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1. Introduction

A pair (4,0C) of sets in euclidean n-space R",n =2, is called a
condenser if A is open and C is a compact non-empty subset of A4 .
A condenser (4,C) is called ringlike if ANC ={z €4 |z €0} is
connected and its complement in R" has exactly two components, where
E" = R"U{w} is the one point compactification of R".

A function u:R"— R! is called absolutely continuous on lines, ab-
breviated ACL, if « is continuous and, if for every closed cube Q C R, u
is absolutely continuous on almost all lines in @ parallel to the coordi-
nate axes. An ACL function « has a gradient S/u almost everywhere
in R".

For every condenser (4,C) and p >0 we define the p-capacity
of (4,C) to be the real number

(1.1) capp(4 , C) = inf [\ulpdm ,
uew(4,c) J R

where W(4,C) is the set of all ACL functions u:R"™— R' such that
0=ux) =1 for x€R*,ux)=0 for x€C, and the closure of
{x € R" | 0 = u(x) < 1} is a compact subset of 4 . For p = n, capa(4 , C)
is the conformal capacity of the condenser (4 ,C) [6, p. 24].

Symmetrizations are geometric transformations usually defined for
open and closcd sets in R*. They were first introduced by J. Steiner and
were subsequently studied by others, especially Polya and Szegé [9]. Let
Sym be some symmetrization in R" and let Sym (4) denote the sym-
metrization of 4 C R" under Sym. Given a condenser (4 ,C) and
» >0 we will consider the validity of the following capacity inequality

(1.2) capy (4 , 0) = cap, (Sym (4) , Sym (C)),

whenever (Sym (4), Sym (C)) is also a condenser. This capacity inequa-
lity has many important applications in classical potential and function
theory and has recently been used in the theory of spatial quasiconformal
and quasiregular mappings. For p = % it has been proved in the following
cases: Hayman [4] for spherical symmetrizations in R?, Gehring [2] for
spherical and point symmetrizations in R3, Mostow [7] for spherical
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symmetrizations in R", Anderson [1] for one and two dimensional Steiner
symmetrizations in R*®, and Pfaltzgraff [8] for radial symmetrizations
in R*. In fact, all these proofs can be easily modified for the more general
case p=1. Since cap, (4,0)=0 for 0 <p <1 (see Lemma 5.6).
this case has no interest for us.

Hayman’s proof involves only elementary methods and Pfaltzgraff
uses a similar technique for radial symmetrizations in R". Anderson’s
and Mostow’s proofs are modifications of Gehring’s proof which uses the
Brunn-Minkowski inequalities and the co-area formula of Federer and
Young, both of which are rather deep results.

The above symmetrizations, except the radial one, belong to two
categories of symmetrizations in R": the k-dimensional Steiner sym-
metrizations, k=1,2,...,n, and the k-dimensional cap symmetri-
zations, k=1,2,...,n — 1. In this paper we consider only Steiner
and cap symmetrizations and our main result is:

Let Sym be any Steiner or cap symmetrization and (A ,C) « condenser.
If Sym is a Steiner symmetrization we also assume A is bounded. Then
(Sym (4) , Sym (C)) is also a condenser and the capacity inequality (1.2)
is valid for every p > 0. If, in addition, (4, C) isringlike, then (Sym (4) .
Sym (C)) s also ringlike.

This result is obtained in the following way. First we study Steiner
and cap symmetrizations in detail and establish the following results:
For k=2 in R*,n =3, every k-dimensional Steiner or cap symmetri-
zation can be approximated by successive (k — 1)-dimensional symmetri-
zations of the same type (Theorems 4.29 and 4.32). Furthermore, in R”,
n > 2, every l-dimensional Steiner symmetrization can be approximated by
1-dimensional cap symmetrizations (Lemma 4.19). Then we prove (Theorem
6.12) that every l-dimensional cap symmetrization satisfies the capacity
inequality (1.2). We do this by generalizing to R" the methods used by
Hayman [4]. See also Pfaltzgraff [8]. Finally, using only the above approx-
imation results, we prove by induction that every Steiner and cap syim-
metrization satisfies the capacity inequality (1.2) (Theorem 7.5).

Thus using elementary methods we prove the capacity inequality for
Steiner and cap symmetiizations in a unified fashion. In particular, we
do not need the co-area formula of Federer and Young nor do we assume
the Brunn-Minkowski inequalities; in fact, we get the latter as a corollary
fiom our geometric considerations, see Remark 4.34.

1.3. Notation and terminology. Let R! denote the real number sys-
tem and R",n = 2, euclidean n-space. For z € R* we write x =
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€3 + ... + @uen , where ¢, , .., e, are the unit coordinate vectors of R" .

For z,y €R" let -y = > ay: denote the scalar product of z and y
i=1
and o] = x-x|"® the norm of x. Also, for non-zero x,y € R" let

x
angle (x , y) = arc cos (?x' [?/?»/') €[0,n] denote the angle between the

vectors x and ¥ .

For ACR" let CA,cld = A, int A and 04 denote the comple-
ment, the closure, the interior and the boundary of A4, all taken with
respect to R™. Also, let d(4) denote the diameter of A4 .

For A,Bc R* let d(4,B) be the distance between 4 and B, let
A4+ B={a+b a€d,b€B} and, for r €R', let r4d = {rx |x € A} .

For z € R" and r > 0 we define B"(z,r) to be the open ball {y € R* |
@ —y| <r} and S8""'(z,r) = 0B"(x,r). We will also use the notation
B*r) =B"0,r) and B" = B"(0,1).

A domain in R" is an open connected non-empty set.

Let 7 denote the collection of non-empty compact sets in R".

We write ma(4) or m(A4) for the Lebesgue measure of a measurable
set 4 € R*. The measure m, is also defined for sets in an n-dimensional
linear submanifold or in an n-dimensional sphere in R* ,n’ > n. For
the Lebesgue integral of a function f over a set 4 c R* we write

ffdm,, orAf flx) dm(x) .

A

Let N denote the set of positive integers.

If a,,...,a are linearly independent vectors in R", then E¥(a, ,
.., a) denotes the linear subspace of R" generated by a;,...,a:.

We call the linear submanifolds of R™ planes. So a k-dimensional
plane 7 through a point x €R*,1 <k <n, is always of the form
T = {«} + E*a,,...,m) for some linearly independent vectors a;,
...,ar in R*. We also call a point « € R* a 0-dimensional plane
through z . Closed half-planes of a plane 7" are the sets {y €T | (y — x)-e
= 0} where x €71 and e is a unit vector so that z 4-e €T .

We say that two planes 7' C R* and L C R" are perpendicular to each
other if, for any ¢ ,x €7 and b,y €L we have (¢ —x)- (b —y) =0.
Similarly, a vector x € R" is perpendicular to the plane 7T if, for any
a,Yy€T - (a —y)=20.

1.4. Hausdorff metric. We define the function dg: 7 X 7 — R' by
setting dy(4,B)=inf{r >0|ACB+rB",BCA-+rB"} for all
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A,B€7. It is not difficult to prove that dy is a metric on 7,
[3, p. 151—2]. This metric is often called the Hausdorff metric. We define,
by the metric dy, the convergence of a sequence of sets {Fi} C 7 to
aset FE€7 by limF;=F if and only if limdy(F;, F)=0.

In this paper we consider the convergence of a sequence of sets only in
the above sense. The following lemma is easy to prove [3, p. 152].

1.5. Lemma. For every sequence {F:} C Y such that F;DF,D....
lim F.' S nF,, .

Furthermore, see [3, p. 154];

1.6. Theorem. Let {F:} be a sequence in 7 and A C R" a bounded
set such that every F;C A. Then there exists a subsequence {F;} and
F €7 such that lim Fy; = F .

j

1.7. Corollary. Let {F:} be a sequence in 7 and A CR" a bounded
set such that F; C A for every ¢ € N . If every convergent subsequence of
{F;} converges to a fixed set F €7, then lim F; = F .

2. Set transformations. Steiner and cap symmetrizations

In this chapter we first introduce the concept of a set transformation
and then list some of its properties which will be used when symmetri-
zations are considered as set transformations. We then define Steiner and
cap symmetrizations and derive some of their elementary properties.
Throughout the rest of this paper a symmetrization means a Steiner or
cap symmetrization.

2.1. Set transformations. A function f: & — N is called a set trans-
formation if R is the collection of all subsets of R" and </ is some non-
empty subcollection of R . We write Dom (f) for <4 and Im (f) for
the family of image sets f(4), A €A . If f: A =N is a set trans-
formation such that Im (f) € Dom (f), then f? denotes the composition
fof and, in general, f*' is defined by f'=/fof', i=2,3,... .

The set transformation f: A — X is called monotone if f(4) c f(B)
whenever A,B €A and Ac B. We say f: A —NX is open, closed,
compact or f preserves bounded sets, if f(A) is open, closed, compact or
bounded whenever 4 € A and A4 is of the same kind, respectively.
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We call f: A — N continuous from the inside if for every increasing
sequence {G;} of open sets in <A such that J G is in A, we have

f(UG)=U/f(G). Similarly, we call f:A—>R continuous from the

outside if for every decreasing sequence {F;} of closed sets in <A such

that nF is in A, we have an)—ﬂf

Flnally we call f: A >N smootkmg, if for every closed set F € A
and for every r > 0 such that F -+ rB*€ A, we have fF + rB")
Df(F) 4+ rB™.

Clearly every function ¢g:4 —R", A c R*, induces a set trans-
formation §: A — N such that @§B) = g(B) for every B € A
={0CR"|0CA}. We often make no notational difference between
the function and the induced set transformation.

2.2. Example. Let ¢:R"—>R* be a continuous function and let
h:“N - be the set transformation defined by &h(4)= g~(4) for
every 4 C R*. Then & is monotone, open, closed and continuous from
the inside and from the outside. In addition, % is smoothing if and only
if jg(x) —gy) = lx —y| for all =,y €ER".

2.3. Lemma. Let f: A X be monotone, continuous from the inside
and smoothing. If, for every open set G € A all open and compact subsets
of G are included in A, then [ is open.

Proof. Let (€ A be open with f(GF) # 0. Choose an increasing
sequence {G;} of open bounded sets such that ¢ = U G; and G: C G .

By the continuity from the inside, f(G)= U f(G:). Choose az € f(&)

Then there exists a & and an 7> 0 such that z €f(G:) and G;
+ TB"CG The smoothing property and monotonicity of f imply
@) D f(G; + rB"YD f(Gy) +rB"D {x} - rB". Thus f(G) is open.

2.4, Lemma. Let f and fi, i =1,2,..., be set transformations such
that 7 C Dom (f)yNDom (fi),t=1,2,..., and, for all F €7, every
fitFy€7, f(F)€7 and limf(F) = f(F). Suppose also that every f,

is smoothing. Then f|7F is smoothing.
Proof. Let F € Fand r > 0. Since F + rB"€ 7, lim fi(F - rB") =

f(F +~rB"). On the other hand, fi(F)--rB"Cf(F +rB*), hence
f(F) + rB* = lim (fi(F) + rB*) C lim fi(F + rB") = f(F + rB") .
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2.5. Steiner symmetrizations. These symmetrizations are set transfor-
mations defined in the family of all bounded open and closed sets in R".
Every (m — k)-dimensional plane T CR",1 =k =n, defines a k-di-
mensional Steiner symmetrization Sym as follows. Let 4 be a bounded
open or closed set in R". For every « €T let L(x) denote the k-dimen-
sional plane through z and perpendicular to 7'. Now if mi(4 N L(x))
=0, then Sym (4)N L(z) is empty or the point {x} according as
AN L(x) is empty or non-empty. If mi(4 N L(x)) > 0. then

Bz, 1) (®), if A 1is open,

nr
Sym (4) 0 L(w) :{B"(x,r) N L), if 4 is closed.

where 7 > 0 is defined by mw(B"(x,r) N L(x)) = m(4 N L(x)) .

The plane 7 is called the symmetry plane of Sym and the planes
L(x),x €T, the symmetrizing planes of Sym. Some authors call only
1-dimensional symmetrizations of the above type Steiner svmmetriza-
tions, while the (n — 1) and n-dimensional ones are called Schwarz and
point symmetrizations, respectively.

2.6. Sphere and its cap. For every sphere $" ', 7). w € R".r > 0 and
every (k -+ 1)-dimensional plane 7' € R" through .l =k =n— 1.
we call the intersection K = S" Yz ,r)NT a k-dimensional sphere in
R™ with centre 2z and radius r. For every y € K, the open caps of K
with centre y are sets of the form B*(y,r)N K for some 7" > 0. and
the closed caps with the centre y € K are the closures of the corresponding
open caps and also the point {y}.

2.7. Cap symmetrizations. Every cap symmetrization ix a set transfor-
mation defined in the family of all open and closed sets in R*. The de-
finition of the cap symmetrization is analogous to that of the Steiner sym-
metrization, but instead of symmetrizing planes we now use spheres.

Consider an (n — k)-dimensional plane T CR". 1 =kt =n—1.
and a closed half-plane 7'y of 7. The half-plane T, defines a k-dimen-
sional cap symmetrization, Sym, as follows. Let J be the boundary of 7'
with respect to 7' and for every z €.J and r = 0 we define

o {z}, if r=0,

(2:8) Kz, r) = {S"_l (z,7)N M(z) otherwise.

where M(z) is the (k + 1)-dimensional plane through the point z and
perpendicular to the plane J. Now for every open or closed 4 < R"
we define Sym (A4) by the conditions:
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@ if and only if K(z,r)NA4A=0,

Kz )N Sym (4) = {K(z ) if and only if K(z,r)C A,

and otherwise K(z,r) N Sym (4) is the cap of the sphere K(z,r) such
that

(i) the centre of the cap is the point K(z,r)N7T,,

(il)  me[K(z, 7) N Sym (4)] = m[K(z,7) N A] and

(iii) the cap K(z,r)N Sym (4) is open or closed according as A4
is open or closed.

We call the plane T the symmetry plane of Sym and the (n — k — 1)-.
dimensional plane J the symmetrizing axis. The spheres (2.8.) are called
the symmetrizing spheres of Sym. An (n — 1)-dimensional cap symmetri-
zation in R" is often called a spherical symmetrization.

2.9, Let Sym be a Steiner or cap symmetrization and 7' the sym-
metry plane of Sym and 4 a set in Dom(Sym). Clearly Sym (4) is
symmetric in the plane 7' i.e. if 2 € Sym (4) and 2’ is the orthogonal
projection of x on the plane 7', then &' — (v — 2’) € Sym (4) . Later we
shall prove that symmetrizations are open and closed set transformations.
Then Sym (4) is measurable and, in particular, m(A4) = m (Sym (4)) .
which is easily verified by integrating along the symmetrizing planes or
spheres and using Fubini’s theorem. Clearly Sym is monotone and pre-
serves hounded sets, Further, Sym (4) = @ if and only if 4 =0.

2.10. Lemma. Steiner and cap symmetrizations are continuous from the
inside and from the outside.

Proof. Let Sym be a k-dimensional cap symmetrization, 1 <k
=n —1. and let G = G; where {G;} is an increasing sequence of

open sets. Then Svm (U Gi) = U Syvm (), if
(2.11) KNSym (Y G:) = KN [YSym ()]

for every symmetrizing sphere K of Sym . We may assume that K N ¢
= @ and K ¢ G . Hence, KN Sym (G) == K is an open cap and every
A N Sym (G;) is a concentric open subcap. Thus K N [U Sym (G;)]

is also an open concentric subcap K N Sym (G). Moreover,
mi(K O Sym (@) = ma(K N G) = lim me(K N G;) = lim m(K N Sym(G;)) =
= mK N (U Sym (G))] .
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Thus we get (2.11). Arguing similarly, we see that Sym is also continuous
from the outside. We prove the lemma for Steiner symmetrizations in the
same way by considering symmetrizing planes instead of symmetrizing
spheres.

2.12. For every set transformation f: A — R we define the com-

plement transformation f.: <A’ — X by the formula

fe(4) = Cf(CA) for every 4 € A" = {CB|BE€ A}

Observe the following useful property of cap symmetrizations: If Sym
is a k-dimensional cap symmetrization, 1 <k <n — 1,7 the symmetry
plane of Sym and 7, the half-plane that defines Sym, then the k-
dimensional cap symmetrization Sym. defined by the half-plane 7, =
c(T\T,) is the complement transformation of Sym , or in other words.

(2.13) Sym (4) = CSym, (C4)

for every A4 € Dom (Sym). We also call Sym. the complement sym-
metrization of Sym . Using (2.13) we immediately get from Lemmas
2.10 and 2.3:

2.14. Lemma. If for some k€N ,1 <k =<n—1, all k-dimensional
cap symmetrizations in B are smoothing, then they are also open and closed.

Next we consider the preserving of connectedness under a symmetri-
zation.

2.15. Lemma. Let Sym be a Steiner or cap symmetrization and
4 €Dom (Sym). If A or R"™N\ A4 is connected, then Sym (d) or B\
Sym(A4) s connected, respectively.

Proof. Let Sym be a cap symmetrization defined by the half-plane T, .
For every x € R* let K(x) denote the symmetrizing sphere of Sym
through «, and denote by f:R"*— T, the continuous mapping for which
{f@)} = K@@)NT, for every x € R*. Put S, = [K(a) N Sym (4)] U f(4)
for every a € 4. Assume now that A is connected. Then f(d) is con-
nected, which implies that S. is also connected, since K(«) N Sym (4)
is connected and [K(a) N Sym (4)] N f(4) = {f(e)} = 0. Now Sym ()

= U S. is connected, since it is the union of connected sets whose
a€A
intersection [ S, = f(4) is not empty.
a€Ad
Next, assume that R"™\ 4 is connected. We first observe that

B\ Sym (4) = {0} U CSym (4) = {0} U Sym, (CA) ,
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where Sym, is the complement symmetrization of Sym. Let T' be the
half-plane defining Sym. and let K(x) for x € R* be defined as above.
We define a mapping f.: B"— R" by setting

the point K(x)NT,, if x € R",
oy = e Tt KO

0w, if = .
Clearly f. is continuous, whence f(R™\ A4)={oo}U f(CA4) is con-
nected. Hence, we get
B \Sym (4) = U S, ,
a€CA
where S, = [K(a) N Sym, (CA)] U fi(R"™\A4) for every a€CA. Now,
arcuing as above, we verify the connectedness of R\ Sym (4).

Next we assume that Sym is a Steiner symmetrization with the sym-
metry plane 7. For every x € R" let L(x) denote the symmetrizing
plane of Sym through . If 4 is connected, we verify the connectedness
of Sym (A) just as we did in the case of a cap symmetrization; we need
only replace 7', and K(zx) by T and L(x).

On the other hand, R™\Sym (4) is always connected whenever
4 € Dom (Sym) . To prove this, we first observe that Sym (4) is bounded
and thus, for every € R" the set V(z)= [L(x)U {0}]\ [L(z)N
Sym (A4)] is connected. Then B\ Sym (4) is connected because

R Sym (4) =U V() and N V() ={w} #0J,

xERM xER™

and the proof of the lemma is complete.

3. Convergent set transformations

3.1. We call a set transformation f: A — N regular, if f is mono-
tone, 7U{@}C A, f(/)C 7 and f(O)= O . A regular set transfor-
mation f: A —K is called convergent, if lim f(F) exists for every
Fe7.

In this chapter we first give sufficient conditions for a regular set
transformation to be convergent. We then prove that if Sym is a k-di-
mensional cap or Steiner symmetrization, k£ = 2, we can choose two
(k — 1)-dimensional symmetrizations Sym;,j= 1,2, of the same
type, such that Sym,oSym; is convergent and, in addition,

(3.2) Sym (F) = lim (Sym, o Sym,)(F)

for every F € 7. This result will be proved under the a;sumption that
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symmetrizations are regular and smoothing, which we shall show to be
true in chapter 4.

The result (3.2) shows that every k-dimensional symmetrization, & = 2.
can be approximated in F by succesive (k — 1)-dimensional symmetri-
zations of the same type. This result is essential for our inductive method.

3.3. Let 7% be a non-empty subcollection of 7 and Ay = {4 CR"|
ACB for some B€B}. Let f:Agy—TFU{D} be the set trans-
formation
(3.4) BA)= N B, for A€Ax\ {0}, and B(0) = 0.

AcBe9R
Observe that A c p(4) for every A € Acy, and B(B) = B for every
B € % c Ay . We call the collection % continuous if f: HAcy — 7 U {0}
in continuous from the outside and p(HAoz\ {@}) € 7% .

A regular set transformation f: <A — N is called rounding with re-
spect to a collection 73 C F if the following two conditions hold:

(i) f(B)C B for every B€ 7%, and
() if FEF FC B and F # B for some BE %, then there
exist ¢ €N and B’ € 9% such that f(F)C B CB,B =B.

3.5. Lemma. Let f be a regular set transformation which is continuous
from the outside and rounding with respect to a continuous collection % C 7 |
If F €7 issuchthat F C B for some B €%, then

(3.6) lim fi(F) = B,

where B* = N IfI(F)] € B and B is defined by % as in (3.4).

If, in addition, B belongs to some k-dimensional plane or sphere P in
R, mu(f(A) N P) = mu(A N P) for every 4 € 7, and f is smoothing. then

(3.7) mr(B*) = mp(F) .

Proof. Put F; = fi(F) for every i € N. Then F;=f{(F)cf(B)c B
for every ¢ € N. Hence to prove (3.6) we need, by Corollary 1.7, only
to show that every convergent subsequence of {F;} converges to B*.

In fact, assume that a subsequence {Fy} converges to A €. The
sequence B; = B(F:) = p(f'(F')),t €N, is decreasing, since f is mono-
tone, f(Bi) c B; by the rounding property of f and fi(F)c B:i€ %
for every 1€N. Thus N B;=NBi=B* and limB;=B;

J 3 J J
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by Lemma 1.5. So A =IlmF;ClimB;=NB;=DB*. On the
j J Jj

other hand, B* € %, since B* = B:= NBB:) =N B:)€PB by

the continuity of the collection 3 .

DB

If A s B*, then by the rounding property of f with respect to
there exist ¢’ € N and B’ € B such that

(3.8) f"(4) € B'C B* B’ + B*.

Since lim F;; = A we can find, for any m € N, an index 4" such that
j

1 _ - . 4 1 _
F., c (A + EBn) N B. Then f'*¥(F) = f"(F,)Cf’ [(A + ”—zB")nB},

and thus B* C BIf"+"(F)] cﬁ]f"'((A + 723'")” BH Now % is &

continuous collection and fis continuous from the outside, whence f* also
has this property, and we get

© 1 '
B*cnp [f"' ((A + B") n B)} =Bl B .

This contradicts (3.8). So A = B*, which proves (3.6).

We still must show that, under the additional assumptions of the
lemma, (3.7) holds.

Because B* =N B;,B,D2B,D...,f(F)CB; forevery ¢ € N, and
f is mi-measure preserving with respect to sets in P, we get

mi(F) = lim my, (f{(F)) < lim mu(B;) = mi(B*) .

On the other hand, for every ¢ > 0 there exists ¢ € N such that B*
Cf{F) + eB". Since f is smoothing, so is f', and we get B* C (f{(F)
+ eBYNPCfi(F +eB"YN P, and thus, by the assumptions of the
lemma

mi(B*) < mi(fi(F + eB") N P) = mx((F + ¢B*) N P) .
Letting ¢—0 we get mu(B*) < mu(F NP)=me(F). The lemma
follows.

(&%

For an index set I we call the system (P,, %5,),x €I, a continuous

@
partition of R™ if

(i) {P,|x €I} is a collection of disjoint closed sets in R" and
9%, C 7 is a non-empty continuous collection for every x €1,
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(ii) R*=UP,,P,= U B for every x €I, and

el BeR

(iii) for every F €7 the set U B (F NP, isin 7, where §,
o€l

is the set transformation defined by 73, as in (3.4).
3.9. Lemma. Let f be a regular set transformation which is continuous
from the outside and let the system (P,, 7%,),« €1, be a conlinuous par-
tition of R™ such that

(i) for every F€T and «€I, f(FNP)=fF)NP,, and
(ii) f s rounding with respect to every V3, ,x €1 .
Then f is convergent and for every F €7,
lim fi(F) = U B* €7,
i a€l

where BE = N iy s Ai = BJL(F)N P, and BE € % . unless B¥ = 0.
i=1

a *

Proof. Put A; = U 4.y, ¢ € N. Hence, fi(F)C 4; for every ¢ €N .

aEl
and A; is compact because (P,, %)) ,x €I, is a continuous parti-
tion of R". Furthermore, A4;D4,D... because A [f(F)NP,]D

BLFTEF)NP,] for all {€N,x€I. Hence [Ai=limd; by

Lemma 1.5.
Since 4;,, € P, forall ¢1€N ,x€Il, and P,,x €I, are mutually
disjoint, we have NA4A:=NUA4,)=UN4;,) =UBE. Hence
i o€l i

i o€l i €l
(3.10) UB¥=1m4;€7.
a€l i
Now assume that {fif(F)} is any convergent subsequence of {f(F)}
and limfi(F)=E. Put F* = UB¥. To prove that limfi(F) = F*.

J «€l i
we need, by Corollary 1.7, only to show that E = F* . since every f'(F),

1 €N, is included in the compact set A4,.

Since every fi(F) CA,-J,, we get E C F* by (3.10). On the other
hand, choose any B¥ «x€I. If FNP,=0, then O=B;CE.
If FNP, # @, then by Lemma 3.5, lim f{(F N P,) = B% € “%_. Thus.
for any r > 0 we can find an index 4’ such that

B¥cf'(FNP,) + rB* and f'(F)CE 4 rB.
Hence by the monotonicity of f,
B¥cf'FNP)+rB cf'(F)+rB c (E + rB") + rB",
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which implies B¥ C E, since r > 0 was arbitrary. Thus, F* = |J B
o€l
C E, which proves the lemma.

3.11. Let Sym be a k-dimensional cap symmetrization in R",2 <
k<mn—1, and let 7" denote the symmetry plane of Sym ,J the sym-
metrizing axis and 7' the half-plane which defines Sym . We associate
with Sym two (k — 1)-dimensional cap symmetrizations Sym;,¢ =1, 2,
as follows. Choose two mutually orthogonal unit vectors a, , @, perpen-
dicular to T . Put

Ty, =1Ts+ ENay) , Ty =T + {tay | t = 0},

and let Sym; denote the (kK — 1)-dimensional cap symmetrization defined
})Y T;s,izl,‘Z.

For the following lemma let K(x) denote the symmetrizing sphere
of Sym through x for all x € T,, Let 3, denote the collection of all
closed caps of K(x) with centre z, and if K(zx) = {z}, let {{z}} = 7. .

3.12. Lemma. If Sym; and Sym, are closed set transformations, then
f=Symyo Syim; is a regular set transformation, and for every xz €T, f
is rounding with respect to 3. and

(3.13) fF) N E(x) = f(F N K@),
(3.14) mi(f(F) N K(x)) = mp(F O K(x)) for every F €7 .

Proof. The set transformations Sym,; and Sym, are regular because
they are closed and symmetrizations. Therefore, f is also regular.

To prove the other parts of the lemma let g, a5, a,, ..., a be unit
vectors such that ap,a;,as,...,a are mutually orthogonal and per-
pendicular to J, where a;,a, are the unit vectors in 3.11, and «, is
fixed by the condition 7'y =J - {ta, |t = 0}. Further, let 7; b= the
svmmetry plane of Sym;,i=1,2.

Now choose x €7, and let K = K(x) be the symmetrizing sphere
of Sym through x. We can assume that K == {z}, for the case K = {x}
is trivial. Then there exists z € J and 7 > 0 such that

K= ({2} + B Yag, a1, ...,a)) NSz, 7).
Put for every t € [—r, 1]
Iy(t) = {z + ta)} + E¥ay, a5, 05, ..., i),
Lo(t) = {z + tay} + E¥ay , a5, . .., az) .

Kt =L)ynS"Yz,r),i=1,2,
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whence K;(f) is a symmetrizing sphere of Sym; and, in particular,

(3.15) = U Kit),i=1,2.
t€[—r,r]

Hence from (3.15) we deduce that (3.13) is valid, and by Fubini's
theorem we see that (3.15) implies (3.14).

It remains to prove that f is rounding with respect to the collection
B,. Clearly by (3.15) f(B) =B for every B€ %,. Let F€7 be
such that F € B, F =+ B for some B € 93,. Thus, we must show that
there exists ¢ € N such that fi(F)C B’ for some B’ € “%,,B'CB, B
=# B . Observe that B cannot be the point x.

Let H be the boundary of B with respect to K . Then by the posi-
tion of Sym, it is easy to see that for every compact set 4 C B, and
for every ¢ €[—r,r], the following result is valid:

(3.16) If K ()N (BN A) =@, then K ()N H c H\Sym;(4).

Now since F # B, there exists an open cap ¥V of K such that V C
B\F. Put FF=B\VOF. If K;6)NVNH # @ for some K.
t €(—r,r], then (3.16) implies @ = H\Sym, (F') C H> Syvm, (F).
Hence we see that

(3.17) H\ Sym, o f(F) £ O .

If K;()NVNH=@ for everv Kt),t€[—r,r], then clearly
B\ Sym, (F’) is an open cap of K, and further B\ f(F’) iz an open
cap V', whose centre is in 7, N K C K N L;(0) = K,;(0). Thus. either
KonNnvVvnH=+0 o H=0. If K@ONVNH=0. then
arguing as above we find that (3.17) is again valid.

If H= @, then B= K and B\ Sym, o f(F’) is an open cap V" of
K, and the centre of V" is the point K;(0) N (I'\T,,) = K N (T\T,),
whence Sym, o f(F’) = B\ V" = B’ € %, which implies f%F)C f}F’)
C B CcB,B #B, and there is nothing more to prove. So we can
suppose that (3.17) is valid, and H = 0.

To prove the rounding property of f it is sufficient to show that

(3.18) H\fi(F) = H for some j€LN.

Since H # @, it is a (k — 1)-dimensional sphere <o that for some
tH € (_7‘ s 7')

H = [{z + tgayt + E¥ay . ay, ..., a)] NSz, 7).
whence especially, H = K,(ty). Now we write for everv 4 CH

Z[Al= U K@GNH.

K,()n4d = 0



JUKKA SARvVAS, Symmetrization of condensers in n-space 21

Then if U 1is an open cap of H with the centre y,{y} = Ky(fy) N
(T2\\\T.‘Zs) , S0

(3.19) my_(Z[U]) = 2my_y(U), unless Z[U]=H .

On the other hand, if H\Sym, o fi(F) = @ for some 7 € N, then
Hf*Y(F) = U; is an open cap of H with the centre y, since H =
K,(ty) . Hence (3.16) implies

Z[U;] ¢ H\Sym, o f*}(F) ,
whence by the definition of Sym, the inequality (3.19) vields

(3.20) my_1(Uir1) = 2my_(Uy) . unless U, = H .
Now H\Sym, o f(F) # @ by (3.17), whence we get from (3.20), m,_,(U;1)
= 2%m,_,(U;) for every ¢ €N, unless U,., = H. Thus, (3.18) must

be valid for some j € N, which proves the lemma.

3.21. Lemma. Let Sym be a k-dimensional cap symmetrization in
R.2<k<n—1, and let Sym; and Sym, be two (k— 1)-dimen-
sional cap symmetrizations associated with Sym as in Lemma 3.12. If
Svm, and Sym, are closed and smoothing, then

Sym (F) = lim (Sym, o Sym, )'(F)

1

for every F € 7.

Proof. Let J,J; and J, be the symmetrizing axes of Sym, Sym,
and Sym,, respectively, and let 7T, be the half-plane which defines
Sym . For every x €7, let K(x) and "%, be as in Lemma 3.12 and
put f = Sym, o Sym, .

Choose F € 7. To prove the existence of lim f/(F) we apply Lemma

3.9 for which we put I =T, ,{P, |~ €1} ={K() x €T}, and W, =
%, whenever P, = K(x). Consider the validity of the assumptions of
Lemma 3.9. First f is regular and by Lemma 2.10, continuous from the
outside. It is easy to see that the system (K(x), %),z €T, is a
continuous partition of R". The assumptions (i) and (ii) of 3.9 are

valid by Lemma 3.12. Furthermore, by 3.12
(3.22) mi(f(F)N K(x)) = my(F N K().r€T,. FE.

Hence. if F €7, then limfi(F) = U B* by Lemma 3.9. where

€T
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I
[
(3]

0 if Ke)NF—0,
* o)
B = N B(f{(F N K(x))) € P, otherwise.
i1

Thus, Sym (F) = lim f{(F), if

(3.23) B¥ = Sym (F)N K(z) , for every z €1T,.

If Ke)NF =60, then SymF)NK(x)=@, and (3.23) holds.
Assume K(x)NF 5 @ . Then B} € %,, and in addition, since f is
smoothing and (3.22) is valid, we get by Lemma 3.5, mi(B¥) = mi(F N K(x))
= mi(Sym (F) N K(x)), whence, by the definition of Sym, the equa-
tion (3.23) is again valid, and this proves the lemma.

3.24. To prove a similar corollary for Steiner symmetrizations. we
need the following lemma.

3.25. Lemma. Let two straight lines L, and L, in R2? intersect cuch
others at a point x in an angle y > 0 such that y/x is irrational. If 1 > 0
and I C8S = 8Yx,r) is an open arc and ¢;: R*— R* a reflection in
Li,i=1,2, then for some m' €N

m/’

u1 (@22 g0)") = 8.

Proof. We use complex notation with ¢ = V=1 as the imaginary
unit. We may assume that S = {e? | ¢ €[0, 27)}, L; is the real axix
and L, = {te” |t € R'}. Hence for every ¢7 €S, q(?) =¢"" and
72(€'?) = =9 | whence

(3.26) (9o = )"(€) = €C™D € X

Let the centre of the arc I be the point ¢?. To prove the lemma it
suffices to show that the set B = {(g, = g;)"(¢”) | m € N} is dense in & .
Now B = {®™ ) 'y € N} according to (3.26), and thus we need only
show that the set B’ = {¢"™ 'm € N} is dense in S.

Now if I, m €N and [>m, then €77 5= ¢ because otherwise
Ay == 2my + k27, for some k=0,-+1,42,..., which implies
y|n = (2;%’ and this contradicts the irrationality of y/x. Then B’
is an infinite set and it has at least one accumalation point in S, which
implies that every point of § is an accumalation point of B’. sinee
B'D{z"!m €N} for every z € B’. The lemma follows.
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3.27. Let Sym be a k-dimensional Steiner symmetrization in R",
2<k=<mn, and T its symmetry plane. We associate with Sym two
(k — 1)-dimensional Steiner symmetrizations Sym;,i = 1,2, as follows.
Choose two unit vectors b; ,b, such that they are perpendicular to 7',
angle (b, ,by) =y > 0 and p/n is irrational. Let Sym; be the (k — 1)-
dimensional Steiner symmetrization defined by the plane T - EYb:),1
=1,2. For the following lemma let L(x),x €T, denote the sym-
metrizing plane of Sym through z, and let ‘%, C 7 denote the collec-
tion {L(z) N B*(x,r)|r> 0} U {a}.

3.28. Lemma. If Sym;,:= 1,2, are closed, then f= Sym,sSym,
is a regular set transformation which is rounding with respect to %, for
every x €T, and

(3.29) )N L) = f(F N L),
(3.30) mu(f(F) N L(x)) = mu(F N L(x)) , for every F € 7.

Proof. The set transformations Sym; and Sym, are regular because
they are closed, and thus f is also regular.

To prove the other assertions let @, ..., a be mutually orthogonal
unit vectors such that every a; is perpendicular to 7' and a; € E?* (b;, by)
for i = 1,2, and let &] and b; b> unit vectors in E? (b, , b,) such that b;
is orthogonal to b, for i = 1,2. If @ € T, then L(x) = {x} + E*(ny ... .,
ar), and for every ¢ € R!

Ly(t) = {x -t} + E*'by a5, ..., ),
Ly(t) = {x + thy} + E*Y(by, a5, . . ., @)

are the symmetrizing planes of Sym; and Sym,, respectively. Further-
more,
(3.31) Lx)=UL(t),i=1,2.

tER!

Now (3.31) clearly implies (3.29). By Fubini's theorem (3.30) follows
from (3.31).

We must still prove that f is rounding with respect to “%,. Clearly,
by (3.31), f(B) = B forevery B € “%,. Let F € 7 be such that F'c B,
F £ B for some B € 9%, . Then we have to show that there exist + € N
and B’ €%, such that f{(F)c B c B,B =% B. Obviously B can-
not be the point .

Let H be the boundary of B with respect to L(z). We need only
prove that for some ¢ €N, H\f(F)=H. Let C=HNJM,. where
M = {x} + E2(b,,by) . By the position of the symmetrizations Sym,
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and Sym, we see that for every compact set 4 € B and for every L;(t) .
t€ERY, i =1,2, the following holds:

(3.32)  if Li(t) N (B\A) # @, then Li(t)N H C H\ Sym; (4).

Let gi: M — M be the reflection in the 2-plane M with respect to the
straight line {a} + E'(b;),7=1.2. If we define for every 4 C (',

Z(d)= U L#®NH,i=1,2.

LinA-0
then clearly Zi[A] = ZJA U gi(4)],i=1,2.

Now since F £ B, there exists an open ball B*y,r),y €B,r > 0.
such that B"(y ,r) N BC B\F. Hence there exists an open arc I of
C' such that if Ly(t)NI £ O, then L, ({)N (B\F) = 0. But this
implies by (3.32) that IUg()CZ[I]C H\Sym, (F), whence
also by (3.32)

H\f(F) 3 Z[I U gy(I)] = Z,[T U g,(I) U g, (I U g5(1))] D

Zy[I U gy o gy(I)] .

Continuing in a similar way we get

(3.33) AN fE)D Z[TUU (goenVU)] 0= 1.2 ...,

j=1

i

But now by Lemma 3.25 there exists m € NV such that ' = U (g, = ¢,)'({) .
i=1

whence by (3.33). H N f™(F)D Z,[C] = H . which proves the lemma.

3.34. Lemma. Let Sym be a k-dimensional Steiner symmetrization in
B, 2<k=n, and let Sym,;,Sym, be the two (k — 1)-dimensional
Steiner symmetrizations associated with Sym as in Lemma 3.28. If Sym,

and Sym, are closed and smoothing, then

(3.35) Svm (F) = lim (Sym, = Sym, ) (F) for every F € 7.

Proof. Let T be the symmetry plane of Sym and let, for every « € T .
L(z) and “%, be as in Lemma 3.28. Put f = Sym,o Sym,; and choose
Fe7. To prove (3.35) we apply Lemma 3.9 to f, where [ =T1T,
{Pylo€l}={Lx)|x€T}, and B,= MB,, whenever L(z)=P,.
Hence, arguing as in Lemma 3.21, we see that Lemmas 3.9 and 3.5 with
the preceding Lemma 3.28 vield (3.35).
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4. Further properties of cap and Steiner symmetrizations

In this chapter we prove that every symmetrization is open, closed,
and smoothing. We first show that l-dimensional cap symmetrizations
have these properties. We then show that 1-dimensional Steiner symmetri-
zations have these properties by establishing a connection between 1-di-
mensional Steiner and cap symmetrizations. Finally, using the results
3.21 and 3.34 we prove by induction that all symmetrizations have these
properties.

£.1. Every l-dimensional cap symmetrization in R" has, by defini-
tion, an (n — 1)-dimensional symmetry plane and 1-dimensional sym-
metrizing spheres. To treat these symmetrizations in detail we consider
some geometrical properties of an arbitrary 1-dimensional sphere K C R"
with centre z, and radius r> 0.

For every m;-measurable set 4 C K we define the angle measure

1
@(4) by the formula ¢(4) = 7m1(A) . Forevery 0 <6 <z and ACK
we call the set

(+2) parg (4) = U {y € K | angle (y — 7y, 2 — 2,) = 0}

€4

the parallel set of A in K with the radius 6.

1.3. Lemma. (1-dimensional Brunn-Minkowski inequality in spherical
geometry) Let A c K be a closed set and I, «a closed arc of K such that
o(A) = ¢l 4). Then

glpar, (4)] = ¢ [par, (1y)].
for every 6,0 <0 = .

Proof. If A = K . the lemma is trivial. If 4 = A, then K\ A4 con-
sists of countably many disjoint open ares I, I, .... If () = 20
for every I;, then par, (4) = K and the lemma holds. If ¢(I;) > 20
for some I;, then ¢(A4)= ¢, <27 — 20, and ¢ [parg (4)] = @(4)
+ 20 = ¢ [par, (1,)] .

4.4. Theorem. Every 1-dimensional cap symmetrization is open, closed,
and smoothing.

Proof. By Lemma 2.14 we need only prove the smoothing property.
Let Sym be a l-dimensional cap symmetrization, F a closed set in R"
and ¢ > 0. We must prove that
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(4.5) Sym (F + ¢B") D Sym (F) + ¢B".

Let J be the symmetrizing axis of Sym . Choose any z,€ Sym (F)
and let K(z,,7,) denote the symmetrizing sphere of Sym through =,
with 2z, €J and 7, =0, and put

A=K(z,r)NF and A* = K(z,,7,) N Sym (F) .
Hence, to prove (4.5), we need only show that
(4.6) A* + ¢B"c Sym (4 + ¢B").

Clearly we can suppose that 7, > 0. Let z€J ,r =0, and let K(z.r)
be the corresponding symmetrizing sphere. We write

I=K@E,nNSym (4 + ¢B") and I* = K(z,r)N (A% - ¢B").

Then to establish (4.6) it suffices to show that I* ¢ I. or equivalently,

(4.7) p(I*) = o(I),

since [ and I* are either simultaneously empty or two concentric, pos-
sibly degenerate, arcs in K(z,7). We can suppose that 'z — 3,2 L
r — 2 = ¢%, for otherwise I =1I*= @, and that r > 0, for the

case r =0 is trivial. Dofine a mapping p: K(z,7)— K(z.7) by
setting

p(x) :2—1—7—_0(&3—20),1’611’(20,)‘0),
and consider, in the spheres K(z,,7) and K(z,r). the parallel sets
defined by the formula (4.2) with the fixed radius 0 = 3¢[K(z,r)N
B*a,,q)]. It is not difficult to verify the following results: for every
my-measurable set D < K(z,, 1)

(4.8) K(z,r) 0 (D + qB") = par, [p(D)],
(4.9) parg [p(D)] = p [pary (D)], and
(4.10) ¢ [p(D)] = @(D) .

Now applying first the definition of the 1-dimensional cap symmetriza-
tion and then the formulas (4.8—4.10) we get

(411) @)= @[K(z,r)NSym (4 + ¢B")] = ¢[K(z.r) N (4 — 4 B")] =
¢ {parg [p(A)]} = ¢ {p [parg (4)]} = ¢ [par, (A)].
Similarly, we get

(412)  g(*) = ¢ [K(=, ) N (A% + ¢B)] = ¢ [par,, (4%)] .
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By the definition of Sym the set A* is a closed arc and @(4) = g(4*).
Hence, equations (4.11), (4.12), and Lemma 4.3 imply the inequality (4.7),
and the proof is complete.

4.13. The connection between 1-dimensional Steiner symmetrizations and
1-dimensional cap symmetrizations. Let Sym be a 1-dimensional Steiner
symmetrization defined by an (n — 1)-dimensional plane 7'C R*. We
associate with Sym a 1-dimensional cap symmetrization § and a homeo-
morphism ¢:G—G',G and @' domains in R", such that

(4.14) Sym (4) =g o8 eg(4)

for every 4 € Dom (Sym)N{BCR" | BcG'}.

Choose an (n — 2)-dimensional subplane J of 7T and two mutually
orthogonal unit vectors «,b such that @ is perpendicular to 7' and b
is perpendicular to J. Let S denote the 1-dimensional cap symmetri-
zation defined by the half-plane T\ =J - {tb |t =0} cT . Hence,
J is the symmetrizing axis of S and 7 is the common symmetry plane
of § and Sym.

For every x € R"™\J let z(x)€J and r(x) >0 be such that =z
is in the symmetrizing sphere K(z(x),r(x)) of S. Put ¢(x)= sign
[(* — z(z)) - a] angle (x — 2(z),b), and let p(x) be the point K(z(x),
r(@)) N T,. Further, put G = R™\_ cl ("\T) and G = {x € R"™\J |

lp(x)| << arctan zr}, where 0 < arctanzz << z/2, and define the mapping
(4.15) g:G@—G ,g@x) =p)+ ¢gy@)e,x €G.

Clearly ¢ is a homeomorphism and by the construction of g we see that
(4.14) holds.

Using the above notation, we represent Sym (4), for every 4 €
Dom (Sym), in terms of S. Do:fine, for every ¢ €N, the translation

(4.16) ti: R*— R  t(x) =ax + ib,x €R".

Now for every 4 € Dom (Sym) we get Sym (4) = t;7' o Symo#; (4),¢
=1,2,..., and, since A is bounded there exists ¢, € N such that
t:(A) c G' for every % =i,, whence by (4.14)

(4.17) Sym (A) =t ogoSogloti(d), for i =iy,.

Consider now the mappings ¢:G—G and ¢g':G¢'"—G. By a
straightforward calculation we easily see that for every s> 0 and
e > 0 there exists 4, € N such that g¢g(x),gx) € B"(x,¢) for every
x €t(B"z,s)),t =1t and z €J . Using this result and the above nota-
tion, we easily get:
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4.18. Lemma. If 0 <e<<s, then there exists iy, € N such that if
1t =1y, then t(B"(z,s)) S G for any z €J and for every compact set
A Ct(B"(z, s))

(i) gd)cAd+ebB,
(i) g4)c 4+ B,
(iii) Acg(d + e B") and
(iv) Acg(4+eB).

Using the above lemma we now prove:

4.19. Lemma. Let Sym be a l-dimensional Steiner symmetrization,
S the 1-dimensional cap symmetrization associated with Sym as above and
t;: R*—~ R",1 € N, the translations in (4.16). Then, for any compact set
Fc R and r> 0, there exists i, € N such that for all + =1,

(4.20) Sym (F)ct;7'eSoty(F + rB") and
(4.21) t7'eSoty(F) c Sym (F 4 rB").
Proof. Let F be a compact set and r > 0. Let J be the symmetri-

zing axis of S, z € J, and choose 5 > r so that F c B" (z —) Then, for

r
s and &= 5 choose i, € N such that the conditions (i)—(iv) of Lemma

r o _
4.18 hold. Hence, &(F) 4 3 B"c ti(B"(z,s)) for all ¢ € N, and by (ii)

and (iv) of 4.18 we get for every 1 =1,

ro_
(422) g—l o ti(F) C t,(F) —+ E B ’

)

(4.24) t,-(F+—r2-B) g—l((F+ B) B)

Since z€J, we get S(t(B" = t;(B%(z,s)). By (422) we get
g lo t:(F) c ti(B™(z,9)), and S0 S gloty(F) c ti(B*z,s)) for all
i = 1. Hence by (i) of 4.18

(4.23) t(F)cg‘l( ti(F) +

l\ﬁ

m[*

ro_
(4.25) gl ogroti(F) CSog tot(l)+ 5 B for @ =i,.
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Similarly we find that S ot(F) Ct(B"(z,s)),t =1,, and then by (iii)
of 4.18

(4.26) Sot(F)C g(S o ti(F) + % B") ,1 =,

P4

To prove (4.20) we fix 4 =1, and observe that #(F)c G'. Then
using (4.17), (4.25), the smoothing property of S proved in Theorem 4.4,
and finally (4.22) we get

r o _
Sym(F):ti_logoSog_loti(F)Ct;l(Sog“lot,-(F)—{—EB">C

ro_ ro_ ro
tf‘oS(g—lot»-(F)+§B">ct:‘<>8(t.~(F)+_—ZB"+§B"):

t7' o Soty(F + rB"),
which proves (4.20). To prove (4.21) we again fix ¢ =14, and observe
that &(F + rB") c t:(B"(z, s)) ¢ G'. Then using (4.24), the smoothing
property of § and (4.26) we get

Sym (F 4+ rB") =t;*ogoSogtot(F + rB") =
r o _ r _ r o _
ti—logoSog_1<ti(F—!—§B") —’—EB") Dt;logoS(ti(F—}—TzB")):

r _ r _
t-‘logoS(ti(F) +§Bn>:ti—log(soti(1?)+§Bn>:>ti—losot,~(F),

1

which proves (4.21).

4.27. Theorem. Every l-dimensional Steiner symmetrization s open,
closed, and smoothing.

Proof. We employ the same notation as above. If A4 € Dom (Sym),
then by (4.17) there exists i €N such that ti(d)c & and Sym (4)
—t7'ogoSoglot(d). Since g and # are homeomorphisms and S
preserves open and closed sets, Sym (4) is open or closed according
as A is open or closed.

To prove the smoothing property of Sym we use Lemma 4.19. Let F
be a compact set and r > 0. Then we have to show that Sym (F -+ r B
O Sym (F) 4 rB*. For this, it suffices to show that

(4.28) Sym (F + rB") D Sym (F) + r' B

for every 7,0 < < r. To prove (4.28) put »” = §(r — r’) . By Lemma
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4.19 we can choose i €N so that Sym [(F -+ (' +¢")B") ++"B"]D
t7 o S ty(F + (' - r")B") and t;7'oSot;(F - " B") D Sym (F). These
relations and the smoothing property of S yield

Svm (F 4 rB") = Sym [(F + (' + #")B") + +"B"] D
17 e Sty (F + (7 = 0")BY) =7 o S@t(F 4 »" B*) -+ B") D
t7' e Soty(F + " B") 4 ' B D Sym (F) + ' B",

which proves (4.28).
We now are ready to establish the main properties of symmetrizations.

4.29. Theorem. Kvery cap symmetrization in R" is open, closed, and
smoothing. Further, if Sym is a k-dimensional cap symmetrization, 2 = k
<mn — 1, then there exist (k — 1)-dimensional cap symmetrizations Sym,
and Sym, such that
(4.30) Sym (F) = lim (Sym, < Sym,)'(F)

i

for every compact non-empty set F c R".

Proof. We proceed by induction. By Theorem 4.4 every 1-dimensional
cap symmetrization is open, closed, and smoothing. Let 2 =k =n — 1,
and assume that every (k — 1)-dimensional cap symmetrization is closed
and smoothing. Let Sym be a k-dimensional cap symmetrization. Then
by Lemma 3.21 we can choose two (k — 1)-dimensional cap symmetri-
zations Sym;,? = 1,2, such that (4.30) is valid. To prove that Sym
is smoothing we observe that by (4.30) and Lemma 2.4 for every F € 7

(4.31) Sym (F + »B") D Sym (F) 4+ rB",

since Sym;,¢ = 1,2, is smoothing. L2t J be the symmetrizing axis cf

Sym. If A is any closed set in R*, then 4 = F;, where F;=
i=1 ©

AN BYz,i),t €N, and z€J. Hence, Svm (4)= U Sym (F;).
i=1

If >0, we get by (4.31)

Sym (F; + rB") D

D

Cs

Sym (4 + rB*) = Sym (U (F; + rB")) =]

=1 i

HCg

Cs

(Sym () + rB) = (U Sym () + rB* = Sym (4) + B,
i=1

1

i

and thus Sym is smoothing. Hence, by Lzmma 2.14, Sym is open and
closed, and the proof of the theorem is complete.
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4.32. Theorem. Every Steiner symmetrization in R" is open, closed, and
smoothing. Further, if Sym is a k-dimensional Steiner symmetrization,
2<k<mn, then there exist (k — 1)-dimensional Steiner symmetrizations
Sym, and Sym, such that

(4.33) Sym (F) = lim (Sym, o Sym, ) (¥)
for every compact non-empty set F c R" .

Proof. Proceeding by induction, similarly as in the previous theorem,
we see that the theorem follows from Theorem 4.27 and Lemmas 3.34,
2.4, 2.10 and 2.3.

4.34. Remark. In the preceding theorems we used the 1l-dimensional
Brunn-Minkowski inequality to establish the smoothing property of 1-
dimensional cap symmetrizations and, from this, we derived the smoothing
property of all symmetrizations.

On the other hand, the general Brunn-Minkowski inequalities can be
easily proved by the smoothing property of Steiner and cap symmetri-
zations. These inequalities are the following:

(4.35)  (k-dimensional Brunn-Minkowsk: inequality in spherical geometry,
see [10]) If K is a k-dimensional sphere in R*,1 <k <=n —1,
A a closed set in K and 0 <0 ==, then my[par, (4)] =
my [par, (I4)], where I, is some closed cap of K with mu(l,)
= mi(A) and pary (B) =U{y €K angle (y —x,,x — v = 0}

xEB
for every B c K, where z, is the centre of K.

(4.36)  (Brunn-Minkowski inequality in euclidean geometry, see [3, p. 174—
175]) If 4 is a compact set in R* and B a closed ball such that
m(4) =m(B) and r>0, then m(d +rB*) =m(B -+ rB").

In fact, to prove (4.35) let K, 4,1, and 0 be as in (4.35), and let
Sym be a k-dimensional cap symmetrization with A as a symmetrizing
sphere and I, = Sym (4). Clearly » > 0 can be chosen so that parg (4)
= (4 +rBYNK and par, (I4) = (I, +~rB")N K. Now Sym (4 -~ rB")
DSym (4) +rB"=1,-+ rB*, since Sym is smoothing. Then

my [parg (4)] = mi [(A +rB")N K] = mi [Sym (4 — rB)N K] =
my, [(Sym (4) 4 rB") N K] = my [par, (1))] .

which proves (4.35). Similarly (4.36) can be proved using the smoothing
property of n-dimensional Steiner symmetrizations.
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The idea of proving (4.35) and (4.36) by symmetrizations is well-known
and was used by Schmidt [10] and by Hadwiger [3]. Hadwiger, however,
uses Steiner symmetrizations in a different way than we, and Schmidt’s
symmetrizations are not cap symmetrizations as we define them.

5. Condensers and p-capaecity

In the first chapter we defined a condenser in R" and its p-capacity
for p >> 0. In this chapter we give further results concerning these con-
cepts and, in particular, an equivalent definition of the p-capacity.

5.1. Lemma. If Sym s a cap or Steiner symmetrization and (A, C)
a condenser such that A € Dom (Sym). then (Sym (4),Sym (C)), the
symmetrization of (A ,C) under Sym , is also a condenser. If, in addition,
(A, C) 1is ringlike, then (Sym (4),Sym (C)) s also ringlike.

Proof. Since symmetrizations are open, monotone, and preserve com-
pact sets, (Sym (4),Sym (C)) is a condenser. If (4,C) is ringlike,
then by definition AN C, R"™~ 4 and C are connected. Then A4 and
B™\C are also connected, since C C 4. Hence, by Lemma 2.15.
Sym (4), Sym (C) . BR*\Sym (4) and R™\Sym (C) are connected. Thus
the components of R™ (Sym (4)\Sym (C)) are Sym (C) and R™.
Sym (4). Since Sym (4) is open, Sym (C) is closed, Sym (C) C Svm (4)
and both Sym (4) and R™ Sym () are connected, the Phragmen-
Brouwer theorem [5, p. 359] implies that Sym (4)\ Sym (C') is a domain.
Hence (Sym (4).Svm (C)) is ringlike, and the proof is complete.

5.2. The condenser (4’ C’) is said to separate the condenser (4 , (') if
A'cd and CcC’. If (4".C") separates (4 .(C). then forall p > 0

(5.3) cap, (4, ) = cap, (47.C).

since then WA . C)c W(d.C). see (1.1).

We call f:R"— R" orthogonal if f is linear and f(v) = a, for all
x€R". If f:R"— R" is an orthogonal mapping or a translation, then
for everv condenser (4 .C) and p > 0

(5.4) cap, (4, 0) = cap, (f(4) . f(0)) ,

since |J(ws f)(x) = [Ju(f(x))] whenever u € W(A4,C) and Ju(f(z))
exists. In other words, the p-capacity is invariant under translations and
orthogonal mappings.

We sayv that a condenser (4 ,C) is bounded if A is bounded.
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5.5. Lemma. If (4 ,C) is a condenser, p > 0 and &> 0, then there
exists an r> 0 and a bounded condenser (A’ ,C') such that A’ -+ rB"
cA.C B cC and cap,(4,0)+ & =cap, (4", ().

1 \?
Proof. Choose 0 < a <1 such that (T—__c;) (capp(4d ,0) + a) =

capp, (4 .C) - ¢, and choose u€ W(4,C) such that f |SJulP dm
Rn

< capp(4.0)+a. Put B={x€R"|0=u() <1}, whence B is

a compact subset of A by the definition of W(4, C). Let r=

L F

3 2
w(@)}) > 0. If we now put A’ =B+ rB* and ' =0C+ rB*, then
(A’ ,C') is a bounded condenser such that A +rB*cA and C +
r B = ¢’ . Furthermore, if we define v : R — R' by setting

r -
min{ Loy }, where 7, =d(B,C4)>0 and r,=d(C,{z€R"|a=

lo, if 0= u) =a,
v(x) = ") —
][ Z(l“_):?ﬁ , if e < u(x),

then « € W(4’,C’), and thus

1 p
capp (A" . (") éf vt dm é(r:;) (f ulP dm) =

R™ RM

1 \?
(1——_a> (capp (4, C) 4 a) = cap, (4 ,0) + &,
which proves the lemma.

For the sake of completeness, we have defined the p-capacity of a con-
denser for all p > 0. In fact, the following lemma shows that the only
interesting case is p =1.

5.6. Lemma. If 0 <p<1, then cap,(4,0)=0 for every con-
denser (4 .0).

Proof. Choose a compact polyhedron P so that P is a finite union
of closed cubes in B* and € € P C A . Then cap, (4,C) = cap, (4, P)
by the separation inequality (5.3). Let 0 <r < min{l, d(P,CA)} and

1
define u:R"—R' by wu(r)= min {1 - d(x, P)} for xz € R". Then
u€W(4.P) and
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1 —
- for almost every x € (P + rB")\ int P

[Vu(x)| =
0 for z € C((P + rB™)\\int P).
Then
1
capy (4,0) < [ Iulrim — [ Lam =
(5.7) R® (P-+rB™)\int P

k. dm - 1
,2'1 / o = k(d + 2r) 27‘7;,
Q;+rB"

where @ ,.., Q. are the (n — 1)-dimensional cubzs which form oP,
and d = max {d(@;) ,..,d(Qw}. Letting r tend to zero in (5.7), we
obtain the lemma.

5.8. In the definition (1.1) of the p-capacity of a condenser (A4, ()
the set W(4 , C) can be replaced by several of its subsets without changing
the value of cap, (4, C). Next we define such a subset of a very special
kind; it will be used, modifying an idea due to Anderson [1], in the proof
of the capacity inequality for 1-dimensional cap symmetrizations.

By a proper polyhedron. P in R"™ we mean a compact set which is
a finite union of n-dimensional simplices. A triangulation 7' of a proper
polyhedron P is a finite collection of n-dimensional simplices such that

P=yA and, for any A’,A” €T, the intersection /.’ N /" is
A€T
either empty or a (£ — 1)-dimensional side or edge common to the sim-

plices A’ and A", where 1<k <n. A mapping wu: R"— R™ is
said to be simplicial with respect to the triangulation 7T, if the restriction
u | /A is affine for every A €7 .

5.9. Definition. For a condenser (4 ,C) a function w € Wyd.C) if
and only if w € W(A ,C) and there exist a proper polyhedron P < AN C
and its triangulation T such that

(1) w ds identically equal to O or 1 in every component of CP
(i) w is simplicial with respect to T , and

(i) if ay, @y, ..., a are the values assumed by w at the vertices of
the simplices in T, then for every a € (0,1)\{a;,....a} the
preimage w{a} consists of finitely many (n — 1)-dimensional sim-
plices whose normals are not perpendicular to the plane E2(e, _, . e,) .
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5.10. Lemma. For every condenser (A ,C) and p =1

capp (4 , C) = inf f |SVulPdm .

uEW(4,C)
Rn

Proof. Given &> 0. Choose v € W(4,C) such that
(5.11) [ 15epam < eapp (4, 0) + 5.
Rn

Using Gehring’s technique [2, p. 502, Remark 5 and p. 504, section 7]
of truncating, smoothing by integral averages, and triangulation of funec-
tions, we can form a piecewise linear approximation w of » such that

we WA, ),

(5.12) f |VolPdm + % ;f [\wlpdm
R™ R™

and for a propasr polyhedron P’ < ANC and for its triangulation 7"

(5.13)  w is identically equal to 0 or 1 in every component of CP’,
and w is simplicial with respect to 7.

Now let a;,...,a be the values assumed by w at the vertices of
the simplices in 7. If A\ €T’ and w |/\ is not constant, then w | A
is an affine mapping and its level surfaces are parallel (» — 1)-dimensional
simplices. Then if a € (0, 1)\{ay,...,a}, the set w'{a} consists of
(n — 1)-dimensional simplices whose normals belong to a finite fixed set
of vectors, say {pi,...,Pm}, which is uniquely determined by 7"
and w. Combining finitely many suitably chosen rotations of R with
respect to different 3-dimensional linear subspaces, we can construct an
orthogonal mapping f: R*— R* with the properties:

(5.14) f(pi) is not perpendicular to E3(e,_,,e,) for
1=1,2,...,m, and
(5.15) [f(x) — 2| < d(P’, C(AN\C)) for every x €P’.

Finally we put % = wof1. By (5.15) and the orthogonality of

f, then w € W(4,0C) and | |SVulPdm =f |Vw|Pdm . Hence by (5.11)

R R™

and (5.12),
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ot
e
PNy

(5.16) capy, (4,0) 4+ e = f [7uPdm .
R®

Furthermore, u € Wy(A4,C). For if we put P =fP' and T = {fA !
A €T}, then clearly (i) and (ii) of 5.9 are valid for % . On the other
hand, % assumes the values a@,;,...,a at the vertices of the simplices
of T, and if a € (0,1)\{a,,...,a} the preimage uw{a} = flw{a}]
consists of finitely many (n — 1)-dimensional simplices whose normals
belong to the set {f(p,),...,f(pm)}, and so none of them is perpendic-
ular to E%e,_, ,e,) . Hence (iii) of 5.9 is also valid. Thus » € W (4 ,C) c
W(4 ,0C), which, together with (5.16) proves the lemma.

6. The capacity inequality for 1-dimensional cap symmetrizations

6.1. Cap symmetrization of functions. Let u:R"— R' be a continuous
function and let Sym be a cap symmetrization. For every « € B! define
F,={x €R"|u) <a| and G.= {x €R" | u(x) <a}. Then for every
x €R"

(6.2) {a €R' |z € Sym (F.)} + 0.

For, if we write K(x) for the symmetrizing sphere through « € R" and
a(r) = sup uK(x) << co, then for every x € R" we get a € K(r)=
Sym (K(z)) c Sym (F,,) , which implies (6.2). We define w*:R"— R!
by setting w*(x) = inf{a € Rl |x € Sym (F.)},x € R*. The function u*
is called the symmetrization of w under Sym and we write, w* = Sym (u) .
The following holds for w«*:

6.3. Lemma. For every a € R!
(6.4) {x € R* | u*(x) < a} = Sym (F.) and
(6.5) {x € R" | u¥(x) < a} = Sym (G.) ,
whence, in particular, {x € R" | u*(z) = a} = Sym (F.)\Sym (G.) .
Proof. Fix a € R* and put F¥ = {z € R" | u*(x) =< «a}. By the de-
finition of «*,Sym (F.) c F¥. Assume x € F*. Then u*(x) <a, and

so x € Sym (Fy) for every b > a. Thus, for a sequence {b;} ¢ R' with

by >by,> ... and limb; = @, we get, by the continuity from the out-
i

side of Sym, see 2. 10,
x € N Sym (Fy;) = Sym (N Fs;) = Sym (FL,) .
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Hence F* c Sym (F.) and (6.4) holds.
For a sequence {b;} c R' with b; <b, <<... and limb; =a ., we

get, by the continuity from the inside of Sym and by (6.4),
Sym (Ga) = Sym (U G») = U Sym (&) = U Sym (Fi) =

U € R |ub@) < b} — {w € B* | w¥() < a},
which proves (6.5).

6.6. In particular, the above lemma and the continuity of u implies
that w* is also continuous, and because u*{a} = Sym (Fo)\Sym (&) .
we easily see that wK = u*K for every symmetrizing sphere K of Sym .
Further, the function w* is symmetric with respect to the symmetry
plane of Sym .

Next we show that the symmetrization of a Lipschitz function is also
Lipschitzian.

6.7. Lemma. If u:R"— R! satisfies, for some M > 0 and for every
Y1,Ys € R", the condition

(6.8) u(yy) — w(ys) | = M |yy — ¥l

then w* = Sym (u) satisfies the condition

(6.9) (@) — wH(ry)| = I vy — 2y

for every x,,x, €R", where Sym  is a cap symmetrization.
Proof. Let xy,x, € R" and assume u*(vy} = u¥(x,) = @.

Henc> we have to prove that

(6.10) wi(x,) = a -+ Md, where d= x; —a,[>0.

Now {|u@) =a -+ Md}D{x u@) =a + dB* by (6.8). Then by
(6.4) and the smoothing property of Sym

(x| w*@) < e+ Md} = Sym{v  u() =a+ Md} D
Sym [{z | u(x) < a} + dB1D Sym{z | u) = a} + dB" =
[{o | w¥(@) < a} +dB"]3 2.

So z, €{x | w*) =< a4+ Md}, which implies (6.10), and the lemma is
proved.
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6.11. Lemma. If u € Wy 4 ,C) for a condenser (A ,C), then u* =
Sym (u) € W(Sym (4) , Sym (0)) for every cap symmetrization Sym .

Proof. Clearly 0 =< u*(x) <1 for every x € R" because 0 < u(x) < 1.
Since u € W,(4,C), it is Lipschitzian, and so by (6.7) «* is also
Lipschitzian and thus ACL. Since C c{zx|u(z) =<0}, Sym (0)c
Sym {z |u(x) = 0} = {x |u*(x) =< 0} by (6.4). And finally, ¢l {z|u*(x) < 1}
is a compact subset of Sym (4), for {x | u*(x) < 1} = Sym {x | u(zx) < 1}
c Sym [cl {z | u(r) < 1}] c Sym (4), where Sym [cl{z |u(zx)<<1}] is
compact. Hence u* € W(Sym (4), Sym (0)) .

6.12. Theorem. If (4 ,C) is a condenser in R" and Sym is a 1-dimen-
stonal cap symmetrization, then

(6.13)  cap, (4, ) = cap, (Sym (4), Sym (C)), for every p =1.

Proof. By Lemmas 5.10 and 6.11 we need only show that for any
u € W4, 0)

(6.14) f EVu}Pdm,.g‘/‘fVu*lPdmn,
Rn Rn

where u* = Sym (u). Because the orthogonal mappings and the trans-
lations of R™ do not change the p-capacity of a condenser, we may assume
that Sym is defined by the half-plane {x+ € R" |x,_; = 0,2, = 0}. Then
we can identify the symmetrizing axis J of Sym with R""? and use
in R" the cylindrical coordinates (r,¢,z), where z€R" %, r =
(¥:_, + )2 and ¢ € [0, 27) is such that &, | = r-cos ¢, 2 = 7 sin ¢ .
Hence every symmetrizing sphere K(z,7) of Sym, z€J,r =0, is
the set {(r,¢,2) | ¢ €[0, 2n)}.

Since u € W,(4 ,C), there exists a polyhedron P and its triangula-
tion 7' such that w is simplicial with respect to 7', and « | CP is iden-
tically equal to 0 or 1 in every component of CP . Let u assume the
values 0 = ay, < a; <...<<am =1 at the vertices of the simplices of 7',
and define D; = uY(a;_,,a) and Df = w*Ya;_;,a),i=1,2,..,m.
Then to establish (6.14) we need, by Fubini’s theorem, only to show that for
fixed 1€N,0<¢=m, and for m,_;-almost every (r,,z,) € {r € R |
r =0} x R*?

(6.15) f [YVupdm, = / [ Vu* rdm,
K(zpro)ND; K(zo"’o)nD:

for it is not difficult to see that yu* = 0 almost everywhere in the sets
w*Ma;},0 =0,1,...,m. Furthermore, we can assume in (6.15) that
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7o > 0, the symmetrizing sphere K = K(z,,r,) does not intersect any

(n — 2)-dimensional side of any simplex in 7', and KN D; = O .
Since u € W,(4,C), the sphere K intersects every level surface

wa},a €(a;,_;,a), in at most finitely many points. Hence by the

piecewise linearity of %, we can divide D; N K into arcs Hy,..., Hy

such that at the interior points of every H; . is strictly monotone with
ou .

respect to @ and —— is continuous and not zero. Let t; <#, << ... <1,
op

be the values of w assumed at the end points of all the H;. Hence,
for a fixed k£, 1 k<L,

(6.16)  w(tx, ;) N K consists of an even number of open arcs, say
I,,...,1,, such that « is strictly monotone with respect

u
to ¢ in every I; and 8—(;) £ 0 at every point in Ij.

Consider the arcs I; in (6.16). We may assume that they are chosen so

that I;={(rg, @,2) o <@ <pj}.j=1,2,....2M, where 0=,
<P Ry << Po=... =gy < fon = 27, and for instance,

L, ou .
O17) (= W 20 m) > 0 for <y <py, 1 )= 200

On the other hand, the function w#* is symmetric with respect to
{x €ER" |z, = 0}, and u*(r,¢,2) is increasing with respect to ¢ for
0 =<¢ ==z and decreasing for = < ¢ <2z. Hence w* I, t,.,)NK
consists of two symmetric arcs I* and I* . Furthermore. w* is strictly
monotone with respects to ¢ in I* and I*, since my [K 0 u*1{}]
=my [KNu{t}] =0 for every t€ (t.t,.,). Let I* ={(ry.q.z%)!
o <<@<f}, where 0 Zx<f<=m.
Hence to prove (6.15), we need onlyv show that

B
(6.18) %f Gle)dy = 2[(%*((;)(1@:,
aJ
ou)\* 1 [ou ou\* P
where  G(p) = 7, |(Vu)(ry, ¢, %) P = Toli(%;f) —73 (aq) g (az,) }

and similarly for G*(p) in terms of u*,

Next we express the connection between u and w* explicitly. Let
7t (o, Bj) = (t » ty1) e  the homeomorphism  7j(¢) = u(ry, ¢, %) ,
o <@ <P, and put @ =7 (b)) > (%, 6),j=1,2,..,2M.
Similarly, define 7% : (x, 8) = (f , bi1) » TH(@) = ¥ (ry. @, 20) yox <@ <f,
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and put o¢* =t*1:(f,%,,)— (x,8). By the definition of %* and
by the indexing in (6.17) we get

1 1 2M
(619) () = 5 mu(w0, ] N K) = 5(27 — S (=1 %.(t)),

j=1

and then by (6.17)

, ou -1 R
(6.20) p;(t) = {3& (ro» @i(t) zo)J = (— 1" |g;(t)] # 0,

w*

g 1w
(6.21)  ¢*'(t) :[ 3 (To:‘P*(t),Zo)} =3 g 1) *gl(t) > 0.

Using the functions ¢;,1 <j<2M, and ¢* to make a change
of variables in the integrals of (6.18) we get

B; 1

(6.22) > [ — [ (EG% ) 1) >1)dt,
o5 .

(6.23) fG* d(p~*71G* H(t)) ¥ (t)] de .

Hence to prove (6.18) it is sufficient to show that for every t € (t,, f,.,)

(6.24) )y = 2I'*(¢)

2M

where  I'(t) = .,_}:1 Hei®) lo;®)]  and  I*(t) = G*(g*(1)) '¢*' ()] . We

fix t€ (4 ,%,1). By an elementary geometric consideration, equation
(6.19), for fixed ¢, can be extended smoothly into a small neighbourhood
of (ry,7%) . This means that there exists an s > 0 such that C; = w ¢}
N B*(pj,s),p= (e, @i(t) ,2),=1,2,...,2M, is an (n — 1)-di-
mensional open ball, and

1( 2M( 1y @ (

2 * z2) = — 7T — — i\r,z

(6.25) DH(r,2) = | 2m ; ) @ ))

for |[(r,z) — (ry,2)| <s, where @*(r,z) is the g-coordinate of the
point K(z,r)Nu*Yi}N{x €ER" |z, >0} and PDi(r,z) is the ¢-co-
ordinate of the point K(z,7)Nu{t} N C;. Hence for j=1,2,

2M ,

(6.26) u(r, Di(r, z),z) = u*(r, P*r,z),2) =1
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for |(r,z) — (ry, %) < s. Furthermore, Dj(ry,z2,) = ¢i(t),5=1,2,..,
2M , and D*(ry,z,) = @*(). Partial differentiation of (6.26) with re-

ou ou*
spect to y,,»=0,1,..,n — 2, yields expressions for @ and oy,
0=y=n—2, where yp=1r and y,=2, for 1 <y <n— 2. Sub-
stituting these expressions into both sides of (6.24) we get by (6.20), (6.21)
and (6.25)

(6.27) re) = %fF { {1 e Z } ‘1}6 and
j=1

1 1 M 2712 2 2M
(6.28) I'*(t)=_-F [1+§< Z —1’+1a-)J m > b
2 ’ b
j=1
where F:{x €R'|x = 0}— R! is defined by F(t)=1t,t=0, and

09D;
aj,,:ro('gy—]>(ro,¢j(t),zo),l§j§2ﬂ[,0§1}§n—2,

b =1 lgit)] = ro(— 1) Hgi(t) , 1 = j < 2M .
For p =1 the function F is convex, that is, F(3 A#) < D AF(t) when
zl,‘=1,1520 and t;gO.

Hence by the Minkowski inequality

T

Since F is convex and increasing, the former inequality yields

oI*(t) < F{ [ 2ZM<1 —l—n§2aﬁ>1/2 ( gbj>—1} %{ b <

j=1
JzM 12

le{ (1 +3 af,) (b,->-1} b= I0),
J= 14

which proves (6.24), and thus the proof of the entire theorem is complete.

7. The main theorem

We say that a set transformation f satisfies the capacity inequality, if

(7.1) capp (4, C) = cap, (f(4),f(C)) ,for allp >0,
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for every condenser (4 ,C) such that 4 ,C € Dom (f) and (f(4),f(C

is a condenser. In the previous chapter we proved that 1- dlmemlonal
cap symmetrizations satisfy the capacity inequality. In this chapter we
derive from this result that all symmetrizations satisfy the capacity ine-
quality. Because for 0 <p <1 the inequality (7.1) is trivially valid
by Lemma 5.6, we need only consider the case p =1.

7.2. Lemma. Suppose that
(i) f is an open and regular set transformation (cf 3.1),

i) {fi} is a sequence of regular, (7.1) satisfying set transformations
such that Dom (fi) includes open bounded sets,

v

(iii) for every F €7 and r >0 there exists j, € N such that
(7.3) fIF) e f(F - +B") and f(F + »B") D fy(F),for j=j,.

Then | satisfies the capacity inequality. In particular, (iii) is true, if Dom (f)
includes open bounded sets, every f; is smoothing and

(7.4) 1i1}1f,»(F) = f(F) for all F € 7.

Proof. Consider a condenser (A4 .C) such that 4 € Dom (f), and
p=1. Choose &> 0. By Lemma 5.5 there exists a bounded con-
denser (4’,C") and 7> 0 such that A +rB cAd,C+rB c(C’
and cap, (4,0) + & = capp (4", C"). Then by (ili) we can fi:ud fi such
that f(C) c f{(C 4+ rB") c f;{(C") and f(4) D f(A" + rB") D fi(A") D f{4
Because f; satisfies the capacity inequality we get by the separation ine-
aqulity (5.3)

capp(d , C) + e = capp, (4", C") = cap, (fj (A7) . f; (C)) =
cap, (f(4), f(C))

Letting e tend to zero, we sce that f satisfies the capacity inequality.
To prove the second pcuL of the lemma, we choose F € 7 and r > 0.
Then d = d(f(F), Cf(F -+ rB") > 0 because f is open and regular. Let

d _
§ == min {‘—2 . By (7.4) we can choose j, € N such that f;(F) c f(F) + sB"

_ ] d _ _
and f(F) c f(F) 4 sB"forj = j,. Then fj(F) c f(F) — 5 B" cfiF +rb"),

and the smoothing property of fj yvields f(F) c fi(F) + sB" c f(F - sB")
cfilF 4+ rB*). So condition (7.3) is valid.

5. The main theorem. Let Sym be any Steiner or cap symmetrization
and (4, O) a condenser. If Sym is a Steiner symmetrization we also assume
A is bounded. Then (Sym (4), Sym (C)) is also a condenser and
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capp (4 , 0) = cap, (Sym (4) , Sym (C)) for every p > 0.

If, in addition, (4 ,C) is ringlike, then (Sym (4),Sym (C)) is also ring-
like.

Proof. By Lemma 5.1 symmetrizations preserve condensers and rings.
Hence we need only prove that symmetrizations satisfy the capacity ine-
quality. We first consider cap symmetrizations and proceed by induction.
By Theorem 6.12 every l-dimensional cap symmetrization satisfies the
cap inequality. Now let 2 <k <n — 1 and assume that every (k — 1)-
dimensional cap symmetrization satisfies the capacity inequality. Let
Sym be a k-dimensional cap symmetrization. Hence, by Theorem 4.29,
there are two (k — 1)-dimensional cap symmetrizations Sym;,t =1,2,
such that Sym (F) = lim (Sym, o Sym,)'(#) for every non-empty com-

pact F < R*. Thus, by the induction assumption and Lemma 7.2, Sym
satisfies the capacity inequality.

Next we consider Steiner symmetrizations and again proceed by in-
duction. Let Sym be a 1-dimensional Steiner symmetrization. By Lemma
4.19 there exists a l-dimensional cap symmetrization S and a sequence
of translations ¢ : R"— R",7 € N, such that the set transformations
fi=t7'oSot;,i €N, satisfy condition (7.3) of Lemma 7.2. Thus, by
Lemma 7.2, Sym satisfies the capacity inequality, since every translation
t; preserves the p-capacity of a condenser and the symmetrization S
satisfies the capacity inequality. Now let 2 <k < and assume that
every (k — 1)-dimensional Steiner symmetrization satisfies the capacity
inequality. Let Sym be a k-dimensional Steiner symmetrization. Hence
Theorem 4.32 and Lemma 7.2 imply that Sym satisfies the capacity
inequality.
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