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INTRODUCTION

In this paper we study the solutions of the elliptic partial differential
equation

Auw = Pu

on open Riemann surfaces for densities P which we call acceptable. This
means that there exists a positive P-superelliptic function o defined on
the whole surface. The equation has earlier been studied by M. Ozawa
[11], L. Myrberg [6]—[8], H. Royden [12] a.o. with a stronger restriction
P = 0, which guarantees the validity of the maximum principle contrary
to our situation.

After some preliminaries we solve the first boundary value problem in
section 2 and construct the Green’s function for regular regions in section 3.
This will be done using Perron’s method. In section 4 it appears that our
condition for P is equivalent to the Dirichlet problem to be uniquely
solvable in compact regions with regular boundaries. Sufficient conditions
for the existence of the Green’s function on the whole surface will be given
in section 5 after which we introduce solution spaces BP and M P in section 6.

Our main purpose is to compare these Banach spaces with different
densities P. This has earlier been done for BP by Royden [12] and Nakai
[10], when P = 0. We give genecralisations of Nakai’s result for acceptable
densities in section 7. Finally in section 8 we compare the spaces BP and
HB when P = 0 and state a new isometry condition for them. By using
this we can show that Nakai’s condition is not a necessary one.

1. PRELIMINARIES
1.1. Notations and definitions

By R we denote an open Riemann surface.

By a regular region K we mean an open connected set, whose closure
K is compact and whose boundary 9K consists of a finite number of
closed analytic curves.
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By {R.} we denote an exhaustion of R, which has the following

fee]
properties: (1) R, is a regular region. (2) R, cR,.;,(8) UR.=R.

n=1

The set C°(K) is the set of all continuous real valued mappings in a

region K, C°(R) = C°. We denote that u € C"(K) . if the function % has
continuous partial derivatives up to the order n, C*(R) = C".

By a density P we mean a real valued function which belongs to C*

and is transformed in the change of local parameter in such a way that

P(z) |dz?

is invariant.
If P is a density, the elliptic partial differential equation

(L.1) Adu = Pu

is invariantly defined on a Riemann surface.

Definition 1.1.1. 4 real valued function u is said to be a P-solution
in a region K, if uw € C*(K) and it is a solution of (1.1)in K.

Definition 1.1.2. Let K be a compact region whose boundary is the
union of two disjoint sets ky and ky. We say that a P-solution wp(K, ky)
is the clliptic measure of ky with respect to K, if it is identically one on
ky end zero on ky. If especially k, is empty, we say that wp(K, 0K) = wp(K)
is the elliptic measure of K.

Definition 1.1.8. We say that « real valued function Gp(K,z,z,) is
the Green’s function of (1.1) in a compact region K if

(1) Gp(K,z z) is a P-solution in K—{z} and continuous in K—{z}.

(2) Gp(K, 2, 2y) + log |z—7zy| is bounded in a neighbourhood of z,,

(3) Gp(K,z,20) =0, when z€0K ,z,€ K.

The Green’s function of a compact region K is usually denoted by
Gp(K).

If we handle an exhaustion {R,}. we denote for short wp(R,) = wp,
Gp(R,) = G} ete. .

1.2. Some auxiliary results

We state some important results we shall need later on. The first one
deals with the situation in the small.

Lemma 1.2.1. 7o every paranctric disc (V. z) there exists a reduced
disc (Vo 2), Voo V, such that in V, the following are valid:

(1) There exists one and only one P-solution which is equal to a given
Sfunction f€C°(0V,) on aV,.
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(2) Equation (1.1) has the Green’s function Gp(V,).
(3) Gp(V,) has the following properties:

0 0

(a) o (Gp(Vo, 2. ) + log [z —2|) and B (Gp(Vy, 2, 29) +
log |z—2,) are bounded.

(b) Gp(Vy, 2, 24) = 0.

0
(¢) inf n Gp(Voo 2,20) >0  and  sup . Gp(Vg: 2. 29) < 0,
2€0V, n €IV, n

where n s the direction of the inward norinal.

For the proofs see e.g. [4] pp. 20, 66, 77 and 80 regarding 1, 2 and 3 a
and [9] regarding 3 ¢ as well as the existence and continuity of the normal
derivative. 3 b follows from 1 and 3 a.

By the expression reduced disc we shall always mean a parametric dise
V, for which lemma 1.2.1 is valid.

Next we present Harnack’s inequalities for P-solutions. They are proved
by using lemma 1.2.1 and the compactness of K quite as for non-negative
densities (Cf. [9]).

Lemma 1.2.2. Let K be o compact and L « reqular region with L c K.
Then there exists a positive constant Ik such that for each pair of points (24, 2,)
in L and for each non-negative P-solution w in K we have

Ehu(zy) = u(zy) = ku(zy).

Remark 1.2.3. If u is a non-negative P-solution which vanishes at
one point, then by lemma 1.2.2 it vanishes identically.

A corollary of these inequalities iz the Harnack’s principle, which by
obvious modifications can be shown in the same way as for harmonic
functions (Cf. [1] p. 236 and [2] p. 134).

Lemma 1.2.4. Let U be a non-empty family of P-solutions on a Rie-
mann surface with the following property: If . u, € U, there exists a function
uw €U such that w = max(u,. u,). Then the function u,,

g =sup | u,u €U}
1s either a P-solution or identically -+ = .

T

1.3. Subelliptic funections

When solving the first boundary value problem we shall use auxiliary
functions which we call subelliptic. They can be defined in the same way
as for non-negative densities and also have similar properties (Cf. [8]).
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Their role will be the same as the subharmonic functions have in the theory
of harmonic functions.

Definition 1.3.1. A4 real valued function v is said to be P-subelliptic
in o region K, if v € C°(K) and to any point z, € K there exists a reduced
disc (Vo 29) = (2] lz2—2)< 70}, Vo K such that in the disc (V,, z)) =
{z]|z—z < r}

v(zg) S IF(Vez) - 0<r =y,
where
27
P 1 i id 0 81 i
I, (V,, 2) = o v(re’) n Gp(Vy, 1e®, zy) rdé.
0

v 18 said to be P-superelliptic, if —v is P-subelliptic.
If especially v € C*(K), we can deduce from Green’s formulas

1
(1.3.1) v(z) = IX(V,, z) — o fpr(V,, z, 2y) (Av(z)—P(z) v(z) ) dady .

r
This implies the following result.
Remark 1.8.2. A function v € C*(K) is P-subellipticin K if and only if
(1.3.2) dv — Pv = 0.
A function v € C*(K) is a P-solution in K if and only if for each (V,, zy)
() = I (Vizg) . 0<r=r,.

Remark 1.3.3. Let P and @ be densities with P =< . Then every
non-negative Q-subelliptic function is P-subelliptic.

The next two lemmas are direct consequences of the definition.

Lemma 1.3.4. If v; and v, are P-subelliptic and x a non-negative
constant, then v, + v, , avy and max(v, . v,) are P-subelliptic.

Lemma 1.8.5. If v is P-subelliptic in « region K and V, is a reduced
disc, 170 C K. then the function v,.

{ v in K-V,
Vo =—

0 P

I; in V,

ts P-subelliptic in K.

The function v, is called the P-modification of v (in V).

In the continuation we have great use of the next forms of the maximum
principle.

Lemma 1.3.6. Let o be a positive P-superelliptic function on a Riemann
surface R . If for a P-subelliptic function v
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v
0<sup— =M < o
R @ ’
then either v < Mw or v= Mo .
Proof: If there exists a point z, with v(z) = Mw(z). then in a
reduced disc (Vy, %)

v(z) = Mow(zy) = If\)q (Ves29) = If(Vr 2 %) =0(%), O0<r=rg.

@

Therefore
llli'Iw—v(Vr,Zo)ZO, 0<r§7«0'

By lemma 1.2.1 and definition 1.3.1 this is only possible, when Mw — v =0.
This proves the lemma.

Lemma 1.3.7. Let K be a compact region, o in K a P-superelliptic
function, positive and continuous in K. If for a P-subelliptic function
v defined in K supv =0 and

K

— v(2)
lim
s>egk W z)

<M< w,

then either v << Mow or v= Mow .
The proof will be quite similar to the special case P = 0, o = wp(K),
(Cf. [8]).

We often use the latter in the following form.

Corollary 1.3.8. Let K be a compact region, o in K a P-superelliptic
function, positive and continuous in K. If for a P-subelliptic function v
defined in K

lim o(z) < 0
z—>[€E0K
then v <0 in K.

Finally we give the definition of a Perron family and state its charac-
teristic property which follows from Harnack’s principle, lemma 1.2.4,
quite as in the harmonic case.

Definition 1.3.9. A4 non-empty family Fp of P-subelliptic functions v
on a Riemann surface is called a Perron family, if the following two con-
ditions are fulfilled.

(1) If v,,v, €Fp, then max(v,,v,) € Fp.

(2) If v€Fp, then every P-modification v, € Fp.

Lemma 1.3.10. If Fp is a Perron family, the function

Uy = sup {v | v € Fp}

is either a P-solution or identically -+ oo .
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2. THE FIRST BOUNDARY VALUE PROBLEM

2.1, Acceptable densities and the uniqueness of a solution

It is well known that the solution of Dirichlet’s problem is not always
unique for an arbitrary density. Therefore we present a restrictive condition.
which guarantees the uniqueness by making use of corollary 1.3.8.

Definition 2.1.1. A density P is acceptable by o on a Riemann surface
R, if there exists a real valued positive P-superelliptic function o . o is
called the accepting function of P.

If a density P isacceptable by o € C?, then we have by remark 1.3.2
a lower bound for P

Aw

(2.1.1) P=—

This shows that acceptable densities can also have negative values and
they form a wider class than non-negative densities.

From here on any density we use will always be acceptable by its ac-
cepting function w . This function will play a somewhat similar role as
the positive constants have in the theory of non-negative densities.

Remark 2.1.2. Every non-negative density is acceptable by 1.

Remark 2.1.3. If @ is acceptable by o and P is «a density wiik
P =@, then P isalso acceptable by o .

Now we show that our condition guarantees the uniqueness of Dirichlet '
problem.

Theorem 2.1.4. Let P be acceptable and K « compact region. Then
the first boundary value problem has at most one solution.

Proof: If w; and w, are P-solutions with u, = %, on 9K, then by
corollary 1.3.8 both u; — u, and u, — w; are non-positive in K. There-
fore wu; = u, .

The theory of non-negative densities is strongly based on the maximum
principle which states that for a P-solution « in a compact region K,

u € CYK),
(2.1.2) sup |u| = sup |u| .
K oK

Now the situation is more complicated. We have by restricting ourselves

to the acceptable densities achieved the uniqueness of the first boundary

value problem. This does, however, not imply the existence of an extremum

principle for the boundary values as the following simple example shows.
Example 2.1.5. We choose K = {2 ][z <1} and

P(z) = 4(8 s — 3) (2 [21* — 3 224 2)1.
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P is acceptable by wu(z) = 2 |z|[*— 3 |2]2 + 2 which is a P-solution. On
0K w=1 but in K u has both greater and smaller values, because
w(0) =2 and wliV3)=12.

This happens because acceptable densities can have both positive and
negative values. In fact, if P < 0 is acceptable, then for a P-solution
u in a compact region K, u € C%K),

(2.1.3) inf |u| = inf |u| .
K oK

2.2. Existence of a solution

We start by defining what we mean by a regular boundary.

Definition 2.2.1. Let K be a compact region. We say that 0K is P-
regular, if for any continuous boundary values the Dirichlet problem has a
unique solution which is a P-solution. If especially the solution is harmonic,
we say that 0K s regular.

For non-negative densities the solvability of the first boundary value
problem has been thoroughly investigated. Therefore we do not enter deeper
into it, but cite the following result (Cf. [13] p. 741 and 759).

Lemma 2.2.2. Let K be a compact region. If 0K s regular, it is also
P-regular for each non-negative P.

There is, however, not much literature about the case where the
maximum principle is not valid, which is just the situation we have. That
is why we have to examine this possibility more closely. We intend to keep
lemma 2.2.2 as known and advance from it by Perron’s method. First we
define in the usual way the family V(f) and its least upper bound.

Definition 2.2.3. Let P be acceptable, K « conpact region and f a
real wvalued continuous function defined on 0K. Then

V(f) ={v|v P-subelliptic in K and lim v(z) = f(0)}

z—>{€JK

and
up=sup {v|v€ V().

It is easy to see that V(f) is a Perron family, or empty. Now we are
able to exterd lemma 2.2.2 to acceptable densities.

Theorem 2.2.4. Let K be a compact region. If 0K is regular, it is also
P-regular for each acceptable density P.

Proof: If P = 0 then this is true by lemma 2.2.2. Therefore we suppose
that P has also negative values.

Let firtst f€C°0K), f=0. If P is acceptable by w, then there
exists a positive constant M such that Mo =f on 9K.
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Let @ be a non-negative density such that @ = P in K. By lemma
2.2.2 there exist @-solutions »; and v, such that on 0K

vy=Mo—f=0, v,=f=0.

The function w; = Mo — v, is in K P-superelliptic (Remark 1.3.3) and
is equal to f on 0K. If now v € V(f) thea lim v(z) — wy({) = 0. By

z—> (€K
corollary 1.3.8 » <, in K. Therefore V(f) is bounded from above

by ;.
On the other hand v, is P-subelliptic and belongs to V(f) which is
thus non-empty. By lemma 1.3.10 u; is a P-solution and by construction

f(2) =1lim 2,(z) < lim ws(z) < lim w(z) < 0,(8) = f(2) ,

z2—>{ 2> z—>{

that is,

lim w(z) = f(), f=0.
z>({€0K
For non-negative boundary values u, is thus the solution of Dirichlet’s
problem.
If f€C°©0K) and has also negative values, then we can use the de-
composition

f=ft—f. [Fe€C@K), ff=0.

By the preceding part there exist P-solutions ws and wue such that
on 0K wup =f*. The P-solution wu; = uz — ue. has then the right
boundary values.

So wus is the solution of the first boundary value problem and by
theorem 2.1.4 the only one.

3. THE GREEN’S FUNCTION IN REGULAR REGIONS
3.1. The existence of the Green’s function

By lemma 1.2.1 every reduced disc has the Green’s function. We shall
now show by using Perron’s method that this implies the existence of the
Green’s function in a regular region if the density is acceptable.

Definition 8.1.1. Let P be acceptable, K a regular region and z, € K.
We say that a P-subelliptic function v defined in K — {z,} belongsto Wp if

(1) Im () <0,
z—> (€K
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(2) in a reduced disc (Vy.z), Vo K, the expression
v(z) + Gp(Vy. 2, %)

is nom-positive and bounded from below.

Remark 8.1.2. If v€ Wy, then v <0 in K — {z}.

Lemma 3.1.3. Wy is a Perron family.

Proof: We start by showing that Wp is not empty. Let (Vo 2) .
(Vy, 7) be reduced dises with V,c V,, Voo K and K, = K — V.
We denote by

a = sup Gp(Vy, 2, %) . 0 <a < oC.
z€0V,

Let moreover % be a P-solution in ¥V, with u = b wp(K, ., 0K) on dV,,
where b is a constant chosen so that w =a on 38V, and let g be the
following function

b(wp(K,, 0K, 2) — wp(K,z)) in K — ¥,

2, 29) =
9(2 %) { u(z) — Gp(Vy, 2, 29) — buwp(K.z) in Vy— {z}.

Then ¢ is P-subelliptic. This is clear if z € K — Vo or z€Vy—{z}.
If z€aV,, let (V.z) be areducad dise, ¥ c K,. Then
9(z,2) = b(wp(K,, 0K, z) — wp(K. 2))
= Ib(wP(K, 9K) — wp(K)) == =I; ().
From the construction follows that

(1) lim g(z, 2) = 0
z—> [EOK

(2) gz 2) + Gp(Vg. 2, 29) = u(z) — bwp(K, z) in Vg

Because # — bwp(K) < 0 and bounded from below in Vy,9 € Wp.
Next we notice that if v;, v, € IWp, then clearly max(v;,v,) € Wp,

too.
Let then v €W, and ¢, be its P-modification in the disc V,.

Now in P,
v(2) + Gp(Vy,2,2) =0.
In fact, let 2€V,. If z¢V,, then
vy(2) + Gp(Vo 2, 20) = v(z) + Gp(Vy,2.2) = 0.
If z€V,, then
0(z) + Gp(Vo2,29) = 0 on (3V,) N T,

Gp(Vy, 2, 2p) =
29(2) + Gp(Vo: 2, %) {vo(z) < 0 on VyN (aV,).
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Because v, + Gp(V,) is a P-solution in V,N ¥V, it must be there non-
positive.

After this it is obvious that v, € Wp.

This shows Wp to be a Perron family.

Now we can prove the existence of Gp(K).

Theorem 3.1.4. Let P be acceptable and K a regular region. Then the
Green’s function Gp(K) exists and

Gp(K,z,2y) = —sup{v | v € Wp}

Proof: We have shown that Wp is a Perron family which is bounded
above by zero. Therefore

u(z,2) = sup {v|v € Wp}

is a P-golution in K — {z,}. Moreover by definition and lemma 3.1.3
u(z, 2o) — log |z — %] is bounded in a neighbourhood of 2z, and
lim u(z,2)) = 0.
z->{€JK
Thus —u(z, z) = Gp(K, 2, 2,) .
Remark 3.1.5. The Green’s function is symmetric, that is

Gp(K, 2, 2y) = Gp(K. 2, 2) .

3.2. The linear mapping T3,

We define here the linear mapping 7’5, . It will be used in proving the
properties of the linear transformation 7'py with which we examine the
isometry of solution spaces in sections 7 and 8.

The proof of the following lemma is a direct consequence of Green’s
formulas and theorems 2.2.4 and 3.1.4.

Lemma 3.2.1. Let K be a regular region, P and @ acceptable, and
u € C%K) a P-solution. We define the linear transformation TfQu as
follows:

1
(32.1)  Thyulz) = ulz) +5- f f (P(z) — Q) GolK, 2. z)ulz) dudy .
K

Then
(1) THeu € CUK) and is a Q-solution in K .
(2) THyu = u on 2K.

Remark 3.2.2. Let u, u; € C°(K) be P-solutions and ¢ a positive
constant.
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(1) If |u| <ouy, then |Tpqu| = cTHyu, .

(2) TopTrou = u.

(3) Let P and Q be acceptable by o . If |u| < cor, then |Tpu| < co.
We usually denote T’;'é = T%

3.3. The uniqueness of the Green’s funection

We want to prove that the Green’s function Gp(K) is uniquely deter-
mined. For that we need some auxiliary results.

Lemma 3.83.1. Let P be acceptable, L a closed set and K a regular
region containing L. If the harmonic measure of L with respect to K s
zero, then also its elliptic measure wp(K, L) is zero.

Proof: Let {K,} be an exhaustion of K — L by regular regions K,,
oK, =0KU&L, and h(k,) the harmonic measure of k., with respect
to K,. We denote wp(K,, k,) = up, T’;I'; =Tip and Gp(K,) = Gp.
Then wp = Tpph(k,) . Because K is compact, P| Gp(K) isintegrable and

PGy h(k,) = P Gp(K) .

If we continue the domain of Gph(k,) over the whole K by setting
Gph(k,) =0 in K — K,, we get by Lebesgue’s theorem of dominated
convergence (Cf. e.g. [5] p. 234)

lim ff P Gy h(k,) dedy = f Plim G h(k,) dedy = 0,

n->o0 X, K n—>o

because lim %(k,) = 0. Therefore

n—>o

wp(K, L) = lim wp = lim Tgph(k,) = 0,

which proves the theorem.

By using this result we can prove the following lemma quite in the
same way as for the non-negative densities (Cf. [7]).

Lemma 3.3.2. Let K be a reqular region and L a closed set contained
. K with the harmonic measwre in respect to K zero. If P is acceptable
and w a P-solution which vanishes on 0K and is bounded in K — L, then
u=0. Moreover every bounded P-solution defined in K — L is a P-
solution in the whole K .

Now we are able to show the uniqueness.

Theorem 3.3.3. If P is acceptable and K a regular region, Gp(K) is
uniquely determined.

2
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Proof: If gp(K) is also a Green’s function in K, then gp(K,z, z)) —
Gp(K, z, 2,) vanishes on 0K and is bounded in K — {z,} . Therefore
gp(K,2,2,) — Gp(K.2,2)=0.

4., THE EXISTENCE OF SOLUTIONS ON THE WHOLE SURFACE
4.1. Solutions for acceptable densities

We shall show that every acceptable density P, P =0, has a non-
constant solution defined on the whole surface. The proof of the auxiliary
lemma and the main result are again quite similar to the ones for non-
negative densities (Cf. [6] and [9]).

Lemma 4.1.1. Let P be acceptable, {R.} an erhaustion of R and
{un} a sequence of P-solutions bounded on every compact set. each u, defined
in Rn.. Then there exists a subsequence, which converges uniformly on every
compact subsel of R towards a P-solution.

If we now choose a point z, € R; and if wp is the elliptic measure
of R,, then the sequence

(4.1.1) {un | un(2) = (Wp(20)) ™ wp(2)}

is by lemma 1.2.2 bounded in every compact set because u.(z)) =1 for
each n». By lemma 4.1.1 we have

Theorem 4.1.2. Bvery acceptable density P, P =0, has a positive
non-constant P-solution defined on the whole surface.

4.2. Acceptable densities and Dirichlet problem

We restricted the inspection to the acceptable densities in order to
guarantee the uniqueness of Dirichlet’s problem. With help of the pre-
ceding result we are now able to notice that the restriction is not too
stringent.

Theorem 4.2.1. Let K be o compact region with a regular boundary and
P o density. 0K is P-regular if and only if P is acceptable.

Proof: If P is acceptable, then 0K is P-regular by theorem 2.2.4.
If 8K is P-regular, then by analysing the proofs which led to theorem
4.1.2 we see that it guarantees the existence of a positive P-solution u
defined on R. P is then acceptable by u.
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5. THE GREEN’S FUNCTION ON THE WHOLE SURFACE

5.1. The definition of the Green’s function

Let P be acceptable, {R,} an exhaustion of R and 2z, € R,. The
sequence {Gp(z, z))} is strictly increasing wherefore by lemma 1.2.4 it
cither increases uniformly to - oo on every compact set or there exists
a limit function Gp
(5.1.1) Gp(z, zy) = lim GB(2, %) »
which we call the Green’s function of P on R.

It is known that every acceptable density has not Gp (Cf. [9]).

Definition 5.1.1. A density P is said to be completely acceptable, if
it is acceptable and has the Green’s function on R .

The function Gp does not depend on exhaustion but is uniquely deter-
mined by the following property:

Lemma 5.1.2. Let P be completely acceptable. Then Gp(z. z)) is the
smallest of functions wu(z,z)) such that

(1) u(z,2) s a non-negative P-solution on R — {z;.

(2) u(z,2) + log |z — zo| is bounded in a mneighbourhood of z.

Proof: By lemma 3.3.2 va(z, 7)) = Gp(2, 29) — u(2, %) is a P-solution
in R,. Because v, <0 on 0R., v. <0 in R,. Therefore

Gp(2, 29) — u(z,29) = limva(2,2)) = 0.
Remark 3.1.5 can be generalized to Gp.
Remark 5.1.3. The Green’s function Gp is symmelric. that is,

Gp(z, 2) = Gp(z 2) -

This implies that the existence of Gp does not depend on the pole z,
but only on the density and surface.

Before going more closely to the existence problem we give a couple
of inequalities for Gp for later use.

Lemma 5.1.4. Let P be completely acceptable by « and K, L regular
regions with L < K. Then there exist positive constants k and m such
that for every z,,2, €L, and z € R — K we have

(1) k7 Gp(z,29) = Gp(2,21) =k Gp(2,2) »
(2) Gp(z,2y) = mo(z).

Proof: The first inequalities follow directly from lemma 1.2.2 and
remark 5.1.3. For the second formula let
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s = sup Gp(z, 7,) , ¢ =info(z).
2€0K s€0K
% €L

Then in R, — K we have

which gives

s
Gp(z, 2p) = lim G'p(z, 7)) = P w(z) .
Remark 5.1.5. Let P be a density, Q completely acceptable and u € C°
Then by lemma 5.1.4 (1) the convergence of the integral

[ [ P ooz w) dudy
R

does not depend on the pole z,.

5.2. The existence of Gp

When examining isometric relations of solution spaces we need the
Green’s function G'p. Therefore we investigate on which conditions densi-
ties are completely acceptable. The first result is that every density P
having an acceptable minorant @, @ == P, is completely acceptable. The
second says that a density P acceptable by o is completely acceptable
if a kind of elliptic measure of the ideal boundary with respect to o is posi-
tive.

Theorem 5.2.1. A density P is completely acceptable, if there exists an
acceptable density @ with P=Q ,P =@Q.

Proof: P is acceptable by remark 2.1.3. According to theorem 4.1.2
there exists a positive @-solution « defined on the whole surface. If {R,}
is an exhaustion of R, then by lemma 3.2.1 Tgpu is a P-solution in R,
with Thpu =u on 0R,. Therefore 0 < Topu < u in R, and from
(3.2.1) we get the inequality

1
(5.2.1) — ff (P(z) — Q) Gp(2, 2y) u(z) dedy < u(z,) .

27

The integrand is non-negative and does not vanish identically. The sequence
{G5(z, %)} cannot then increase towards infinity uniformly in every com-
pact set. This guarantees the existence of Gp.
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Next we give two corollaries in order to show how this theorem can be
used to prove the existence of the Green’s function in different cases.

Corollary 5.2.2. Every mon-negative density P, P =0, ts completely
acceptable.

Proof: Choose Q@ =% P (Cf. [7]).

Corollary 5.2.3. Let P be acceptable by w . If there exists a paramelric
disc V such that e is not a P-solution at any point of V , then P is com-
pletely acceptable.

Proof: For any disc (Vy,2), Vo V', we have

li(Vo s %) < (%) -

Solutions of (1.1) in ¥V with boundary values w are continuously depend-
ing on the density P . Therefore we can choose a density @ with @ = P
in R—V, Q<P in V such that @ =P and

12V, 2) = o0(z)

for any disc (Vg %), Py V. This density @ is now acceptable by o
and a minorant of P . P is then completely acceptable.

This situation happens e.g. when o € C*(V) and it fails to be a P-
solution at one point of V.

If we cannot find any acceptable minorant to the given density, we
have to solve the existence of the Green’s function otherwise. In order
to find a rvelatively simple condition we introduce a suitable auxiliary
function.

Let P be acceptable by o, K a regular region and {E.} an ex-
haustion of R with K c R,. We define on R — K a P-solution wg
as follows:

Let o} be a P-solution in R, — K with

{ 0 on oK
o on OR, .

{3);: —

Then 0 < 0k = o foreach n. Bylemma 4.1.1 there exists a subsequence
{w}'{'} converging to a P-solution ogx on R — K uniformly in compact
sets. It is easily seen that my does not depend on exhaustion or subsequence.
By remark 1.2.3 either wg =0 or wg > 0.

Theorem 5.2.4. Let P be acceptable by o . If there exists a regular
region K such that g > 0, then P is completely acceptable.

Proof: We construct an upper bound to the sequence {G'(z, 2,)} by
using the same method we had in the proof of lemma 3.1.3.

Let L be a regular region with K c L and z, € K. Let moreover
{R.} be an exhaustion of R such that lim wx = wx and L c E;. We

n-—>om



22 Ann. Acad. Sci. Fennicwe A. 1. 515

define in L a P-solution u} by its boundary values: uj = b wx on 0L,

where b is a constant chosen so that u] = sup Gp(L,z,2,) on 9K for
3€9K
every m. This is possible because lim o = wg > 0.

n—>o0

Next we form in R, — {#,} a P-subelliptic function ¢a.(z, z;):

{ b(wk(z) — w(z)) in R, — L
(B 20) =\ ip ) — oLz zg) — boo(z) in L — {z).

As in the proof of lemma 3.1.3 we see that
G';;(Z Zo) g - gn(s ::n) .

Because lim ok > 0 there exists lim u} = v; and

n—x0 n—>xw

lim G(z, 25) = — lim ¢.(z, %))

{ bw(z) — wg(2)) in R— L
o o(z) + Gp(L,2,2y) —ug(z) in L — {z}.

Therefore the sequence {G%3(z,z,)} has a limit function Gp.

6. THE CLASSIFICATION OF DENSITIES AND SOLUTIONS
6.1. The elliptic measure

By definition 1.1.2 the elliptic measure % of a regular region R, is
a P-solution defined in R, with wp = 1 on ¢R,. By using this we define
the elliptic measure of R for P.

Definition 6.1.1. Let P be acceptable. P = 0. If there exists a non-
negative P-solution wp on R such that

lim wp = wy
for every exhaustion {R.}, where the sequence {wp} of elliptic measures of
R, is converging uniformly on every compact set. we say that P is normal
and wp s the elliptic measure of R .

Remark 6.1.2. If P is normal, then by remark 1.2.3 either wp > 0 or
wp=0. In the former case we say that P is hyperbolic and in the latter
parabolic.

If P=0, it is always parabolic on parabolic surfaces and either
parabolic or hyperbolic on hyperbolic surfaces (Cf. [12]). If P has also
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negative values the existence and uniqueness of lim wp are not always
n->ow

sure. This is partly illustrated by the following duality: Let P be normal.
Then

(6.1.1) wp = max {w | % is a P-solution and » < 1},if P =0

and

(6.1.2) wp = min {u | # is a P-solution and » =1}, if P=<0 .

Another deviation from non-negative densities is that wp is not always
bounded. This is seen from the following.
Example 6.1.3. We choose

1 1
R =1{z]0<lz] <1}, R,.z{: o< 1 — 5}
and
Piz) = —2 @3zl logtiz)=.
P is acceptable by — (log 312))"*. {R,} is an exhaustion of R and
wp(z) = (an -+ ba) (log F2)"" — aba (log 32))7*,

where

1\-13 1) \-13
= o — = y 1 —_—
tn = (loc 2n> , ba (1% 3 (1 n>> .

Now wp exists and

wple) = lim wh(z) = (log $)7** (log T =) .

n—>xK

This is not bounded for lim wp(z) = = .
|2]=0
These properties cause that the elliptic measure is not in general as
useful as for non-negative densities.
Let » €% We say that

lim ju] = s,
oR
if for every e > 0 there exists a compact region K, suchthat |u| =s ¢
on R — K, and for any compact region K we have |u(z)] > s —¢ at
least at one point z € R — K .
Theorem 6.1.4. Let P be normal and w a bounded P-solution. Then

] < (lim Ju]) wp .
OR
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Proof: Let {R,} be an exhaustion with lim w} = wp,. Then in R,

n—>w
] = (sup |u]) wp,
oR,,

and on R
] = lim (sup [u wp) < lim (sup u]) we < (lim u]) wp .
n-o  OR, n>w  OR, oR

Corollary 6.1.5. Let P be normal, w a P-solution and ¢ a positive
constant. If |ul =c, then |u| <cwp.

From the elliptic measure we always get an upper bound for bounded
solutions. This implies a.o. that if P is parabolic, the only bounded P-
solution is the constant zero. Another corollary leads to the non-existence
of wp.

Corollary 6.1.6. Let P be acceptable. If there exists a bounded P-solution

w with lim wu(z) = 0. uw 2= 0. then P is not normal.
=+0R

This implies that even completely acceptable densities are not always
normal.
Example 6.1.7. We choose

1
}{:3::‘<1},-Rn:{zii2f<1”_}
n

and
P) =% (]2 — 4) (1 — [z2)~2.

P is acceptable by o = (1 — [z2)¥* {R,} is an exhaustion of R and
. n—V2n—11+1 - 22
Gp(z. 0) =3 (1 — 22)* Jog [ — L.
Tl 20— 1 1~\/1—§z;2

Then Gp exists and
P

Gp(z. 0) = F (1 — 2P log |- ——
p(z 0) =3 ( 2[%) Og:Ll_\'l_lzz

EESUEEY

Therefore P is completely acceptable. However, by corollary 6.1.6 P is
not normal for @ is a P-solution with ! =1 and limo(z) =

|3]—>1

8.2. Banach spaces of solutions

Let SP be the set of all P-solutions defined on R. We define Banach
space BP with norm f{jul].
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BP = {u € SP | |[u|| = sup lu| < o} .
R

If P isnormal we can define another Banach space MP with norm [jul|p .

|l }
u €SP | ||ul|p = sup —< oo (., if P hyperbolic
MP_H [l = sup -2 : yPp

{0} with norm 0, if P parabolic.

Ind

In section 7 we are going to examine how these spaces change when P
varies. For that we need still one Banach space AP, with the norm [jul|,, .

'ul
AP, = {u €8P | P acceptable by o and lul, = sup l(—o < oo} .
R

For later use we present some simple relations between these spaces
and their norms.

Remark 6.2.1. The norms depend on the behaviour near the ideal bound-
ary as follows:

lu] = 1_1; [u| , where the equality holds if P =0.

2
flujlp = - lim —~I » if P is hyperbolic .

R Wp

|1u“w = lim — .
orR @
Remark 6.2.2. From the definitions follow:
() If P is normal, then BP c MP and ju p= .
(2) If P=0, then BP = )P and 'u'p=uj.
(3) If P is mormal and infeo > 0. then JIMP c AP, .
)

R
(4) If P s acceptable and infem > 0. supm << o0, then BP = AP,
R R

7. ISOMETRIC SOLUTIONS SPACES
7.1. The linear mapping T'p,

Our main tool in the examination of isometric relations will be the
transformation 7'py which is a natural generalisation of the mapping 7',
introduced in 3.2.

Let P be acceptable, @ completely acceptable and % a continuous
function. If
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(7.1.1) ff |[P(z )| Golz, 2) u(z)] dady < oo

at some point z, € R, then it holds at all points of B by remark 5.1.5.

Definition 7.1.1. Let P be acceptable, § completely acceptadle and
uw € C° a function for which (7.1.1) is true at some point z, € R. Then the
linear transformation Tpou of wu is well defined by

(7.1.2) Tpou(zy) = u(zy) + 5 ff (P(z) (2)) Go(z, zo)u(z) dady .

The following result will otten be used in the continuation.

Lemma 7.1.2. Let P be acceptable. §) completely acceptable, v a P-
solution and {u.} a sequence of P-solutions each defined in R, so thal
{R.} ts an exhaustion of R and lim ., = w. If there exists a function

n—>ao

v €C° such that |u,] =< v for each n and v fulfils (7.1.1) at some point
20 €ER, then Tpou s well defined and
(].) lim T;Qun = TPQIZL s

(2) Tpou s a Q-solution.
Proof: By definition 7.1.1 Tpyu is well defined.
(1) For each » and z €R
(P(2) — Q2)) Gol2, 2) ua(2)] = |P(2) — Q(2)] Golz: %) v(2)

and the majorant is integrable. We define Gju. on the whole surface by
setting its value to be identically zero in B — R,. Now we can use Lebes-
gue’s theorem of dominated convergence (Cf. e.g. [5] p- 234) and get

lim ff (2) — Qz)) G (2. 2g) Un(z) dady =

ffP(za (4)) Gl 2,

lim Tpu, = Tpou .

n—>aoc

o2

yu(z) dedy .

This shows that

(2) Because (7.1.1) holds for v at every point z,, we get an estimate

| T poun (%) = v(2) *—ff P(z) — Qz) Gy(2, 20) v(2) dady < oo
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which shows {T'pou.} to be bounded in every compact set. By lemma 4.1.1
there exists a subsequence {T’I’jqu,.i} which converges uniformly on every

compact set towards a @-solution w,. Then we have

Tpou = lim Tpou, = hm T ioltmi = Vg >

which shows Tpyu to be a @-solution.

The lemma is now proved.

By this lemma and remark 3.2.2 the following properties of T'p, are
obvious.

Remark 7.1.3. Let P be acceptable, @ completely acceptable, w and wu,
P-solutions for which (7.1.1) is true and ¢ a positive constant.

(1) If ‘ul Zcuy. then [Tpoul = ¢ Tpou, .

(2) If P and @ are acceptable by o . then [u] =co implies

Tpou| =co .

7.2. The spaces AP, and AQ,

We examine by using the transformation 7'py when the Banach spaces
AP, and AQ, are isometric.
Theorem 7.2.1, Let P and Q be completely acceptable by o . If

(7.2.1) ff IP(z) — Q(2)] 0?(z) dedy < o,

then AP, and AQ, are isometric.

Proof: We begin by showing that (7.1.1) holds for ©. Let z €R
and K be a regular region with 2, € K . By lemma 35.1.4 there exists a
constant m such that Gy(z, z)) = mo(z). 2 € R — K. Thus

ff (2) — Q(2), Gy(z, 2) 0(2) dedy =
ff{P(z — Q)] Gy(z,2) w(2) drdy¢mff’P 2)  w?(z) dady << .

If weAP
remark 7.1.3

then |u| = [[u]|,® . Tpou is now well defined and by

@ ? o)

Therefore Tpou € AQ

w

hT ol = [, -
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This makes Tp, a linear mapping from AP, to AQ, which does not
increase norms.

By changing the roles of P and @ we see that T,p is a linear mapping
from A4Q, to AP, which does not increase norms.

Next we show that if w € AP,, then

TQP TPQu =UuU.
In fact, let u € AP, . Then by lemma 7.1.2

n—>oo

and Tpeu is a @-solution in R, with
Tpou| = Jjull, @ .
By using lemma 7.1.2 once more we now get

lim Tp Thou = Top Tpoue .

n—>o

On the other hand by remark 3.2.2

lim Thp Tpou = .

n—x

By changing the roles of P and ¢ again we get that if v € 4@, then

w?

These facts make 7'py an isomorphism from AP, onto AQ, and Typ
its inverse mapping. Because they do not increase norms, they must be
isometries. This proves the theorem.

7.3. The spaces MP and MQ

We now use theorem 7.2.1 in a special case in order to get a condition
for the isometry of MP and MQ.
Theorem 7.3.1. Let P and @ be completely acceptable by o so that

infow >0 and
R

(7.2.1) [P(z) — Q)] 0?(z) dady < .
f

If P is normal, then Q , too, is and MP 1is isometric with 13Q).

Proof: Let P be normal. We first show that P and @ are both
hyperbolic or both parabolic.

If {R,} is an exhaustion with lim w} = wp, then

n—>o
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wp = (info)rw
R
1.1). Because wp = T'powp , there exists

-

and the upper bound fulfils (7.

by lemma 7.1.2
lim wj = lim Tpowp = Tpyip .

n->o N0

Therefore ¢ is normal and
H“Q == T PQ?‘O P -

By changing the roles of P and @ we get that also
Wp = TQP“’Q .

This causes that P can be hyperbolic if and ouly if @ is, and that P
is parabolic exactly when € is.
Then we consider the isometry. If P and @ are parabolic the case

is trivial because
MP = {0} = M@ .

Let us then suppose that P and @ are both hyperbolic. We have now
MP c AP, MQ) c AQ.,. and AP, is isometric with 4Q, . If w € MP,

then
il = ullp wp

and
Tpou, = lwlp Tpowp = Il p g .

Therefore Tpgu € MQ and
[Tpqully = [up -
In the same way: If » € M@, then T,pv € P and
Toprip =12l

This makes Tpy, an isomorphism from MP onto MEQ and Tgyp its
inverse mapping. Because they do not increase norms, they have to be
isometries.

Remark 7.3.2. The integral condition (7.2.1) in theorems 7.2.1 and 7.3.1

can be substituted by o weaker cne:

a30) [ [1PE) = Qe Erte 2) + Gotem)) o) daty < o0
R

at some points z,,z; € R .
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7.4. The spaces BP and BQ

If we use another special case of theorem 7.2.1, we have a condition
of the isometry of the spaces BP and B . However, it has to be noticed
that the isometry does not in general hold for the norm Jju|| but for |, .

Theorem 7.4.1. Let P and @ be completely acceptable by o . If

inf o >0, sup o < o«
R R

and
(7.4.1) |P(z) — Q(z)] dady -= o,
/]

then BP and BQ are isometric with regard to the o-norm.

Proof: In this case BP = AP, and B@ = AQ, and o fulfils (7.2.1).
The statement then follows from theorem 7.2.1.

If we especially choose w =1, then P and @ are non-negative,
llu|| = ||u|l, and we get Nakai’s result (Cf. [10]).

Corollary 7.4.2. Let P and @ be non-negative densities and (7.4.1)
valid. Then BP and BQ are isometric.

Remark 7.4.3. The condition (7.4.1) can be replaced by a weaker one:

(7.4.2) f/ [P(z) — Q(2)] (Gp(z,20) + Golz, 2y)) dady < ©

R

at some points zy,z, €ER .

7.5. Densities equaling outside a compact region

Finally we consider the possibility that P and @ are equal outside a
compact region. Because we have not the maximum principle, this is not
as restrictive a condition as for non-negative densities.

Theorem 7.5.1. Let P and @ be completely acceptable and P = Q
outside a compact region K . Then the following are true:

(1) SP and SQ are isomorphic.

(2) If P is mormal, then Q isnormal and MP isisometric with JMQ .

(3) If BP contains a positive solution, then BQ . too, contains a positive

solution and BP is isomorphic with BQ .

Proof: In this case mappings Tpy:SP—S¢ and Typ: SQ— SP
are well defined.

(1) If w €SP, then
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lim Tpgu = Tpge .

n—>xm

Because

IThot(z0)| = |u(z,)] + 2% ff [P(z) — Q(2)| Go(z, 29) |u(z)| dudy
K

and the upper bound fulfils (7.1.1), we get by lemma 7.1.2

w = lim Tp Tpor = Top T'pout -

n—>oc

If »€8Q, we get in the same way that

v = lim T T4pv = Tpo Typ? -

n—>os

Therefore SP and 8@ are isomorphic by T'p, .
(2) If P is normal, we get from lemma 7.1.2 by the compactness of
K that @ is also normal and

wo = Tpowp , wp = Topwy .

Now we get the statement as in theorem 7.3.1.
(3) Because BP contains a positive solution u,. the integral

(7.5.1) /f |P(2) — Q(2)] Gp(z,; 2,) dady

is by the symmetry of G} and lemma 5.1.4 (2) uniformly bounded. If
now u € BP, then by part (1) Tpyu € SQ and Typ(Tpyu) = u . Therefore

1 N
T pou(zy)| = lu(20)] + SEP ‘T po] % ff P(z) — Q=) Gplz, 7) dady
K

which implies that Tpyu € BQ .

Especially Tpoup is a positive @-solution.

By changing the roles of P and @ we then get that if v € BQ, then
Topv € BP .

By part (1) in the proof BP and B are isomorphic.

The proof is now complete.

8. THE ISOMETRY OF BP AND HB WHEN P =0

8.1. Introduction

Let HB be the space of bounded harmonic functions with the norm
i|k|| = sup |k| . Nakai has shown (Cf. [10] p. 271 and also corollary 7.4.2)
R
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that if P is a non-negative hyperbolic density on a hyperbolic surface
and if

(8.1.1) P(z) Gy(z, zy) dady <
ff

at some point zy € B, then BP and HB are isometric.

According to him it is an open question whether (8.1.1) is also a ne-
cessary condition.

Our aim is to present a different condition for the isometry of BP and
HB and by using it to show that (8.1.1) is not a necessary condition.
Through the whole section P will be non-negative and R hyperbolic.

8.2. The least harmonic majorant

If P=0, then wp is the greatest P-solution to be smaller than one.
Now we on the contrary consider the existence of the smallest harmonic
function to be greater than wp.

Lemma 8.2.1. If P =0 and R is hyperbolic, then there exists the least

harmonic majorant hp of the elliptic measure wp with hp < 1. Moreover
hp = Tpowp and wp = Typhp .

Proof: If P is parabolic, then wp =0 and hp=0.
If P is hyperbolic, the sequence {P(z) Gg(z, z,) wp(z)} is non-negative
and non-decreasing. Because
1

27

ff P(z) G5z, zp) wp(z) dady = Thowp(zy) — wp(zy) = 1
Rn
we have (Cf. e.g. [5] p. 186)
i
(8.2.1) o ff P(2)Gy(z, 29) wp(z) dedy =< 1
2 J

and by lemma 7.1.2 Tpywp is harmounic. In R, wp = Thowp =1 which
implies
p = Tpowp = 1.
If B’ is another harmonic majorant of wp, then on oR,
Thowp = wp = I/

which means that in R, Tpowp = k' . Therefore
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Tpowp — lim T’II)OU/'P g kl

n—>w

and Tpywp is the least harmonic majorant of wp. Tpowp = hp.

On the other hand harmonic functions h, = Thowp form a non-
decreasing sequence wherefore also the sequence {P(z) GE(z, 2,) ha(2)}
is non-decreasing. Moreover

1
2 ff P(z2) Gp(z, 2) by (2) dady = h,(z0) — wp(zg) = 1
Rn

and therefore

1
(8.2.2) o ff P(z) Gp(z, zy) hp(z) dady = 1

R
and

wp(zo) = lim Toph,(29) = Tophp(z,) -

n—oe

8.3. The spaces BP and HB,
Let P =0 be hyperbolic. We define an auxiliary Banach space HB)
with the norm ||fop

1k
HBp = {k | £ harmonic and lhll,p = sup le— < oo} .
IH ‘P

Because hp =<1, HBp c HB and we can also use in HB, the norm
P H P P

Bl = sup
R

Clearly |j2]] = ||#]lop- Later on it appears that they are in fact equal.

The meaning of HBp appears from the following result.

Theorem 8.3.1. Let P =0 be « hyperbolic density on a hyperbolic
surface R. Then Tpo is an isometry from BP onto HBp and T,p its
inverse mapping with regard to both norms of HBp.

Proof: We start by showing that 7', is a mapping from BP to HB,
and 7op a mapping from HB, to BP.

If w € BP, then |u| < |lu|| wp and by formula (8.2.1) and lemma 7.1.2
Tpow is harmonic. Moreover

| | oot s — oy
Tpou! = {jul] Tpowp = lu|| hp ,

that is, Tpouw € HBp and
3
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(8.3.1) T porl] < T potulop = Il -
If h € HBp, then |h| = |h|jophp and by formula (8.2.2) and lemma
7.1.2 Toph € SP . Furthermore
[Toph| = (BllopTopbr = |llopwp = |Plop -
Therefore Toph € BP and
(8.3.2) 1Tophll = [2lop -

Next we prove that T'p, is an isomorphism with the inverse mapping Top.
Let € BP. Then Tpj,u is harmonic in R, and

. n
llm Tpou = Tpou .

n—>oo

Because {Thowp} is non-decreasing
Tpou| = jju] kp .
By this and (8.2.2) we can use lemma 7.1.2 again to get

u = lim Thp Thott = Top Tpout .
n->"

Let then h € HBp . Now we cannot use the preceding method, because
Tpph does not always have a majorant fulfilling (7.1.1), but we have
to prove it otherwise.

We define G5 =0 in R — R,. Firstly we estimate the difference
Toph — Toph .

1 '
Toph — Toph | = Q—néffmap—@;a)kdxdy
"R

A

1
iihégl)PEffP(Gp——G;) hp dxdy
R

[kllop(Tophr — Tophp) «

I

By using this we secondly estimate the difference 1o Toph — b .
(T30 Toph — k| = {T'ho(Toph — Toph)!
= [BllopT b0 (Tophp — Tophp)
= [[liop(hp — Tpo Tophp) -
Because T,ph € BP, we have
lim T Toph = Tpo Toph € HBp

n—>90

and when % goes to infinity we have by lemma 8.2.1
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ITPO TOPh - hi = ”h”OP (}Z‘P - TPO TOPhP) =0
that is
TPO Toph — h .

In order to show the isometry we finally prove that 7'p, and Typ do

not increase norms.
If » € HBp, then

IToph] = sup =

and
[Toph| = lim [Toph| < ||| .
Therefore
(Tophl = ] .

This together with (8.3.1) and (8.3.2) shows that
full = [|Tpoull = || Tpottllop »

(8.3.3) '
(Al = [T ophll = [[Alop «

The proof is thus complete.
Remark 8.3.2. The formulas (8.3.3) imply that if h € HBp, then

Rl = lIAllop -

This equality implies an auxiliary result.

Lemma 8.3.3. If h € HBp, then k! < |kl hp.

As a by-product of theorem 8.3.1 we finally can give a new condition
for the isometry of BP and B@ when densities are non-negative.

Corollary 8.83.4. Let P and € be non-negative hyperbolic densities on
a Riemann surface. If hp = hy, that is, if their elliptic measures have a
common least harmonic majorant, then BP and B are isometric.

8.4. The isometry of BP and HB

We can now exactly say when the mapping 7'p, makes BP and HB
isometric.

Theorem 8.4.1. Let P be a non-negative hyperbolic density on a hyper-
bolic surface R . Tpo is an isometry frem BP onto HB if and only if hp,
the least harmonic majorant of wp, is identically one.

Proof: We show that hp=1 if and only if B = HBjp.

If hp=1, then trivially HB = HBp.
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If HB= HBp, then 1 € HB, and by lemmas 8.2.1 and 8.3.3
1<hp=<1.

The statement now follows from theorem 8.3.1.
In order to make the strength of this theorem more clear we give two
sufficient conditions for Ap to be identically one.
Lemma 8.4.2. Let P be a non-negative hyperbolic density on a Riemann
surface R. If infhp >0, then hp ==
R

Proof: Because iﬁf hp € HBp also 1€ HBp and 1 <hp <1.

Lemma 8.4.3. Let P be a non-negative hyperbolic density on a hyper-
bolic surface R . If

(8.1.1) P(z) Gy(z, z,) dady < w©
s

at some point zy € R, then hp=1.
Proof: By lemmas 7.1.2 and 8.2.1

I = lim T3 = Tpoup = hp.
n-—>w
Notice that lemma 8.4.3 is just Nakai’s result and we have shown it
to be a special case of theorem 8.4.1. We now demonstrate with an example
that theorem 8.4.1 is really stronger than lemma 8.4.3.
Example 8.4.4. We choose

1 1
R={z0<]kl <1}, an{zi,—?<1:;<1—~}

i n
and
P(z) = |z|72
{R,} is an exhaustion of R and the elliptic measure of R, is
n—11
wp(z) = [zl + — 3 [l
Thus
wp(2) = ||

In this case hp =1 and BP isisometric with HB by theorem 8.4.1.
However, Nakai’s condition (8.1.1) is not valid. Ia fact, let us consider
a point z, € R. Because

lim Gy(z, 25) > 0

20
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there exists a positive constant o0 such that

R, ={z]e<lz] <3l
then
/f P(z) Gy(z, 2y) doedy = lim 0 /f P(z) dady
R 0 R,
= lim 276 log Sl = w.
>0 © 28

Thus we have also shown that Nakai’s condition (8.1.1) is not necessary
for the isometry of BP and HB.

Finally we show with another example that 7T'p, does not always make
BP and HB isometric because hp is not always identically one.

Example 8.4.5. We choose

9 1
wp(z) = (a2 + a,b, + b2)~1 (a b, (a, -+ b)) —— -+ log? {zi) R

o ' won log =
where
1 1
a, = log (1 + ;) , b, = log (2 — ;)
Therefore
s ]2
wpl) = [lﬁi,;!
and
log |2|
hp(z) = @—2“

University of Helsinki
Helsinki, Finland
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