ANNALES ACADEMIAE SCIENTIARUM FENNICAE

Series A

I. MATHEMATICA

530

REMARKS ON THE REGULARITY
OF THE SOLUTIONS OF A LINEAR PARTIAL
DIFFERENTIAL EQUATION WITH
CONSTANT COEFFICIENTS

BY

VAINO JALAVA

HELSINKI 1973
SUOMALAINEN TIEDEAKATEMIA

https://doi.org/10.5186/aasfm.1973.530


koskenoj
Typewritten text
https://doi.org/10.5186/aasfm.1973.530


Copyright © 1972 by
Academia Scientiarum Fennica
ISBN 951 —-41—0086—7

Communicated 12 October 1972 by RoLF NEVANLINNA

KESKUSKIRJAPAINC
HELSINKIT 1973



1. Let us consider a linear partial differential equation
(1) Lu =Ff,

where the differential operator L has constant coefficients. We assume
that f belongs to the Sobolev space HP(2) (p =0), where 2 isa
bounded open domain in the Euclidean space R". Let L’ be the formal
adjoint of L and write M = L' L (1 — A)?. With the help of M we
construct a distribution space X~ such that L2(Q)c X~ c D'(Q). We
shall show that if « € X~ is a distribution solution of (1), it can be de-
composed

U = uy+ 9,
where u, € H}™"(2) (r=0) and ¥ satisfies
@) M2+1)9 = 0.

Thus the part u, is at least as regular as the right hand side f of (1).
Since the second part § satisfies the homogeneous equation (2), its regu-
larity depends only on the differential operator L. Consequently, the
question about the regularity of a solution of the inhomogeneous prob-
lem (1) returns to the question about the regularity of a solution of the
homogeneous problem (2). Furthermore, this result will be applied to
prove that weak L2-solutions of hypoelliptic equations can be approxi-
mated in L*Q) by C®-functions.

2. Let Q be a bounded open domain in the Euclidean space R". For a
multi-index ¢ = (g;, ..., ga) Wewrite D = D{*... D% where D; = 9/dx; .
If p =0 is an integer, we denote by HFP(Q) the Sobolev space consis-
ting of the complex valued functions whose distribution derivates of
order =p belongto L*2). The space HP(Q) is a Hilbert space with
the inner product

p! /‘ S
u, ), = Deu D% dx
() ofZp @l el (p—lol) ! J

Isp ©

(u,v €EHP(Q)). Let Hj(Q) be the closure of CP(2) in HP(Q).
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We consider a differential operator

with constant coefficients. There is an integer r = 0 such that for each
p =0 one has

(3) ILgl, = & liglps, (9 €CT(R)),

where k, is a positive constant (cf. [1], p. 177). The formal adjoint of L is

L' = > (=1)¢a, D,

le|s=m

Let us choose an integer p = 0. Writing
S=1—4= 1—'21)?‘.
one has for f€HP(Q) and ¢ €Cy(2)
(f, @) = (F: 8%

We consider the formally self-adjoint differential operator
M = L'LS".
For ¢ €CP(R) we get by (3)
(@, M)y = (Lo,SLek = ILgly = Kl -

Let us define on CP(£2) an inner product

(‘P,'P)X=((P,M?P)o ((f>¢€03°(9))°

We denote by X the completion of Cg(£2) with respect to the corres-
ponding norm ||]x . Since

lelx = &y gl (¢ €CT(Q)),

one has X c H}'"(Q) .
We define on L%®) so-called negative norm |fx by the formula

[(u H ”)0% °
lolly = sup ——— (v €LXQ)).
ocuex  l4llx
Let X~ be the completion of L) with respect to this norm. Take
w€X and wv€X . There is a sequence {v}c L*2) such that

|l — vllx-— 0. Since

[(w, vi)ol = llullx [lvdlx- (i=12,...),
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we can define the form (-,-), on X x X~ such that
(w, )] = llulxvlx- (w€X,veX).

Each v € L*(Q) determines a continuous linear functional (-,w), on
X . Consequently, there is a continuous linear mapping 4,: L¥Q) — X
such that

(w,v)y = (u,dyv)x (u€X, vEL}Q)).
For v € L*Q) one has
: i(w, Ay v)x|
o vl = sup =P = [ily-
0£ueX llullx

Thus, 4, maps a dense subset of X~ isometrically into X . Consequently
4, has an isometric extension 4 : X~ — X . Since 4 is isometric, the
range A(X") is closedin X. If A(X") % X, one can find a non-zero
% € X such that for each v € L3(Q)

(u,v)g = (u.,dv)y = 0.

This is true only if « = 0, therefore A(X~") = X. Thus, the mapping
4: X~ — X is an isometric isomorphism, X~ is a Hilbert space, and

(w,v)y = (w,4v)x = (A1u,v)x- (v€X ,vEX).
This implies that the spaces X and X~ are dual with respect to the form
(5. If p€0P(Q), we get
@ Myl = (9. 9)x = (9,47 9)y (p€CP(Q)),
and therefore My = 4-1y .
Let D'(2) be the space of distributions in 2. An element # € X
determines a distribution
¢—>(p.u)p (p€CFQ)).
We shall identify « with this distribution. Then we get X~c D'(Q).
If w,Muw €X~, we have
(4) (@, Mu)y = (Mo, u) (¢ €CF(Q)).

Since CF(2) is dense in X and A4-1: X — X~ is an isomorphism,
the set A-YCP(Q)) = M(CP(2)) is dense in X~. Let us define on the
domain D(M,) = M(C{(2)) an operator M, : DM, — X~ by

Moy = My (p€DL)).

Lemma 1. The operator M, is symmetricin X~ . If uw,Mu € X",
one has w € D(MF), where Mg is the adjoint of M, in X~
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Proof. TFor o €D(My) = A-YCy(Q)). one has ¢=Ay € Cy(Q)
and we get by (4)

(p, Mu)x- = A g, Mu)x- = (¢. Hu)y = (Me,u) = (y,u)

= A1y, u)x- = (Myy, u)x_.
This implies that M, is symmetric in X~. » € D(M{) and Mg u=Mu.

Lemma 2. If f€HP(Q) then L'S'f €X™.

Proof. Let Y be the closure of the set L(C7(L2)) in HP(Q) and Y+
the orthogonal complement of Y in HP(2). Then we can decompose
f=v+f, where v€Y, f,€Y-. Since

(fo: 82 Lg)y = (fo.Lyg) =0 (¢ €C7(2)) .
one has L' S8Pf, =0 and therefore L' SPf= L' SPv. For ¢ €CP(2)
we get
ILglp = (¢.L' LS ¢)y = ¢l
and moreover
(L' SPo)(g)] = Ww(LS*q), = (v.LSPg)
= |(v. L) = i, L, = ol lelx-
Thus the distribution L’ S? v € D'(£) is bounded by the norm ||x . Con-
sequently, L' SPf = L'SPv € X~, since X~ is dual with X with
respect to the form (-, ), .

Theorem 3. Assume that f€ HP(Q) and let u € X~ be a distribution

solution in  Q of the equation®
Lu =f.
Then w can be decomposed
u o= u, — .

where wuy € X € HE7"(Q) and 1§ € X7 satisfies
(5) (M2L-1h = 0.

Proof. According to Lemma 2 one has

Mw = L SPLu = L'S'f € X~

Thus we get by Lemma 1, « € D(M{), where M isthe adjointin X

of the symmetric operator M,. Let I, he the closure in X~ of M.
Then % can be decomposed

1 A distribution solution in @ of the equation L u = f is defined to be a distri-
bution € D’(2) such that (L u)(@):= w(L’ ¢) = flg) for all ¢ €C0X(2).
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u = uy+ ¢ + 9,
where u, € D(J1,) and the elements 9¥;, 9, € D(Mg) satisfy
MEO, — i0,, MEO, — —id,

(see e.g. [2], VII.4, Theorem 3, p. 204).
For ¢ €Cy(2) one has Mg € M(CF(2)) = D(My) = D(M, + 1 1)
and, since (M, +iI)*9, = (Mg —iI)9, = 0. we get

(M +0)g, D)y = (My+1tL) Mg . - = 0.

This implies that (M — ¢)¥; = 0. Similarly one has (M - )9, = 0.
Writing ¢ =9, + 9, we get

(M2 1) = (M +i) (M — i) (9, — i) = 0.

Since wu, € D(M,), there exists a sequence {y:{c D(M,) = M(C7(LQ))

such that

i — wgllx- — 0, 1My i — My ugly- — 0.
Because

i —willx = 1472 (i — wilx- = 1My (i — w)llx- — 0.

there exists u, € X such that y; —ug in X . This implies that y; — u,
also in  X~, therefore uy=u',€X.

Corollary 4. We assume that L 1is hypoelliptic and f€ LX Q). If
u € [2(Q) 1is a distribution solution of

Lu=f,

then there exists a sequence {y:}C C*(2)N LX) such that in L*Q),
pyi—u and Ly—f.

Proof. Let us take p =0 and apply Theorem 3. Then we get
u = uy, + 9, where u, € X and ¢ satisfies (5) with M = L' L. Since
L is hypoelliptic, M2+ 1 is also hypoelliptic and therefore # € C*(Q).
For ¢ €CyP(L2) one has

ol = (¢, L' L)y = L gl
Since wu,€ X there exists a sequence {¢:} € Cy"(2) such that ¢i—u,
in X . Because
1L @i — Lgilly = llgi — illx — ¢

there is v € I2(Q) such that L ¢;—v in L*Q). Foreach ¢ €CF(Q)
one has
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L@,y = (L@, u)o = (Lu)p)

and on the other hand
(L', e = (@, L)y = (@,v) = v(p) -

This implies that L u, = v and therefore L ¢;— Lu, in L*2). Thus
we get for wyi=q +9€EC°(QQNIXA), yi— u+9¢ =u and
Lyi = Lgi+ L% — Luy+ L% = f in L¥Q).

I am most grateful to the referee, who has read the manuscript and
suggested the following theorem, which is simpler and more general than
Theorem 3 in the case = 0. This theorem also implies Corollary 4.

Theorem 5. Assume that f€ HP(Q) and let w € D'(Q) be a distri-
bution solution in 2 of the equation

Lu =Ff.

Then u can be decomposed

U = uy+ 7,
where wu, € HY(Q) uand 9 € D'(2) satisfies

L'LS8Y% = 0.

Proof. Let us define on C{(2) an operator Ly: Cg(Q) — Hf(2) by
Lyp =L (9€CP(9Q).
It has in HE(2) a closure L, and according to (3) one has
Lyvly = kylbl,  (v€D(L)).

This implies that the range R(L,) is closed in H§(£) and therefore a closed
subspace of HP(2). Thus, the element f€ HP(Q) can be decomposed
f=fy+f. where f, is contained in R(L,) and f; in the orthogonal
complement of R(L,) in HP(Q). We can find u, € D(L,) c H§(2) such
that Lyu, =f,. There exists a sequence {@.}C D(Ly) = Cy(£2) such
that in HE(Q) one has ¢n —uy and L gn = Lyg. — Lyu, = f. Thus,
for each ¢ € C3(2)

(L' @, gn)y = (L' @, %)y
and on the other hand
(L', @u)g = (@, Lpn)g —> (9 s Jo)o -
Consequently, we have

(6) @ foo = L' @,u)  (9€CF(Q)).
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We identify %, with the distribution
? = (9, %) (p €CF(2))
and write ¢ =u —uy€D'(2). For each €CY(2) one has
L 8Py € 03(2) and using the relation (6) we get
(L' LSPO)(y) = (L' LSPu)(y) — (L' LS up)(y)
= (Lu)(L 8" y) — uy(L' L ¥ y)
= (L8P, [l — (L' (LSPy), up)
= (LS y.,flo— (LS vy, fo
= (LSPy af1)o = (Lyy :fl)p =0,

since f; is in HP(Q) orthogonal to R(L,) D R(L,). Thus we have
L'LS8" =0, uy€HRQ) and w = uy,-+ 9.

Tampere University of Technology
Tampere — Finland
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