficients.

We define the Taylor (resp. Laurent) series

(1)

(5) f (r)"

o 
= f ts'«,))t d, :+ f "Us@))s'Qc)ctu.Dr 0D,

k:n,

and use the notation

forrlLS0
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_ f(z) s(6) ,"r'i:)couzh.

The d.ouble infinite triarrgular matrix ((c,r)) is, of coutse, closely related

to the coefficient schemes which occur in the Grunsky inequalities. But
it is surprising to see how elegant inequalities can be formulated and proved

in terms of this power matrix. This matrix has already been studied. by

various authors and. has ma,ny useful propert'ies [3], [6], [8], [9]'

2. The basic inequalities

Our new choice is the test function
N

(7) g(w): rrlogw *lr'w", /o: r€&l'

";;{
which satisfies all requirements made fot g(w) to justify the id'entity (4).

Next we use the definitions (5) and (6) to transplant g(w) into the unit

disk where it has the Laurent development
N@

(8) glf@)): ro log , * Z .Z *"cnhzk .

a: -iY k:n

We simplify the notation by introducing t'he new vector
N

(9) Yk:>fincnht k2--N,
A:-N

and by writing
@

(s') gV@1 : ro log z | | Ya zb .

,,: -lf

We express now the inequality (4) in the form

(9,) I, S \
with

(10)

a,nd,

(11)

1rIt:7 f R. {g(r)} ds(u)

lurl:1

Iz:+ t R. {g( u)} cts(,,))

r.,

:+ [ n.tsffi]ds(f)'
lzl:r
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The first integral is immediately evaluated by use of the orthonormality
relations

Lrd,w(t2) *t J *-o*' ;: ärr .

lul: r

W'e obtains, because of tV : w-t orr lwl : 1,

(rB) ,,,: *,f _äy"w" * nan-^) t., \ä#^**\# : -f n@,1' .

lul:r nlO tu+o

Similarly, we c&n use the orthonormality relations corresponding to (12)

to evaluate the integral (11). The Laurent series (8') converges absolutely

and uniformly on lzl : r and we have herc 2 : v27-L. Hence

(I4) ,r: *of fralog r 1j*1 y* zk + !r, r2kza11r^ *,å1a/l+
t-t _-
l'l-' 

o

: nl2rf,log r f 2*oB,e{yr\ * )llyty r-zt1 .

,:_N

Therefore (a) and (9) lead to the inequality

(r5) 2rltogr { zroR"{yo} +§,rW,trr-.zt af,n\^l'.
l: -JY r: - jY

The result simplifies if we let r -> l. We obtain
JV JY

(16) ZroP"e{y} *fl1yrlz <f nlr"lz.
l:-If n:-lY

This is a remarkable property of the linear transformation (9) of the quite
arbitrary complex vector {r"} .

We state the following weakened version of (16) as

Theorem. X'or all functions of the class §(Ör) rve har,'e the inequalitl'
T'N

(17) 2r,oF"e{yo\ *f l',yr,z <)llrrlz
t:-§ ,:-N

and equality holds if and only if !1,: 0 for v ) I[. The numbers yg

are defined" by the linear transformation (9) of the vector {r1}, rvhich is

quite arbitrary except for the restriction tro: real.

3. Löwner's ilifferential equation anal the power matrix

We have been led in a nat,ural way to introduce the lineartransformation
(9) of an arbitrary complex (2fff l)-vector {r"} by means of the power
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matrix of a function of the class §(är). It is very instructive to discuss

this result from the point of view of t'he Löwner theory.
Let

(18) f(", t) : c-'2 a,$)z'

be a solution of Löwner's different*, "n"*a"
(1e) yr:-}#y
with the initial condition

(20) f(2, o) : s .

n'or given valae t,f(z,t) belongs always to the class §(e-'). The main
subclass of the Löwner functions consists of mappings of the unit disk onto
the unit disk slit along an arc which gxows u'ith increasing values of l.

Observe now that

(2L) f(2, t\' : i o^o 1r7 ,o, n S O ,
h:n

and

(zz) rrsf+:iocooP)zk

define t'he 'r'ariable power matrix

(23) C(t) : ((c"r (t) )) .

Since we have for every differentiable function -f'(/) the same differential
equation

A l*xz 0
(24) aIU@,41 

: - zr _,42*Ilf(z,t))

we can derive the idetrtities

@o@

(25) )öa"(t)zh: - (1 + 2 2*, r,))kc"r(t1zh
k:n a:f h:n

if n * 0 and

(26) Z ä* (r) zk : - (r + zZno ,,) (1 + > kco1,(t) z*) .

h:0 p:l k:l

Here d,enotes differentiation with respect to f. Comparison of coeffici-
ents yields then for n + 0

6
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(27) ö^*(t): - lcan*(t) - 22*W- a)c,(e-e) (r)
o:1

andfor k>0

(28) öoo1t1 : - kcooi) - 22*W- Q)co(r-e) @ - 2*.
o:l

The snms in the preceding formulas are firrite since cnm: 0 if. n > rn.

X'inally, we have

(2e) i*p;:-r.
We define now the variable vector

(30) !*(t) : ) *, r"o 1r1
Z:-N

whose significance has become evident by our results in Section 2. We use
(27\, (28) and (29) to obtain

(31) ilx(t): - kv*(t) - r;(k - p) x'v*-ni) for /* ( 0,
q:I

(a2) ilr|) : zf q r,u-n Q) - no ,
p:l

(Bs) il*U\: -ky*(t) - r;(k- e)fyo-nQ\ -2roxh for &> 0.
e:l

We define, of course, y-,(t\ - 0 for r, ) ff.
Next, we form the expression

JYNN
(34) Ztt goilo: - 2tt'lyol' - 2>k(lc - p)xa U*U*-n- 2rolk* §* .

&--N i:-l[ o'L h:l

Let l-k- q andwrite(34) as

NNA'
(35) 2kgo'ito: -2t'lyrl'- 2>kl g*lrxk-t - 2roz(t) - eb(io* ro) ,

,.::jY Ic:-;Y n,,*;t

where we introduce the notation
N

(36) z(t) 1]! x-har"

and use the id.entity (32). We add to the expression (35) its conjugate com-
plex value and obtain

(87) * rårrOt)|z + 2ro Re {yo(i)}l : - 2llz(t)12 * 2roRe {z} f cfrl

: - 2lz(t) + rolz .
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\Me have thus proYed the following:
Theorem. The functional

is monotonously decreasing with the parameter value f, except in the case

(3e) ,.+i krrhy*(t)-0.

Observe that the matrix ä, n* for ä: 0 the values

( co*: ö* for n { 0,(40) |

lcno:0.
Hence we find

(40') A*Q):ao for k+0,UoQ):0.
Thus the inequality (16) is obtained as a consequence of our more general
result in the case of slit mappings and hence holds for the most general
function of class §(ör).

Dr. G. Goodman has pointed out that the close relation between the
Löwner differential equation and Julia's variational formula [4] allows the
following generalization:

Theorem. Leb f(z) and f*(z) be univalent in lzl < I and normalized
by the conditions 

"f(0) 
: 

"f*(0) 
: 0, "f'(0) > 0, "f*'(0) ;> 0. Associate with

each the functional
IYrY

(41) S :2roRu{yo} *,ZrlOtlr, S* : 2roR" {gå'} *,ZrWf P ,

respectively.If f(z) maps the unit disk onto the domain D, f*(z) maps
onto D* andif DC D*, then

s<sr.

(38)

(42)

The functional § is therefore for fixed vector {r"} domainmonotonic.
Let us verify that in the case (39) u'e have by (32)

(43) yr(tl: -ky*(t)-xh(2ro+2j h-tyr(t))
t:-]Y

:-ky*(t), if lc>N.

Since we suppose Ar(0) : n*: 0 for fr > ff, we see that in this c&se we
have yr(t):0 for k> N and the equivalence of the inequalities (16)
and (f7) is ensured. Thus, the study of the differential system (3f), (32),



Morerrnu Scnrrrnn and Or,lr Telrmr, A green's inequality ofr tho power matrix I

(33') with the condition (39) for z leads to the charactrerization of the
extremum functions for which equality holds in (f7).

We can use the identity (37) to obtain finer estimates. X'or example,
put in formula (33) å : .l[ to have

(44) yn(t): - Ny*- r'ix'(N- Q)aN-n-2ronN
e:1

2N
, - f[ An - 2x* I rn-t(tr - Q)AN-, - 2 roxN

o:l
N

- - .Ar aN - 2 x* Zt y,r-' * 2 *n An N-N - 2 roxN

- tr uN - z tf (r, tj t yw-t).

to find

'o 
to

*,rr"-'"1 !'o'
(4e) tUn$o)e-rft, - mxiz S { 

e-2Nt dt 
I 

ez}it

'rno

1 _ e-:^"ro f

= Ä' Ja
0

IIsing the notation (35) we arrive at

d

and using (37) and (38), we oa'n write this result as

(46) i*n-n, a*(')r i szN,: zs'(t) .

We integrate betwe.r' l"- o and [ - to:

tD

(47) s(0) - s(,0) - * { ,'.' l* (r-*, !/ x(t) )l at .

o '*o I

On the other hand, rve appl-v the Schu'arz inequalitl' to

(4s , 
{ *rrr.n-*'r dt - f"^r*t) e-.'i

ls

lrrr. n-n'J|o' '

Observe that, e-N' : br$\ hence we can combine (a7) and (a9) to obtain
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'- I -b?*
Theorem. Define the functional

(5r) r@: ZroR"{yo} tj tly,l'+ å V{a* - nNl' .

We have the inequality

(52) r(il < ?(o) ,

which sharpens the estimate (I7).

4. Bilinear form of the basic inequality

The inequality (17) is of elegant structure but is somewhat difficult to
upply since the Hermitian forms on both sides are indefinite. It is therefore
convenient to transform it into another set, of inequalities which can be

handled with greater ease. Let us write (17) as

(53) lrol, + lyol'+Zrlr,Y + itr-,I'z) !lro- uolz */rt(laP * ly-'l\.

Suppose now that we have 2N + 2 complex numbers H1(l : 0,
l, . . ., 2n'r + 1) which stand to 2N + 2 other complex numbers Kt
(1, : 0,1, . . ., 2lf + 1) in the relation

(d4) '5',r,,, iiit,rr.
t:0 ,:0

We can use the Schwarz inequality and (5a) to have

2N+1 2N+t 2N+r 2N+1(55) l> H$ilz <> lr.l'z> lK,l'< (> l1(,1')'
:0 I:0 l:0 ,:0

and to infer
2lY+1 2rf +l(56) l,Zr'Kl < ) ln l, .

We use now the following values for Er and. Kr:

( Ho: rs, Ht : \/T yr, Hr*-r+, : ^vE fr-1, H21vq1 : Ao ,(b/) 
t"r: no- ao, K1 :1fi y-t,Kz.-t4r: "vO n1,K21ya1 :0,

The inequality (53) coincides then with (54) and the consequent inequa-
lity (56) can be retranslated into
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(58) l*o@o - Ui + i t(y -,y, { r-fiil|,i
s l*o - uoi' + > l(lv-,\'+ Irrl') .

We rearrange to arrive at' the
Theorem. The bilinear version of the basic inequality is

{5e) Re {ro ao * ,är*, -t?/r I r-pi}

JY

I:l

If ro or R" {yo} vanish, wo have the simpler version

5. Comparison with the Grunsky-Nehari inequalities

We have now to study the relation of our new estimates (17) and (59)

to the well-known inequalities of Grunsky and Nehari lll, [5] which were

somewhat sharpened by us [S]. Their derivation was also based on Green's

formula and the area principle, but the choice of the test functions g(w)
-w,as different. The basic tool in this alternative approach is the concept

of the X'aber polynomial which can be defined by the generating funcbion

ol
(60) - los (t - t f(z)) : ,Z; I,(t)z' ,

where /(z) is any analytic function defined near the origin. One can easily

see that ,8,(l) is a polynomial of clegree v in t rvith the property that

ir\ | o
(6r) ,,\tr): 

",*20v"."o
has the principal part, llz". To define the coefficients 7,n in the develop-

ment (61) let us introduce further the series developments

lt-\ _ flf\ @

(62\ logr:- - }A^nz* e ,
k 

- , m.n:0

and

(63) - los (t - f(")f G), : i B^. z^ ? .
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It is

We
while ((B*")) is hermitian.

+ i A*oz* Cn ,
lt7,sfl:0

fh\ co I I I \ oo I t" co(61,) tos'; -;, - Fn\nal {,,_ -å ;.* 1,å 
a^nz* en .

Hn

This leads by comparison of coefficients to

(65) r"(i,) : *_ å,nA*nz*
and

9 m:O

Similarly, we can epply the same argument to (63) and find

1@
(62) ; F"(f(z)) : : B*o z* .

suppose now we choose as test func;: i @) the aggregate

{ 
i pu1 - noros, + i lE,r,(*l sr,l (;)] ,I:t L

[ ", - reäI.

The advantage of this choice lies in the fact that we have

(69) R*{g'(w)} - 0 on l*l: I .

Hence, in the integration over AD, rve have only to consider the b
curve f, defined in Section 1. However, \4/e have seen that in
general choice of g(w) the integration over the circle l*l - I
carried out easily and does not create an), difficult;r. B;r means
(66) and (67), we can express

(70) fr (f (r)) -_ rr:o log ?, - frr, "-'+ å S* 
r*

with
IT

(71) C,n: A*ono + > l(Aa€r * Ba€i.

clear that ((A*")) is a symmetric matrix
can combine (62) u"ith (61) and write

ros'++ r"s (, -'#): ros (r )(64)

that

ound.ary
a, more
carl be
of (65),
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llCtll U€rlL-2*oR*{Cr}

Let us choose *o and. the fr such that zo k {Co} : 0. The method of
bilinearization used in Section 4 yields then

""1ä 
w§*

(71) and the substitution h : l* give

Ru { f, r^*fi*tr * B*tt*ir)}- > ry,
tnrl:l I: I a

the Grunsky-Nehari inequalities in generalized form.
This analysis shows that the Grunsky-Nehari inequalities must be a

special case of our inequalities because they have been obtained by a parti-
cular choice of a functiorr of u composed of one logarithm term and. a
rational function with -l[-th order poles at zeyo and infinity. However,
while we can admit 2-0y' complex parameters and one real parameter ro,
the Grunsky-Nehari inequalities deal only with "I[ complex parameters.

To characterize the subclass of functions i (w) defined by (68) within
the general class of functions g(zo) defined by (8), we have to study the
solution between the power matrix ((c"r)) and the matrices ((r4"r)) and

118*)). We introduce for this purpose the add'itional matrix ((P*)) by
the equation

A simple
and" passage

(72)

(73)

and the use of

(7 4)

(75)

for the n-th
tr'rom (5) and

(76)

I{ence,

(7 7)

and

use of the tr'ourier
to the limit r - I

N

>t1cl2I:1

E "(t)

IT

<§:./
I:1

oo<§:^/
,bl

I:1

relations for the powers of z on lrl - r
lead.s from (4) to the estimate

Ic: 1

((P"n)) i. an infinite triangular matrix.

c-w zt

Am zt

N

l:l

Faber polynomial.
(65), we have

'"(å)
å ir,,nk:L l: -k
Ico* 

- )n
,>fl ,1-1
lr I:0

2 ,,n c-7,-1 : önt ,
lc: I

t 
= 

I ,
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(77') lP"*a-H:-ruAn, l>0.
*:l

Similarly, we obtain from (5) and (67)

n@@

h:l l:ft I:l

whence

(78') 2 P,o c*t : lL Bh .
[:r

X'inally, comparison of (6) with (66) leads to

(79) cot: An .

Now we can express transforms C* of the vector rs, f1 defined by (71)

as follows:

NN
(80) C* : celrs * \ w* to* - 2 fr* c-**

r:l

with
]v

(81) fr*:)Py,fi, k:1,2,...,N.
t:t

Thus, given the vector rs, & (l - I, . . ., trf), let us associate with it the
vector ns1 nttn-t (r: I,...,ff), where r, is defined by (8f) and

(82) n4: - Cr.

With this notation we can write (80) in the form
N

(83) C*:oZr*c*^ .

We see that for this special r-vect'or the numbers C- coincide with the
transforms g^ defined by (9). But observe that the index nz is supposed
to be positive. On the other hand, a comparison of the development (8')
of. g(w) with the development (70) of fr(ar) leads to the solutions

(S4) A-*: - Er, lc : 1,2, . . ., N.

Finally, we easily verify the equation

(S5) Co: Uo.

Thus, with this choice of parameters tr,, we can express the inequality
(17) in the form
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N
2roRe {Cr} + Ztty't <lt1rz1z : o ,

I:_N 
':-N

i.e.,
jlr N

(86) 2 roP"e {Co} * 2tlC'l' S2tlt'l' .
t:r t:r

This is precisely the inequaltty (72).

It is then evident that the bilinear form (74) is a particular case of (59)

if rl- -fu.
Stanford University
Stanford, California, U. S.A.
University of Ifelsinki
Helsinki, X'inland.
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