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1. Introduction

According to the well-known theorems of Medvedev and Schiitzenber-
ger, every regular language is a homomorphic image of a 2-testable language
and every context-free language is a homomorphic image of the intersection
of a Dyck language and a 2-testable language. Many such homomorphic
representations are known also for the family of recursively enumerable
languages. Every recursively enumerable language is a homomorphic
image of the intersection of two deterministic context-free languages, [3],
and a homomorphic image of a language generated by a context-sensitive
grammar in linear time, [1], as well as a homomorphic image of a language
generated by a A-free context-free programmed grammar, [6].

The purpose of this paper is to establish by a direct combinatorial argu-
ment the following result. Consider a fixed alphabet V5. Then there
exist another alphabet V', deterministic context-free languages L, and
L, over V' and a homomorphism A of W(V’) onto W(Vy) with the
following property. For every recursively enumerable language L over
Vy, there is a regular noncounting language K over V' such that

L =hI,NL,NE).

Thus, only the noncounting language K depends on L, everything
else is determined by the alphabet of L alone. Essentially the same result
has been proven by Fisher and Raney, [2]. Their proof, however, is based
on a complicated theory of automata on networks.

Homomorphic representation can be used for proving results concern-
ing decidability, nonclosure and generative capacity, [1], [6]—[9]. Some
simple applications to decidability will be considered also in this paper.
Very few homomorphic representations are known for Lindenmayer systems
(cf. [5], [7], [10], [11]). This may be due to the resistance displayed by
these systems against closure operations. We would like to mention, finally,
that in spite of the many homomorphic representations given for recursively
enumerable languages, there still is no satisfactory general theory con-
cerning such representations.
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2. Definitions and results

The reader is assumed to be familiar with the basic notions concerning
automata and formal languages, [12]. As regards locally testable and non-
counting languages, cf. [4].

The set of all words, including the empty word 4, over an alphabet
V is denoted by W (V). We use the customary notations mi, *, * for
mirror image, catenation closure and Z-free catenation closure. In the
statement of the following theorem,

Ve=Aa1, . Oy s}, 4 =95,
Ve ={a;|a €V},
V' =VyU{0,1}.

Theorem 1. There exist two deterministic context-free languages Ly and
L, over V' and a homomorphism h of W (V') onto W(Vy) with the follow-
ing property. For every recursively enumerable language L over Vi, there
is a noncounting regular language K over V' such that

(1) L =iI,NI,NK).

All constructions involved in the proof of Theorem 1 are effective.
Since the emptiness problem is undecidable for recursively enumerable
languages and since a homomorphic image of a language is empty if and
only if the language itself is empty, the following theorem is an immediate
corollary of Theorem 1.

Theorem 2. There are two deterministic context-free languages Ly and
L, such that there is no algorithm for deciding of an arbitrary noncounting
regular language K whether or not the intersection Ly N Ly N K is empty.

In some sense, Theorem 2 can be considered as an unsolvability result
for regular languages since K is the only variable. However, one can also
say that it is not a problem dealing »properly» with regular languages.

Many undecidability results similar to Theorem 2 can be obtained.
We mention only the following, due to the fact that one can easily (by
analyzing the proof in the next section) modify the construction in such
a way that L; N L, N K is nonempty if and only if it is infinite.

Theorem 3. There are two deterministic context-free languages Ly and
L, such that there is no algorithm for deciding of an arbitrary noncounting
regular language K whether or not the intersection Ly N Ly N K s finite.
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3. Proof of Theorem 1

Every recursively enumerable language over Vy is generated by a
type 0 grammar. Without loss of generality, we assume that the non-
terminals form an initial segment of the sequence

(2) a’u+1 ’ a’u+3 ’ a’u+5 PR |

a,,1 being the initial letter.
In what follows, the letters

Ay_3, Uy g, Ay_15 Ay
will play the role of boundary markers, and the letters in the sequence

a’u+2 ’ au+4 ’ au+6 3

the role of production indicators.
All letters a;, ¢ = 1, will now be encoded in the alphabet {0, 1} by
defining the homomorphism

hy(a) = 101, i = 1.

To make the following definitions more readable, we also use the following
abbreviations

IA
IA

(e, ;) =c¢ for 1 3,

)

Bl
=
R
=
.!_
g
!
oo
v
—

hy(@yy0;) = di for

Furthermore, we denote
Ur = (y(a) U ... Uly(a,_4)* .

By U we denote the language consisting of 7 and of all words of the
form (@) ... 7M(a;,) where v =1 and, foreach j=1,...,v, either
1 <4 =u—4 or else ¢ =u -+ 2r4 1 for some r =0. (Intuitively,
Uy consists of encoded words over the terminal alphabet and U of en-
coded words in terminal and nonterminal letters.)

We are now in the position to define the homomorphism % and the
two languages L, and L, over V’'. By definition

| @ for b=a; (a, €Vy),

| 2 for bE{O, 1},

L, = {Pic;xdiPoc mi(Py) ¢y mi(f) cg mi(Py)el
P, P,,x,pEU, i =1}t (Vy)*

h(b)

and
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Ly = {¢,8dic|i = 1} {Pyc,PycgPscPyc, Pyd;iPc)
P,,Py,,P;,P,,P;,P€U, j =1, PyP,Py = mi(PP5Pg)}*
{Q162Q65Q5¢Q4Q4 € W(V7) 5
Qr, @y, Q3 €Up, Q005 = hih(mi(Qy)} .

So far our definitions are based on the alphabet V7, alone. We now
consider an arbitrary but fixed recursively enumerable language L over
Vr, generated by a type 0 grammar G = (Vy, Vy, a,.,, F). Denote
V=VyUV;. We assume that ¥V, consists of a finite initial segment
of (2) and the production set is

F={x—>pl1=i=k}.
We now define K = K; N K,, where
K, = {Pichy(x:)diPocPycohy (mi(f:))csP e
P, Py, Py, Py€(My(V))*, 1 =i =<k}t (Vp)*
and
K, = {¢,Sdic|1 =1 <k} {PicoPocyPycPyci PydiPyc!
P, P,, Py, Py, Py, Po€(hy(V))*, 1 =j = k}*
{ Q10,0305 Qu Qs € W (V)5 @1, Qp, @3 € Uy}

It is immediately verified that L, and L, are deterministic context-
free languages over the alphabet ¥’ . It is also obvious that K, and K,
are denoted by star-free regular expressions (involving intersections and
complements) and, consequently, K is a noncounting regular language.
We shall now prove that (1) holds. For this purpose, we introduce two
auxiliary languages L; and L, over the alphabet 77 as follows:

Ly = {Phy(x)diPyc mi(Py) hy(mi(pi)) mi(Py)e!
1=i=k; P, P €(y(V)* (Ip)*

and
Ly = {Sdic|]l =i =k} {mi(PPy)cPyd;Pyc|
Py, Py€ (h(V))*, 1 =7 =k} {Qycy!
Q€ W(Vr), Q= hh(mi(@y))}.
We claim that

(3) L ="nIL;NL).
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To prove the equation (3), we show first that the left side is included in
the right side. Assume that P € L. Since G generates L, there is an
integer m, words R;; , R, € W(V) and indices g(j) with 1 =g¢(j) =k,

defined for all j=0,...,m, such that the following conditions are
satisfied. For every j=0,...,m—1,

(4) leﬁg(i)Rﬂ - R(i-+l)1“g(f%-1)R(f+ 12 -

Furthermore,

(5) ROI = ’ROZ == 2’ ) 0"3(0) = au-{»-l ) leﬂg(m)RmZ = P .

In other words, we consider the following derivation according to G :
Auy1 = R010‘g(0)R02 = Rmﬁg(())Roz = Rnéxg(l)Rlz
= Rll/gg(l)Rl2 = RZl“g(2)R22 = 000 =
R(m—l)lﬁg(m—-l)R(m—-lﬂ = le(xg(m)Rm2 = leﬁg(m)Rm2 =P.
We now define, for any P, P, € W(V) and 1 =i =k,
HPy 0, Py) = Iy(Py)ly(oi)dihy (Py)e mi(hy(Py)) mi(hy(Bi))  mi(hy(Py))e
and consider the word
(6) R =Ry, g(0), Rp)t(Ryy, g(1), Byo) . . . E(Bpu1 , g(m) , R,0) P,

m

where P’ is obtained from P by replacing every letter with the correspond-
ing primed one. (Thus, A(P’) = P.) By the definition of L;, we have
R € L;. (Note that the operators mi and &, commute). Using the nota-
tion

s(Py, v, Py) = mi(hy(PyPy))chy (Py)dihy (Pye
we may also write (by (4) and (5))

R = Sdg(())c mi(hl(ROIﬂg(O)ROZ)) Ckl(Ru)hl(O‘g(l))dg(l)
Iny(Byp)e . .. mi(kl(R(m—l)lﬂg(m—I)R(m—l)Z))c
Ty (B )Py (% g oy ) g myPer (Bmz) e m(By (B R,..))cP’
= Sdygc mi(hy(Byx,qyRis))chy (Biy)hi(og0)dyq
fn(Ryp)e oo mi(hy(R & myBme))e

kl(le)hl((xg(m))d (m)hl('Rm2)c mi(hy (R g(m)RmZ))c'P’

&

ml1l” g(m)

= Sdg(o)cs(Ru“g(l) s g(1) . Ryy)
. S(le‘xg(m) ) g(’”l') ’ Rm2) mi(hl (P))C'P, .

From the last expression we see that R € L, and, hence, R€ L, N L;.
On the other hand, h(R) = P . This implies that P € h(L; N L) .
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Having established that the left side of (3) is included in the right side,
we now prove the reverse inclusion. Assume that P € h(L; N L;) . Con-
sequently, there is a word R € L;N L, such that P = h(R). Since
R € L;, it can be expressed in the form (6), for some numbers m, g(7)
and words R;. (Recall that P’ is obtained from P by replacing every
letter with the corresponding primed one.) Since R € L;, the word R
can be expressed in the form

(7) R = Sdjpes(@u, f(1), Qr) - - 8(@ur, f(n), Qpz) mi(hy(P))eP”,

for some numbers n, f(3) and words @ . Comparing the number of
occurrences of the boundary marker ¢ in (6) and (7), we see that m = n .

It is also clear that ¢(i) = f(z), for ¢ = 0,...,m . A further comparison
between (6) and (7) gives the equations
(8) Ry = Ry, = 7, Kg0) = Qut1 Ru“g(.') =@,

Ry = Qs R(i——l)lﬁg(i—l)R(i—l)‘l = Qulp = Rn?v’g(.')Riz s
for 1 =4 < m, and also the equation

P == leﬁg(m)R

m2 *
Thus, we obtain the following derivation according to G :
g g
Aup1 = R010¢g(0)R02 = R01/3g(0)R02 = Rllxg(l)RIZ
== R(m—l)lﬂg(m_l)R(m_l)z = le“g(m)Rmz
= leﬂg(m)RmZ =P.

Therefore, P € L . Thus, we have shown that the equation (3) is correct.

For a language L', let M(L’) be the language obtained from L’ by
erasing from all words all occurrences of ¢;, ¢, and ¢;. (Note that M
is not a homomorphism since ¢; is a sequence of 0’s and 1’s. Note also
that, for any language L', h(L') = h(M(L’)).) Comparing the positions
of the boundary markers ¢; and the production indicators d;, we obtain
the equations

9) M(L,NK))=L;, M(IL,NK,) = L.
The inclusion
(10) LiNL,c M(L,NL,NK,NK,)

is established by (i) considering an arbitrary word R belonging to the
left side, (ii) noting that R can be expressed in the forms (6) and (7) from
which (8) can be inferred, (iii) inserting the markers ¢;, ¢, ¢; in R at
proper places which are immediately seen from the f-expressions, and (iv)
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noting that the resulting word belongs to all four languages in the inter-
section on the right side. By (9) and (10),

ML NLNK NK,) =L, NL,.
Hence,
(1) - h(LiN L, N K) = (ML, N Ly N K))

= (ML, N L,N K, N K,)) = h(L; N L) .

The equation (1) is now an immediate consequence of (3) and (11). This

completes the proof.
We note that K is not, in general, locally testable. It does not seem

likely that the construction could be modified to yield a locally testable

language.

Mathematics Department
University of Turku, Finland
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