ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

530

REMARKS ON THE REGULARITY OF THE SOLUTIONS OF A LINEAR PARTIAL DIFFERENTIAL EQUATION WITH CONSTANT COEFFICIENTS

BY

VÄINÖ JALAVA

HELSINKI 1973 SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.530

Copyright © 1972 by Academia Scientiarum Fennica ISBN 951-41-0086-7

Communicated 12 October 1972 by Rolf Nevanlinna

KESKUSKIRJAPAINO HELSINKI 1973 1. Let us consider a linear partial differential equation

$$(1) Lu = f,$$

where the differential operator L has constant coefficients. We assume that f belongs to the Sobolev space $H^p(\Omega)$ ($p \ge 0$), where Ω is a bounded open domain in the Euclidean space R^n . Let L' be the formal adjoint of L and write $M = L' L (1 - \Delta)^p$. With the help of M we construct a distribution space X^- such that $L^2(\Omega) \subset X^- \subset D'(\Omega)$. We shall show that if $u \in X^-$ is a distribution solution of (1), it can be decomposed

$$u = u_0 + \vartheta$$
,

where $u_0 \in H_0^{p+r}(\Omega)$ ($r \ge 0$) and ϑ satisfies

$$(2) \qquad (M^2+1) \theta = 0.$$

Thus the part u_0 is at least as regular as the right hand side f of (1). Since the second part ϑ satisfies the homogeneous equation (2), its regularity depends only on the differential operator L. Consequently, the question about the regularity of a solution of the inhomogeneous problem (1) returns to the question about the regularity of a solution of the homogeneous problem (2). Furthermore, this result will be applied to prove that weak L^2 -solutions of hypoelliptic equations can be approximated in $L^2(\Omega)$ by C^{∞} -functions.

2. Let Ω be a bounded open domain in the Euclidean space \mathbb{R}^n . For a multi-index $\varrho = (\varrho_1, \ldots, \varrho_n)$ we write $D^\varrho = D_1^{\varrho_1} \ldots D_n^{\varrho_n}$ where $D_i = \partial/\partial x_i$. If $p \geq 0$ is an integer, we denote by $H^p(\Omega)$ the Sobolev space consisting of the complex valued functions whose distribution derivates of order $\leq p$ belong to $L^2(\Omega)$. The space $H^p(\Omega)$ is a Hilbert space with the inner product

$$(u,v)_p = \sum_{|\varrho| \leq p} \frac{p!}{\varrho_1! \dots \varrho_n! (p-|\varrho|)!} \int_{\Omega} D^\varrho u \, \overline{D^\varrho v} \, dx$$

 $(u, v \in H^p(\Omega))$. Let $H^p_0(\Omega)$ be the closure of $C_0^\infty(\Omega)$ in $H^p(\Omega)$.

We consider a differential operator

$$L = \sum_{|\varrho| \leq m} a_{\varrho} D^{\varrho}$$

with constant coefficients. There is an integer $r \ge 0$ such that for each $p \ge 0$ one has

(3)
$$||L \varphi||_{p} \geq k_{p} ||\varphi||_{p+r} \qquad (\varphi \in C_{0}^{\infty}(\Omega)),$$

where k_p is a positive constant (cf. [1], p. 177). The formal adjoint of L is

$$L' = \sum_{|\varrho| \le m} (-1)^{|\varrho|} \, \overline{a_{\varrho}} \, D^{\varrho} \, .$$

Let us choose an integer $p \ge 0$. Writing

$$S = 1 - \Delta = 1 - \sum_{i=1}^{n} D_i^2$$

one has for $f \in H^p(\Omega)$ and $\varphi \in C_0^{\infty}(\Omega)$

$$(f,\varphi)_p = (f,S^p\varphi)_0.$$

We consider the formally self-adjoint differential operator

$$M = L' L S^p.$$

For $\varphi \in C_0^{\infty}(\Omega)$ we get by (3)

$$(\varphi, M \varphi)_0 = (L \varphi, S^p L \varphi)_0 = ||L \varphi||_p^2 \ge k_p^2 ||\varphi||_{p+r}^2.$$

Let us define on $C_0^{\infty}(\Omega)$ an inner product

$$(\varphi \ , \psi)_X \ = \ (\varphi \ , M \ \psi)_0 \qquad \ (\ \varphi \ , \psi \ \in C_0^\infty(\varOmega) \) \ .$$

We denote by X the completion of $C_0^{\infty}(\Omega)$ with respect to the corresponding norm $\|\cdot\|_X$. Since

$$\|\varphi\|_X \, \geqq \, k_{\mathbf{p}} \, \|\varphi\|_{\mathbf{p}+\mathbf{r}} \qquad (\, \varphi \in C_0^\infty(\Omega) \,) \; ,$$

one has $X \subset H_0^{p+r}(\Omega)$.

We define on $L^2(\Omega)$ so-called negative norm $\|\cdot\|_X$ by the formula

$$\|v\|_X = \sup_{0 \neq u \in X} \frac{|(u , v)_0|}{\|u\|_X} \qquad (v \in L^2(\Omega)).$$

Let X^- be the completion of $L^2(\Omega)$ with respect to this norm. Take $u \in X$ and $v \in X^-$. There is a sequence $\{v_i\} \subset L^2(\Omega)$ such that $||v_i - v||_{X^-} \to 0$. Since

$$|(u, v_i)_0| \le ||u||_X ||v_i||_{X^{\bullet}}$$
 $(i = 1, 2, ...),$

we can define the form $(\cdot,\cdot)_0$ on $X\times X^-$ such that

$$|(u, v)_0| \le ||u||_X ||v||_{X^-} \quad (u \in X, v \in X^-).$$

Each $v \in L^2(\Omega)$ determines a continuous linear functional $(\cdot\,,v)_0$ on X. Consequently, there is a continuous linear mapping $A_0:L^2(\Omega)\to X$ such that

$$(u, v)_0 = (u, A_0 v)_X \qquad (u \in X, v \in L^2(\Omega)).$$

For $v \in L^2(\Omega)$ one has

$$||A_0 v||_X = \sup_{0 \neq u \in X} \frac{|(u, A_0 v)_X|}{||u||_X} = ||v||_{X^-}.$$

Thus, A_0 maps a dense subset of X^- isometrically into X. Consequently A_0 has an isometric extension $A: X^- \to X$. Since A is isometric, the range $A(X^-)$ is closed in X. If $A(X^-) \neq X$, one can find a non-zero $u \in X$ such that for each $v \in L^2(\Omega)$

$$(u, v)_0 = (u, A v)_X = 0.$$

This is true only if u = 0, therefore $A(X^-) = X$. Thus, the mapping $A: X^- \to X$ is an isometric isomorphism, X^- is a Hilbert space, and

$$(u, v)_0 = (u, A v)_X = (A^{-1} u, v)_{X^-} \qquad (u \in X, v \in X^-).$$

This implies that the spaces X and X^- are dual with respect to the form $(\cdot,\cdot)_0$. If $\psi\in C_0^\infty(\Omega)$, we get

$$(\varphi, M \psi)_0 = (\varphi, \psi)_X = (\varphi, A^{-1} \psi)_0 \qquad (\varphi \in C_0^{\infty}(\Omega)),$$

and therefore $\; M \; \psi = A^{-1} \; \psi \; .$

Let $D'(\Omega)$ be the space of distributions in Ω . An element $u \in X$ determines a distribution

$$\varphi \to (\varphi , u)_0 \qquad (\varphi \in C_0^{\infty}(\Omega)).$$

We shall identify u with this distribution. Then we get $X^- \subset D'(\Omega)$. If u, M $u \in X^-$, we have

$$(\varphi, M u)_0 = (M \varphi, u)_0 \qquad (\varphi \in C_0^{\infty}(\Omega)).$$

Since $C_0^\infty(\Omega)$ is dense in X and $A^{-1}: X \to X^-$ is an isomorphism, the set $A^{-1}(C_0^\infty(\Omega)) = M(C_0^\infty(\Omega))$ is dense in X^- . Let us define on the domain $D(M_0) = M(C_0^\infty(\Omega))$ an operator $M_0: D(M_0) \to X^-$ by

$$M_0\, \psi \ = \ M\, \psi \qquad \ (\ \psi \in D(M_0)\)\ .$$

Lemma 1. The operator M_0 is symmetric in X^- . If u, M $u \in X^-$, one has $u \in D(M_0^*)$, where M_0^* is the adjoint of M_0 in X^- .

Proof. For $\psi \in D(M_0) = A^{-1}(C_0^\infty(\Omega))$ one has $\varphi = A \ \psi \in C_0^\infty(\Omega)$ and we get by (4)

$$(\psi , M u)_{X^{-}} = (A^{-1} \varphi , M u)_{X^{-}} = (\varphi , M u)_{0} = (M \varphi , u)_{0} = (\psi , u)_{0}$$

$$= (A^{-1} \psi , u)_{X^{-}} = (M_{0} \psi , u)_{X_{-}}.$$

This implies that M_0 is symmetric in X^- , $u \in D(M_0^*)$ and $M_0^* u = M u$. Lemma 2. If $f \in H^p(\Omega)$ then $L' S^p f \in X^-$.

Proof. Let Y be the closure of the set $L(C_0^{\infty}(\Omega))$ in $H^p(\Omega)$ and Y^{\perp} the orthogonal complement of Y in $H^p(\Omega)$. Then we can decompose $f = v + f_0$ where $v \in Y$, $f_0 \in Y^{\perp}$. Since

$$(f_0, S^p L \varphi)_0 = (f_0, L \varphi)_p = 0 \qquad (\varphi \in C_0^{\infty}(\Omega)).$$

one has $L'S^pf_0=0$ and therefore $L'S^pf=L'S^pv$. For $\varphi\in C_0^\infty(\Omega)$ we get

$$||L \varphi||_p^2 = (\varphi, L' L S^p \varphi)_0 = ||\varphi||_X^2$$

and moreover

$$\begin{aligned} |(L' \, S^p \, v)(\varphi)| &= |v(L \, S^p \, \varphi)| &= |(v \, , L \, S^p \, \varphi)_0| \\ &= |(v \, , L \, \varphi)_n| &\leq ||v||_p \, ||L \, \varphi||_p &= ||v||_p \, ||\varphi||_X \, . \end{aligned}$$

Thus the distribution $L' S^p v \in D'(\Omega)$ is bounded by the norm $\|\cdot\|_X$. Consequently, $L' S^p f = L' S^p v \in X^-$, since X^- is dual with X with respect to the form $(\cdot, \cdot)_0$.

Theorem 3. Assume that $f \in H^p(\Omega)$ and let $u \in X^-$ be a distribution solution in Ω of the equation¹

$$L u = f.$$

Then u can be decomposed

$$u = u_0 - \vartheta$$
.

where $u_0 \in X \subset H_0^{p+r}(\Omega)$ and $\vartheta \in X^-$ satisfies

$$(M^2 + 1) \vartheta = 0.$$

Proof. According to Lemma 2 one has

$$M u = L' S^p L u = L' S^p f \in X^-.$$

Thus we get by Lemma 1, $u \in D(M_0^*)$, where M_0^* is the adjoint in X of the symmetric operator M_0 . Let \overline{M}_0 be the closure in X^- of M_0 . Then u can be decomposed

¹ A distribution solution in Ω of the equation L u = f is defined to be a distribution $u \in D'(\Omega)$ such that $(L u)(\varphi) := u(L' \varphi) = f(\varphi)$ for all $\varphi \in C_0^\infty(\Omega)$.

$$u = u_0 + \vartheta_1 + \vartheta_2,$$

where $u_0 \in D(\overline{M}_0)$ and the elements $\vartheta_1 \, , \vartheta_2 \, \in D(M_0^*)$ satisfy

$$M_0^* \, \vartheta_1 = i \, \vartheta_1 \,, \quad M_0^* \, \vartheta_2 = -i \, \vartheta_2$$

(see e.g. [2], VII.4, Theorem 3, p. 204).

For $\varphi \in C_0^{\infty}(\Omega)$ one has $M \varphi \in M(C_0^{\infty}(\Omega)) = D(M_0) = D(M_0 + i I)$ and, since $(M_0 + i I)^* \vartheta_1 = (M_0^* - i I) \vartheta_1 = 0$, we get

$$((M+i) \varphi , \vartheta_1)_0 = (M_0 + i I) M \varphi . \vartheta_1)_{X^{\bullet}} = 0.$$

This implies that $\ (M-i)\,\vartheta_1=0$. Similarly one has $\ (M+i)\,\vartheta_2=0$. Writing $\ \vartheta=\vartheta_1+\vartheta_2$ we get

$$(M^2 + 1) \vartheta = (M + i) (M - i) (\vartheta_1 + \vartheta_2) = 0.$$

Since $u_0\in D(\bar{M}_0)$, there exists a sequence $\{\psi_i\}\subset D(M_0)=M(C_0^\infty(\Omega))$ such that

$$\|\psi_i - u_0\|_{X^-} \to 0$$
, $\|M_0 \psi_i - \overline{M}_0 u_0\|_{X^-} \to 0$.

Because

$$\|\psi_i - \psi_j\|_{X} = \|A^{-1}(\psi_i - \psi_j)\|_{X^-} = \|M_0(\psi_i - \psi_j)\|_{X^-} \to 0$$

there exists $u_0' \in X$ such that $\psi_i \to u_0'$ in X. This implies that $\psi_i \to u_0'$ also in X^- , therefore $u_0 = u_0' \in X$.

Corollary 4. We assume that L is hypoelliptic and $f \in L^2(\Omega)$. If $u \in L^2(\Omega)$ is a distribution solution of

$$Lu = f$$

then there exists a sequence $\{\psi_i\} \subset C^{\infty}(\Omega) \cap L^2(\Omega)$ such that in $L^2(\Omega)$, $\psi_i \to u$ and $L \psi_i \to f$.

Proof. Let us take p=0 and apply Theorem 3. Then we get $u=u_0+\vartheta$, where $u_0\in X$ and ϑ satisfies (5) with M=L'L. Since L is hypoelliptic, M^2+1 is also hypoelliptic and therefore $\vartheta\in C^\infty(\Omega)$. For $\varphi\in C_0^\infty(\Omega)$ one has

$$\|\varphi\|_X^2 = (\varphi , L' L \varphi)_0 = \|L \varphi\|_0^2$$

Since $u_0\in X$ there exists a sequence $\{\varphi_i\}\in C_0^\infty(\varOmega)$ such that $\varphi_i\to u_0$ in X. Because

$$||L \varphi_i - L \varphi_j||_0 = ||\varphi_i - \varphi_j||_X \to 0,$$

there is $v \in L^2(\Omega)$ such that $L \varphi_i \to v$ in $L^2(\Omega)$. For each $\varphi \in C_0^{\infty}(\Omega)$ one has

$$(L' \varphi, \varphi_i)_0 \rightarrow (L' \varphi, u_0)_0 = (L u_0)(\varphi)$$

and on the other hand

$$(L' \varphi, \varphi_i)_0 = (\varphi, L \varphi_i)_0 \rightarrow (\varphi, v)_0 = v(\varphi).$$

This implies that $L u_0 = v$ and therefore $L \varphi_i \to L u_0$ in $L^2(\Omega)$. Thus we get for $\psi_i = \varphi_i + \vartheta \in C^{\infty}(\Omega) \cap L^2(\Omega)$, $\psi_i \to u_0 + \vartheta = u$ and $L \psi_i = L \varphi_i + L \vartheta \to L u_0 + L \vartheta = f$ in $L^2(\Omega)$.

I am most grateful to the referee, who has read the manuscript and suggested the following theorem, which is simpler and more general than Theorem 3 in the case r=0. This theorem also implies Corollary 4.

Theorem 5. Assume that $f \in H^p(\Omega)$ and let $u \in D'(\Omega)$ be a distribution solution in Ω of the equation

$$Lu = f$$
.

Then u can be decomposed

$$u = u_0 + \vartheta,$$

where $u_0 \in H_0^p(\Omega)$ and $\vartheta \in D'(\Omega)$ satisfies

$$L' L S^p \vartheta = 0.$$

Proof. Let us define on $C_0^{\infty}(\Omega)$ an operator $L_0: C_0^{\infty}(\Omega) \to H_0^p(\Omega)$ by

$$L_0\,\varphi \;=\; L\,\varphi \qquad \, (\;\varphi \in C_0^\infty(\varOmega)\;)\;.$$

It has in $H_0^p(\Omega)$ a closure L_0 and according to (3) one has

$$||\bar{L}_0 v||_p \ge |k_p||v||_p \qquad (v \in D(\bar{L}_0)).$$

This implies that the range $R(\bar{L}_0)$ is closed in $H^p_0(\Omega)$ and therefore a closed subspace of $H^p(\Omega)$. Thus, the element $f \in H^p(\Omega)$ can be decomposed $f = f_0 + f_1$, where f_0 is contained in $R(\bar{L}_0)$ and f_1 in the orthogonal complement of $R(\bar{L}_0)$ in $H^p(\Omega)$. We can find $u_0 \in D(\bar{L}_0) \subset H^p_0(\Omega)$ such that $\bar{L}_0 u_0 = f_0$. There exists a sequence $\{\varphi_n\} \subset D(\bar{L}_0) = C_0^{\infty}(\Omega)$ such that in $H^p_0(\Omega)$ one has $\varphi_n \to u_0$ and $L \varphi_n = L_0 \varphi_n \to \bar{L}_0 u_0 = f_0$. Thus, for each $\varphi \in C_0^{\infty}(\Omega)$

$$(L' \varphi, \varphi_n)_0 \rightarrow (L' \varphi, u_0)_0$$

and on the other hand

$$(L' \varphi, \varphi_n)_0 = (\varphi, L \varphi_n)_0 \rightarrow (\varphi, f_0)_0.$$

Consequently, we have

(6)
$$(\varphi, f_0)_0 = (L' \varphi, u_0)_0 \qquad (\varphi \in C_0^{\infty}(\Omega)).$$

We identify u_0 with the distribution

$$\varphi \rightarrow (\varphi , u_0)_0 \qquad (\varphi \in C_0^\infty(\Omega))$$

and write $\vartheta = u - u_0 \in D'(\Omega)$. For each $\psi \in C_0^{\infty}(\Omega)$ one has $L S^p \psi \in C_0^{\infty}(\Omega)$ and using the relation (6) we get

$$(L' L S^{p} \vartheta)(\psi) = (L' L S^{p} u)(\psi) - (L' L S^{p} u_{0})(\psi)$$

$$= (L u)(L S^{p} \psi) - u_{0}(L' L S^{p} \psi)$$

$$= (L S^{p} \psi, f)_{0} - (L' (L S^{p} \psi), u_{0})_{0}$$

$$= (L S^{p} \psi, f)_{0} - (L S^{p} \psi, f_{0})_{0}$$

$$= (L S^{p} \psi, f)_{0} = (L_{0} \psi, f)_{p} = 0,$$

since f_1 is in $H^p(\Omega)$ orthogonal to $R(\bar{L}_0) \supset R(L_0)$. Thus we have $L' L S^p \vartheta = 0$, $u_0 \in H^p_0(\Omega)$ and $u = u_0 + \vartheta$.

Tampere University of Technology Tampere — Finland

References

- [1] HÖRMANDER, L.: On the theory of general partial differential operators. Acta Math. 94, 1955, pp. 161-248.
- [2] Yosida, K.: Functional analysis. [Third edition] Die Grundlehren der mathematischen Wissenschaften 123. Springer-Verlag, Berlin / Heidelberg / New York, 1971.