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1. Introduetion

1.1. The density theorem. For 1 <« < 1,7 > 0, and for integral
D=1 let N(x,T,D) stand for the number of zeros of the function

-l_l- L(s, %)

y mod D

in the rectangle
R(x,T): x=c=1, H=T.

The quantity N(x,7,D) has been extensively investigated; the
best known general upper estimate (apart from a logarithmie factor) is
the following result of Montgomery:

(1.1) N, T,D) < (DT)™ (2 1—a 4

with [ =log DT, uniformly for {=<a<1,7=2,D=1. (For
history and reference, see Montgomery [7], Chapter 12; in particular,
(1.1) is essentially theorem 12.1.)

The result (1.1) is obtained using certain theorems on Dirichlet poly-
nomials involving Dirichlet characters, and a mean-value estimate for
IL& +it, x)|*. The object of the present paper is to show that the meth-
od of Montgomery can be refined to yield the following improvement of (1.1).

Theorem. For any fized &> 0 there exist (calculable) numbers C
= C(e), B = B(e) such that uwniformly for +<=x<1,T7=2,D=1

(L.2) N(x, T, D) < C(DT)@+I0-a) B
with
3 1 V17T —1
= rf=a= - =0.78077...,
(1.3) o(ex) P fors S o i
6y —3, V17T—1
(1.4) w(x) = * for <x<3,

6 — 4 4
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(1.5) o) =2for2 <x<1.
Consequently, in any case,
(1.6) N(x,T ,D) < O(DT) - 8

with g = £ (9 + V17) = 2.46058 . . .

1.2. Remarks on special cases. In the case of the zeta-function (D = 1),
better results have been obtained by Huxley [4] and Bombieri (announced
in a lecture in Moscow in September 1971). For example, they find in
(1.6) w,=2.4 for D= 1. Also the range of validity of the density
hypothesis is found to be wider than our range « = 2.

Another interesting special case is 7" < 1. In this case it can be proved
that w(x) is strictly less than 2 for « near 1. Indeed, one may take in (1.2)

3

T dx — 2

o(x)

for $§ <« <1, sothat o(x) <2 for x> %. A proof of this requires
estimates of Burgess for L-functions (see [3]). However, we do not go
into details here.

1.3. Method of the proof. For the proof of the theorem we shall intro-
duce two new ideas into the Dirichlet polynomial method of Montgomery.

Firstly, given a point s, = o, + i, in R(x,7) and a character x
(mod D), there exists a region

(17) o> G(SO s 7) s vt - fOi é 202 s
free of zeros of L(s, y). If s = ¢ —+ it lies in (1.7), and, moreover,

(1.8) C=o(sy, ) e, t—t, =P

b

then we have by function-theoretic arguments (the Borel-Carathéodory
theorem and the three-circles theorem of Hadamard applied to the func-
tion log (L(s, x)) the estimate

(1.9) (s, x)| = Cule)(DT)",

provided in the case y = y, we also have {,' = 2> (a principle, used
by Bombieri for the zeta-function in [2]).

Secondly, we shall apply the Haldsz-Montgomery method to a set of
auxiliary Dirichlet polynomials of the form B*(s, y), where B(s, %)
are »shorty Dirichlet polynomials, serving as indicators of zeros, and & is
a suitable positive integer. The estimate (1.9) appears to be useful in sharp-
ening the Haldsz-Montgomery method.



ot

MarTr Jutina, On a density theorem of H. L. Montgomery

1.4. Arithmetical applications. The quantity o, in (1.6) plays an im-
portant role in prime number theory. Two examples:

(i) Let p be a fixed prime = 3, and let D run over the sequence D
=p",n=1,2,... Let p(D,k) stand for the least prime = k(mod D).
In [1]it is proved that p(D, k) =< C(p, e)D**** if (D, k) = 1. Our theo-
rem gives a similar result with § replaced by o, .

(ii) Let q¢ be an odd prime, (¢,%) =1, and let G(q, k) be the least
Goldbach’s number (a number of the form p; + p, with p,, p, primes)
which is = k(mod ¢) . Then we have by the method of [5] the estimate

G(q, k) = Cyle)g™* .

1.5. Notation. Throughout, ¢ will be a fixed number, 0 < & < 7o5 ,
and the constants B,, B,,... will depend on &. The constants in the
symbols < are absolute (numerical), in <, they depend on &.

As usual, u(n) and ¢(n) stand for Mobius’s and Euler’s functions,
and 7(n) for the number of positive divisors of = .

2. Classification of the zeros

2.1. The class of the »good» zeros. Let B, be a positive number to be
specified from certain conditions later. Let B, and B, be (sufficiently
large) integers such that

(2.1) N(x, T, D) < By(DT)**~ 1B

for all 3 =x<1,T7=Z2,D=1,DT <B,. Let £=2-+73¢ be
a real number which will be fixed during the following construction. All
subsequent constants will be independent of B,,B,,B,, and &.

Using the estimates (1.1) and (2.1), and supposing B, =1 and B, =1
to be sufficiently large, we have the following alternatives: either

(2.2) N(x, T, D) < By,(DT )= 5

forall $ <x<1,7=2,D=1, or there exists a triple (x',7",D’)
with

(2.3) 1=y =1—5,7"=2,D =1,DT" > B,
such that (2.2) holds for all x =&’ +¢,7=2,D =1, but
(2.4) N, T, D) > By DTy =15 " = log D'T" .

Suppose that the second alternative occurs. Then, for the proof of
the theorem, we need an estimate for «' = «’(¢). Since the theorem is
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interesting for « > 3 only, we may suppose that «' > %. The triple
(«',T",D') will be fixed during the proof, and will henceforth be written
simply (x,T,D).

Consider the zeros o = g -+ it of all L-functions (mod D) in the
rectangle R(x,T), and pick out a subset A (the »good» zeros) of these
zeros from the following conditions:

(i) x=pf=a+e,0=1=T,

(ii) for the zeros o; = fj + i7; €A of L(s, y;), respectively, we have
(2.5) lti — 7| = 27

if = y,% #J, and, furthermore,

(2.6) T =21

for all zeros of L(s, g,) (i.e. of {(s)) in A.

(iii) the region

2.7) c=a+e,lt—1] =282

does not contain any zero of L(s, y) if ¢ is counted into A as a zero
of L(s,yx).

Lemma 1. The class A can be selected in such way that its cardinality
|A| satisfies

(2.8) |4] > I3N(x, T, D).

Proof. By the definition of & we have
N+ e¢,T,D) = By(DT) >
If B, (and so DT) is sufficiently large, the expression on the right is
< 1 B,(DT):-9 5

(note that a lower bound for B; can be given as a function of & only).
Hence, in view of (2.4), we see that at least a fourth of the zeros in R(x , T')
satisfy the condition (i).

Next drop away from the zeros, satisfying (i), the zeros of ((s) for
which 7 < 2/, at most < [® in number. We may suppose that after
this at least a half of the zeros are left. From the remaining zeros pick
out a set satisfying the condition (2.5). So it is easily seen that at least

(2.9) > I3N(x, T, D)
zeros satisfy both (i) and (ii).
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Finally, using again the definition of a, we have
N(x +&,T 4 22, D) < By(D(T 4+ 212))5t-«=2) [5s
<IN ,T,D).

Hence, for DT sufficiently large, at least a half of the zeros, counted
in (2.9), satisfy (iii), too. This completes the proof.

2.2 Construetion of the polynomials B(s, y). In this section we
shall construct the Dirichlet polynomials B(s, y), mentioned in the
introduction.

Let
(2.10) X = (DTy, Y = (DT)'**",
(2.11) M(s, %) =nsZX#(%)x(%)n_‘ ;
and for n =1 let
d, = ;"#(d) :
d=X

Then dy=1,d.=0 for 2=n=<=X,|ds) Z(n) for n>X.
Let o be counted into 4 as a zero of L(s, y). Then we have the
identity (see [7], p. 104)

(2.12) eV 4+ > dug(m)ne e
n>X
= &(x)p(D)DIM (1, x)Y'"¢I'(1 — o) +
—1/24+iw
+ @iyt [ Lo+ ¢, )M + ¢, )Y Twho,
—12-in

where ¢(y) =1 for y = y,, and e&(y) = 0 otherwise.

If DT is sufficiently large, then the first term on the right of (2.12) is
= % in absolute value, in view of the condition (2.6) in the definition of 4 .
Also, the contribution of the integers = > Y; = Y (DT)* = (DT)"*+%
may be supposed to be =<1 in absolute value. We may also suppose
that e¢~Y¥ = 2. Then, writing I(g) for the integral in (2.12), we have

(2.13) | > bagn™ | =% — |I(0)] ,bn =dne™¥.

X<n<Y,

Lemma 2. For the »good» zeros we have
| 2 baymn™¢|=%.

X<n<Y,
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Proof. Remove in I(p) the integration to the line ¢ =% with 7
=1—2x—3. Now 2 <ux =<1—5¢, so that

—14+7e=n=—%—3¢.

Hence no singularity of the integrand lies between the lines ¢ = — %
and o=1. :

The integral over Imw| =12 is =% in absolute value, provided
DT is sufficiently large. It remains to estimate the integral over |Im w|
<.

If Imw|<17*, Re w=1n, then w -+ o lies in the rectangle

(2.14) l—x—3:=0=1—x—2¢,t —1| =Z12.
As noted in (1.7)—(1.9), we have
(o + it , z)| <, (DT
in the rectangle
o+ 2=0c=1,t—17] <2

(owing to the zero-freeness condition (iii) in the definition of A). Con-
sequently, by the functional equation for L-functions (see [8], p. 207),
we have

(2.15) |L(o -+ it , x)| < (DT)*=o+e

in the rectangle (2.14).
To estimate I(g), note further that |I'(w)] < B,, that by (2.10)—
(2.11) trivially

M(o + w)| = (DT)",
and that |Y*| = (DT)” with

=&+ Te=1 —x+Lle— 1dxe — 212 <1 — x — 5e — 212,

(S

Then we have

(o)l =5 + By(DT)™ P = ¢

if DT is sufficiently large. This estimate combined with (2.13) gives the
desired result.

Now construct the polynomials

Bj(S,X): Z bnx(n)n—s,jzl,Q,...,b

2i—1xX<n<min(2iX,Y))
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with 27'X < ¥,,22X = Y,. Given a zero ¢ of L(s,y) in 4, we
have by lemma 2

(2.16) 1Bj(e » x)| = (4b)7

for at least one index j . There exists an index j' such that the condition
(2.16) holds with j =3 for at least b7 |A| zeros from A . Let these
zeros be enumerated as 9,,09,...,05, let A; ={o;,...,0;}, and
write for simplicity B(s, x) = B (s, %) -

By lemma 1 we obviously have

(2.17) N(x,T,D) < 4] .

The rest of the paper is devoted to obtaining an estimate for J .

3. The Halasz-Montgomery method

3.1. A lemma on Dirichlet polynomials. The corollary of lemma 1 of
[6] can be stated in the following sharpened form (here J is a general
symbol, not related to the set A4,).

Lemma 3. For 1=j=J let y be any character, s = o; -+ it;
any complex number, and let ¢ = ming;j. Let an,n=1,..., N be any
complex numbers, and write

n=1
Let
24+im X
(3.1) K =J22n)1> J / Ls; + & — 20 +w, % Zk)A""F(lt?)dw! .
iz J E
If
N
(3.2) V2= 4K 3 |a. 20",
n=1
and if for 1 =j5=J
(3.3) s ml =V >0

then

N
(3.4) J KNV |aa2n".
=1

n
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Proof. This is, essentially, a combination of lemma 1, its corollary, and
an identity in the proof of lemma 3 of [6]; note only that our quantity K
is a constant multiple of the mean-value instead of the maximum of the
integral in (3.1). This sharpening is justified by the inequality (28) of [6].

3.2. An estimate for K. We shall apply lemma 3 in the case s; = g;,
j=1,...,J,p0; running over the zeros in the set A4;,, and jx being
the respective character for which L(g;, xj) = 0.

Lemma 4. In the case sj=g;,j=1,...,J we have
(3.5) K < (DT)x12+6e Nl-e

Proof. Let j, be anindex such that the pairs (j;, k), k=1,...,J,k
#7j1, give to K the largest contribution. Then by (3.1) we have

24i00
(3.6) K < Je2n) > ‘ / L(g;, + ox— 2x + w, g, xx)N*I'(w)dw| .
k#j, 2% i
Now we classify the indices k£ in (3.6) into classes C,, C;,... from

the following condition: k& € C, if » is the least non-negative integer such
that the region

(3.7) c=a+ v+ e, [t — (1, — )| = 2P

is free of zeros of L(s, % ) -
For the cardinality |C,| of C, we have by the definition of « and
by the condition (i) in the definition of A the estimate

(3.8) |C,] < 3B,(D(T + 212))5 =2 [Bs < §B,(DT): -7 [Bet?

for v=1,2,... Further, trivially, |C;] =J.

Next, for k €C,, we need an estimate for the integral in (3.6). To
this end, we remove the integration to the line ¢ =, with 7, = max
(1 —ax — (v + 4)e,¢e). Then
(3.9) max (1 —ax — (v + 4)e,e) =< Re (9, + o — 2x + w)

max (I —a — (v + 2)e, 3¢) .

IA

The residue, arising from the pole of L(s, y,) at s =1 is easily seen
to be negligible, as well as the integral over |[Imw|=12.

Now let Rew =7, , [Im w| =< [?>. Then we have by the zero-freeness
condition (3.7) and by (3.9) (as in (2.15)) the estimate

Lo, + o — 20 + w, 75, 7) <, (DT)mte,



Matri JUTILA, On a density theorem of H. L. Montgomery 11

Hence the integral in consideration is
(3.10) < (DT)P=mte N2

Combining (3.8) and (3.10) we conclude that the indices k in C, con-
tribute to (3.6) at most

(3.11) BSB2J—1(DT)1,’2—?71+S+E(1—oc-—va) N [Be+t
for v=1, and for v =10
(3.12) &, (DT)"‘_I/Z"'SE Nl-a—te 2

since max (1 —x — 4e,¢e) =1 —« — 4¢ (recall that &« =1 — 5e¢).
In any case, we have « + (v + 1)e =14 ¢, so that

1l—x—ve—4des=m=1—n—vete.
Using this as well as (2.4) and (2.17), we see that the expression in (3.11) is
< (DT)a—1/2—(S—l)ve+5s Nl-a—vete]s
Summing here over » = 1,2,..., and taking into account the estimate

(3.12), we obtain (3.5).

3.3. The final inequality. We combine lemmas 3 and 4 in the case

(3.13) fs,0) =BG, ) 1=u=2e".
(3.14) V — (4b)".
Then we have N = 2/“X*,
(3.15) an = 0 for n < 27N ,
N
(3.16) la.? <, N(log N)® .
n=1

The condition (3.3) of lemma 3 is satisfied by (2.16), (3.13), and (3.14).
Also, the condition (3.2) will be satisfied if » is chosen (if possible) in such
way that

(3.17) (4b)7 = 4K 3 |a, ™

n=1

From lemma 4 and (3.15), (3.16) we see that (3.17) holds if
(4D) ™" = By(DT 1270 N3« 1%

This gives for N a condition of the type

(3.18) N = N, = By(DT)® [Pu |
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(3.19) f6) = (6 — 3+ 6e) [ (35 — 2).
Then, by (3.4) and (3.14)—(3.16), we have
(3.20) J <, NP2 [Ba

4. Proof of the theorem

Let us choose for u the least integer such that the condition (3.18)
is satisfied. By (3.19) we have for £ <a <1

4.1) o) < (v — 1) [ (B — 2) + 24e .

Hence f(x) <1 - 24e <3, so that the condition u < 2¢! in (3.13)
holds.

If w<2, then N <4Y} = 4(DT)'*'%; if w =3, then N < N3*.
So, in any case, by (3.20) we have

(4.2) T &, max (NG~ , (DT)E+3290 =) 7B

From (3.18), (4.1), (4.2), and (2.17) we obtain for N(x, 7, D) an estimate
of the type (1.2) with w(«x) being given by (1.4) and (1.5), and the con-
stants C, B being independent of B;,B,,B;, and &.

We conclude that if & = 2 + 73¢ is given, and « = «(£), obtained
from the basic assumption in the beginning of the proof, is such that w(x)
+ 73¢ = &, then the estimates (2.4) and (4.2) give a contradiction, pro-
vided B;,B,, and B; are supposed to be sufficiently large. This com-
pletes the proof of the theorem.

University of Turku
Turku, Finland
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