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1. Introduction
For k> 2 let Vi denote the class of locally univalent analytic func-
tions
(1.1) f@) =2z + a2 — a2 4.

that map |z <1 conformally onto a domain whose boundary rotation
is at most k. (See [5] for the definition and basic properties of the class V) .
The function

O e A
(12) fk(z):Z 1-:) —1J:ZlAnz"

belongs to Vi and the coefficient conjecture for the class Vg is that for
a function (1.1) in Vi,

(1.3) ./(n 1 Jln (N’ > l)

This conjecture was proved for n = 2 by Pick (see [5]) for n =3 by

Lehto [5] and for »n =4 in [9]. [6]. [1] and [3].
In support of the conjecture Noonan has shown [7] that for a given

function (1.1) in Vi, lim ~~' exists and in less then 1 unless fz) =

nreo An
e "fi(e”z) . Recently Brannan, Clunie and Kirwan [2] established the
conjecture (1.3) for » <14 and for all » in case that function (1.1) has
real coefficients or if k& > 4. This was done by a remarkable extension
of the classical Herglotz formula. With the aid of this generalized formula
they showed that the conjecture would follow for any » > 1 and any
k > 2 if the following inequality

1+ xz\* 1+ 2z\*
(1.4) < 1 . v=1, =1

1 —z z

o @
holds. By > apz" < > fuz" we mean x| < fa for m=1,2 ...
n=1 n=1

The aim of this paper is to prove the inequality (1.4) and thus to estab-
lish the coefficient conjecture. In fact, as was shown in [2], the inequality
(1.4) implies the coefficient conjecture (1.3) for the larger class of close-to-
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k
convex functions of order p(g - , — 1 = 0). This elass was introduced

by Pommerenke [8]. (See also Goodman [4] for further properties of this
clasg).

2. A stronger inequality

In order to show (1.4) it is more convenient to consider the inequality

(1 +az)® (1)
(2'1) ‘__bi :7 < Al T X . o= 1.

It is clear that (2.1) implies (1.4) since

(1 + a:z)”‘ (I +az* 1 U A (1 — )
— = = T T - < . o - "’)\ ] - 1": o .

1z (],,; z:")“ 0 s (1 — 2y

Obviously it is enough to consider the case 1 -~ < 2. Indeed (I — w2)”
< (1 + 2 for any natural p and thus

(1 + az)® | S e | .
gy o)
‘We note that
(2.2) (1 + az)* = Z () akak
Koo
Now
1+ zz)® Lo § © on ’
LEB S e S = S (3 @) e
— Z k=0 me- 6 n—-0 k=0

(2-3) 2@ =2 G
=0 =0
For n = 1, 2 the inequality evidently holds. Let a = ¢“ and consider

a 4
separately the inequality (2.3) at first for 0 <<¢ < . and after for o <dé

<mz.

1't
3. The case 0 < ¢ g;

The inequality (2.3) can be written as
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n

(3.1) [ > () cos kg)* — |

k=0

[

() sin ke < | Zo(i‘) 12

n

[ > () sinkp]? ~ | i () (L — cos k) | [ 2 () (1 = cos k) |
K1

k-0 k=0

[”‘a\"zk(b'i C A k¢
= lkzo(k)‘m E _f L\n(“ ~k50(.)81112 2

sin
Noting that -——— is decreasing for v << u <7 Wwe obtain
U i

(M) sin ko = 2 sin (B = 1))

I~

for 1 <bk<n—1, 0<dé < and 12 <2,
"
This implies
fL . i Vv — 1) Vo — D2 —«) |
> (%) sin kg = vsing — S osinZd - o 5 sin 3¢ + . ..
K1 =
x — 1)
<o sing + ‘-(-—~'—-~~— sin 26 .

Thus (3.1) is true if

i n

[ k !
(3.2) [xsing + x(x — 1) sind cosd]* < 4 Z (%) sin? —?} {z a

k=1 k=0

n

k —
(%) sin? é‘é = 4w ’;ﬂ(g) — ]

Inve

k

In fact we show the stronger ineguality
(3.3) sinZg [1 + 2(x — 1) - (v — 1) cos?d] < 4w > (3) — w]
k=0

sin v
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np @ .
For n >3 and 5 =5 we obtain
" k v(ia — 1) Aa—1)(2—w) 3
W= kz (§) sin? —? = SInQ(ﬁ st - “——)E_S(— ——gin? j
=0 ~ 4
- :,x(cx—l).2 T x(oc—l)_2't « oalx—1)3
< x sin PR sin?¢ <<« sin R sin 5:;—1— 2 i
& & 3 5 ,
—4—7—8(m——-1)<4+8a:'§\ (1 <<aC?2)
Now, the function Q(w) = w[> () — ] is increasing in the domain
k=0
5
0<w< i
Indeed
n n :) 5
Q' (w) = Z: )——210>Z 7>l Ea—ga>0,
for
l<a<?2.
We claim that
& . (x — 1) (3~ — 2)]
(3.4) w > —sin?$ |1+ -—J .
Indeed
afxe — 1 Ao — 1) (2 — ) 3
u >cxs1n2¢; + ( )\‘in2 — ~(-— )(4 sin® —¢
2 2 6 2
: 34
= sin%¢ g o — 1) x(a—1)(2 — )Sln 2
sin?¢ 2 N 6 sin%?¢
. & ofx—1 x(m—l)()—\)Q
> sin?¢ ———!——ﬁ—-—)— — =
4 2 6 1
& —
:1511]295{1 4+ = (3a — 2)

Recalling that @(w) increases for 0 < g o it is enough to show the

|

inequality (3.3) in case that w attains its lower bound in (3.4):
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S | ]
(3.5) AL+ 2 — 1) + (x — 1) GObqu] < [ - l—"’" (3n — ._)‘

2 B —sm2¢< (x — 1);3(x — 2))]

Again. as

[\/}=

—1 2 — ‘
ES L] “}z(l-:w)

ke L 3

It
-

(3.5) is true if

SN .
(3.6) A [1 -+ 2 — 1) + (x — 1) cos?¢] <{ + 1—72— (37 — z)J (1 =)

(1 . x&%—_”)_fz‘sinzqs(l N (x — 1);3; — z))j .

As cos’p = 1 — sin%¢, the above inequality is linear in sin*¢ (or in
cos?¢) . Thus it is enough to check the end points. But ¢ <sing <
T /3

sin— <sih— = .

w3 9

P4

Therefore (3.6) would follow if we show the following two inequalities:

x — 1

(3.7) M=l 2x — 1)+ (0 — 1) < {1 g (3 3)

(1 —%—zx)(l _i__((x___l_).)

— 1) v—1
(3.%) X [1 4+ 2 — 1) + (—OC——)J < [1 L (— 5 —) (3~ — 2)]

4

x(x — 1) 3 (v — 1)(3x — 2)\
o) o)

For the proof of (3.7) put ~ =1 — . Then (3.7) ix equivalent to the
inequality

(1 +pP < {1 e 1)} (2 +,s>{1 Pl

which can be easily obtained by simple calculations. To establish (3.8)
we first note that

’ x—1
— [1 — (3x — Z)] — (1 + &), for 1 <<~ <2,
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Thus 3.8) would follow if

| =1y L |

(3.9) e rr—i-u} <[+ By =2 =)
l Viv—1)  3a
(o 6 16

) ‘ ) 3x x(x — 1) 8a% — 17« . L

'he function 1 — 1% e e = 1 + T attains 1ts minimum
) |7 8x2 — 17a 289 4

at the point ~ = 16 and so 1 + T >1- ~ 3948 > =

Finally it isx enough to show

[ (x — 1)2] 4 v—1
(3.10) A [1 S22 )b S L s By = 2) (1

Put again v = # 4- 1 and then (3.10) holds if we show that the poly-
nomial 12 — 285 4 118% 4 198% is positive for 0 < p < 1. Clearly
this polynomial is positive for g > 0.

4. Two lemmas
Let
(4.1) ) = (1 + ) Z (x) Z(k 1)

k=n

We bring now an integral representation of e,(x):

Lemma 1.
1
, ~1n'z x — 1 1 — )y
(4:2) g"(,l') . ,,_“(__, B __) 1)111-1 g1 f >(__ ) . r])'
7 14 2r
0
where » < 1. 1-<-yv<2 and n>3.
Proof. Denote by B(a, b) the Beta function:
1
(+.3) Bl . h) = fr“"l 1—r)'"lar, a>0,b>0.

il

We recall the following well known properties of the Beta function:
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Bla . b) — B B b) = Bla,b
a,b)y =8B n. Bla—1,0)=—=B(a,D),
(« . b) 0) =, oy Bl b).
(4.4)
o j -
Bla, 1 — uy = . for 0<a<<1.
sin o

Now for 1 << v -7 2 we have

B | | (n—2a){n —x—1) Z_AB’)
= x4 a1 = e —. .. 2 — -1
(n — - A n =) " 3 ( SO )
(n— ) —a — 1) 2 —xx(e — 1)
e L = B2 — a  x — 1)
(n -+ 1) " 3 21

On the other hand

\(’\, — 1’3 A Lyt Vix — 1) (2 —a)...(n—x).

(£.5) (,31) = 1 = (n - 1)!

Combining the two last equalities we obtain the representation of the
binomial coefficients (! ;) with help of the Beta function:

| sin Ty — ,l)

(+.6) (n31) = (=1 7 Bn —x + 1,5+ 1).
For x| <1 we have
1
= . sinaa — 1) & _ )
en() = Z P Z f P — ) (— ) T dr
k—n T k-n
0
sin (o — 1) o (L — )Y
=2 e 12, 3 <.
T I — ar
This proves the equality (4.2) tor o << 1. The case & = 1 follows

from continuity argument ax > (%) < % .
kon

Remark. A morve suaturals proof of (4.1) is obtained by using the Cauchy
integral theorem for analyvtic functions. Clearly

(1 = z)* — (I + )
—én(r) = - ';-f,.i?'[(i wy) SRR VISl A N

t

Replace then the curve = =1+ by =2z =/R R>1 and a radial slit
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(I — ez)® — (I — )

emanating from z = — - . Realizing that Ty~ is regular
x —

at z =1 and letting R — oo one gets an alternative proof of lemma 1.

Lemma 2. Let e&.(x) be defined asx ahove. then

sin sw(a — l) 1

4.7 W) << —————— — . for Rewry -7 o
( ) 3 (2/) << . . 01 ¢

sin (e — 1) 1 _
(4.8) len(®)] < 2 e for Retr) = 0.

where jx| =1 and n >3.

Prrof. Using (4.2) one gets

, smnx—l) 1——1)r '
ié‘n(w)] ~ 1 ;4/’ —=dr

Let x| <1. Since (1 —7)" <1 —dr in the range v <<, <1, 0<
0<1, for d=x—1 we obtain:

1 1
4 sin w(x — 1) ) sin (e — 1)
@) < ————— [ (L= dr < —— = [ (L= orp"~dr
; - .
sin (x — 1) { 1 h) } sin z7{n — 1)1
- 7 n—nat+t1l nm—n~—20"  u

This established (4.7). To show (4.8) we note that

1
< ) > 0. <
1+ o 1 for Re(x) > 0. Thus
1 I
. o _sina(x — 1) sin (v — 1)
len() | S*n— (I — )" dr <— _'--~-~-~</ (1 — )" (1 — or)dr
v Y .4 v
sin 7w((x — 1)[ 1 X b ,
= —_ — [
T n—o-+1 n—x-+2 n-—x-=3 -

sin w(oe — 1) 1

T n>

(The last part is established as follows:
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1 X 0 1 1

, . .1
n—ax-+1 n—ax+2

n—a-+3 n—a—=1 n—ar-—=2=12

S 1 1 ) 1
‘ n——zx.—{—Sﬁn—ocJ:—‘Z ﬂ(n,—v,\%l)('n—\—;’y—.

0 1 1 0 :
(n—oc+3)(n—~o¢—i—2)ﬁn—x—§—2 n—x—1 - 3j
. 1 1 1
Since P <. it s enough to show T T
0 - 1 hich. i o1 1 1 a—1
—e— < —  which is equivalent to———— - — =]
n—x+3"n’ *ed n—oax -1 n—n—x-—+-3

and is obviously true for » >3 and 1 <& <2).

13
5. The case ;5¢§n

Using the definition of ea(x) (4.1) we have

1S @t < 11+ alt o+ e

Thus the inequality | > (¥) @* < | > () would follow if

k=0 k=0
T
14 2] + ea@) < 2% — l&a(l),, @ =¢°. - Jd=<7
H
Put :(Zé: 0 then
1+ a|=le¥+ 1 =2cosb
Therefore it is enough to show
(5.1) len()] + len(1)] < 2(1 — cos 6)

7 1
for 1 <a <2 and o <90 §§ as 1 — (cos B)* <1 — cosb.

11
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ot
e
|

Assume first Re(w) = 0. By Lemma 2 we have:

sin z(x — 1) (1 1
ey — jel(l) < e | = 4

T n o n?
_sina(x — 1)f1 1 4
= PRy
T 9 3 9
L : N L L V2
Now the condition Re(e®) =~ 0 ie. 5 =¢ =< 7)implies that cos §§ <" .

But

+ \ 2
ao o2 — s 2% (L —cos ) for x>1.
O 2

Assume now Re(x) > 0.

In this case Lemma 2 implies

2 sin a(x — 1)
enlr) — e(l) <

T n®
Finally we show
2 o — 1) - T 4
—sin oy L2 —cos0) = 2% sin? o, o < < —
4 n? 27 2n 4
. . . . :T
It is enough to consider the above inequality for - = .
: A 9 "
2sina(x — 1) LT
(5.2) o < 2% hgin?
T n= 4n
sin -\ 2
T 12 Ty
LT .
Clearly sin?2-— >|-~- -] for n > 3.
in T in
e
So (5.2) is reduced to
. ;-t\ B
. sin— ,
2sina(a — 1) . 12 a2
5 s FE S Lo A )
5.3 ; Z ;
(5-3) T n? - 7 16n°
12

which is equivalent to an obvious inequality
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a3 12

sin w(x — 1 20—
sin zr(x ) < 16 .
12

This completes the proof of the inequality (2.1).
In conclusion we remark that we showed in fact that:

n

@ <3 @
k=0 k=0

for joj =1 and w=£ 1.

Department of Mathematics
Technion City, Haifa
Israel
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